首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Mo H  King MS  King K  Molla A  Brun S  Kempf DJ 《Journal of virology》2005,79(6):3329-3338
The selection of in vivo resistance to lopinavir was characterized by analyzing the longitudinal isolates from 54 protease inhibitor-experienced subjects who either experienced incomplete virologic response or viral rebound subsequent to initial response while on treatment with lopinavir-ritonavir in Phase II and III studies. The evolution of incremental resistance to lopinavir (emergence of new mutation[s] and/or at least a twofold increase in phenotypic resistance compared to baseline isolates) was highly dependent on the baseline phenotype and genotype. Among the subjects demonstrating evolution of lopinavir resistance, mutations at positions 82, 54, and 46 in human immunodeficiency virus protease emerged frequently, suggesting that these mutations are important for conferring high-level resistance. Less common mutations, such as L33F, I50V, and V32I together with I47V/A, were also selected; however, new mutations at positions 84, 90, and 71 were not observed. The emergence of incremental resistance contrasts greatly with the low incidence of resistance observed after initiating lopinavir-ritonavir therapy in antiretroviral-naive patients, suggesting that partial resistance accumulated during prior protease inhibitor therapy can compromise the genetic barrier to resistance to lopinavir-ritonavir. The emergence of incremental resistance was uncommon in subjects whose baseline isolates contained eight or more mutations associated with lopinavir resistance and/or displayed >60-fold-reduced susceptibility to lopinavir, providing insight into suitable upper genotypic and phenotypic breakpoints for lopinavir-ritonavir.  相似文献   

2.
Drug resistance is a major problem affecting the clinical efficacy of antiretroviral agents, including protease inhibitors, in the treatment of infection with human immunodeficiency virus type 1 (HIV-1)/AIDS. Consequently, the elucidation of the mechanisms by which HIV-1 protease inhibitors maintain antiviral activity in the presence of mutations is critical to the development of superior inhibitors. Tipranavir, a nonpeptidic HIV-1 protease inhibitor, has been recently approved for the treatment of HIV infection. Tipranavir inhibits wild-type protease with high potency (K(i) = 19 pM) and demonstrates durable efficacy in the treatment of patients infected with HIV-1 strains containing multiple common mutations associated with resistance. The high potency of tipranavir results from a very large favorable entropy change (-TDeltaS = -14.6 kcal/mol) combined with a favorable, albeit small, enthalpy change (DeltaH = -0.7 kcal/mol, 25 degrees C). Characterization of tipranavir binding to wild-type protease, active site mutants I50V and V82F/I84V, the multidrug-resistant mutant L10I/L33I/M46I/I54V/L63I/V82A/I84V/L90M, and the tipranavir in vitro-selected mutant I13V/V32L/L33F/K45I/V82L/I84V was performed by isothermal titration calorimetry and crystallography. Thermodynamically, the good response of tipranavir arises from a unique behavior: it compensates for entropic losses by actual enthalpic gains or by sustaining minimal enthalpic losses when facing the mutants. The net result is a small loss in binding affinity. Structurally, tipranavir establishes a very strong hydrogen bond network with invariant regions of the protease, which is maintained with the mutants, including catalytic Asp25 and the backbone of Asp29, Asp30, Gly48 and Ile50. Moreover, tipranavir forms hydrogen bonds directly to Ile50, while all other inhibitors do so by being mediated by a water molecule.  相似文献   

3.
Darunavir and tipranavir are two inhibitors that are active against multi-drug resistant (MDR) HIV-1 protease variants. In this study, the invitro inhibitory efficacy was tested against a MDR HIV-1 protease variant, MDR 769 82T, containing the drug resistance mutations of 46L/54V/82T/84V/90M. Crystallographic and enzymatic studies were performed to examine the mechanism of resistance and the relative maintenance of potency. The key findings are as follows: (i) The MDR protease exhibits decreased susceptibility to all nine HIV-1 protease inhibitors approved by the US Food and Drug Administration (FDA), among which darunavir and tipranavir are the most potent; (ii) the threonine 82 mutation on the protease greatly enhances drug resistance by altering the hydrophobicity of the binding pocket; (iii) darunavir or tipranavir binding facilitates closure of the wide-open flaps of the MDR protease; and (iv) the remaining potency of tipranavir may be preserved by stabilizing the flaps in the inhibitor-protease complex while darunavir maintains its potency by preserving protein main chain hydrogen bonds with the flexible P2 group. These results could provide new insights into drug design strategies to overcome multi-drug resistance of HIV-1 protease variants.  相似文献   

4.
Many patterns of mutations selected by HIV-1 protease inhibitors have been described, but in most cases isolates with these patterns have been obtained from pre-clinical studies or after failures of monotherapies. We compared genotype and phenotype in HIV-1 infected patients who have failed more than one PI-including regimen. Phenotypic resistance could arise also in the absence of specific primary mutations and in the presence of different substitutions among those known to confer resistance to ritonavir, indinavir or nelfinavir. The number of secondary mutations was significantly associated with phenotypic resistance for each protease inhibitor. Thus, more study of mutational patterns in heavily pretreated patients is warranted; in the mean time treatment choices might be optimized if phenotyping could integrate genotyping within this setting.  相似文献   

5.
The association of genotypic changes in human immunodeficiency virus (HIV) protease with reduced in vitro susceptibility to the new protease inhibitor lopinavir (previously ABT-378) was explored using a panel of viral isolates from subjects failing therapy with other protease inhibitors. Two statistical tests showed that specific mutations at 11 amino acid positions in protease (L10F/I/R/V, K20M/R, L24I, M46I/L, F53L, I54L/T/V, L63P, A71I/L/T/V, V82A/F/T, I84V, and L90M) were associated with reduced susceptibility. Mutations at positions 82, 54, 10, 63, 71, and 84 were most closely associated with relatively modest (4- and 10-fold) changes in phenotype, while the K20M/R and F53L mutations, in conjunction with multiple other mutations, were associated with >20- and >40-fold-reduced susceptibility, respectively. The median 50% inhibitory concentrations (IC(50)) of lopinavir against isolates with 0 to 3, 4 or 5, 6 or 7, and 8 to 10 of the above 11 mutations were 0.8-, 2.7-, 13.5-, and 44.0-fold higher, respectively, than the IC(50) against wild-type HIV. On average, the IC(50) of lopinavir increased by 1.74-fold per mutation in isolates containing three or more mutations. Each of the 16 viruses that displayed a >20-fold change in susceptibility contained mutations at residues 10, 54, 63, and 82 and/or 84, along with a median of three mutations at residues 20, 24, 46, 53, 71, and 90. The number of protease mutations from the 11 identified in these analyses (the lopinavir mutation score) may be useful for the interpretation of HIV genotypic resistance testing with respect to lopinavir-ritonavir (Kaletra) regimens and may provide insight into the genetic barrier to resistance to lopinavir-ritonavir in both antiretroviral therapy-naive and protease inhibitor-experienced patients.  相似文献   

6.
Increased susceptibility to the protease inhibitors saquinavir and amprenavir has been observed in human immunodeficiency virus type 1 (HIV-1) with specific mutations in protease (V82T and N88S). Increased susceptibility to ritonavir has also been described in some viruses from antiretroviral agent-naive patients with primary HIV-1 infection in association with combinations of amino acid changes at polymorphic sites in the protease. Many of the viruses displaying increased susceptibility to protease inhibitors also had low replication capacity. In this retrospective study, we analyze the drug susceptibility phenotype and the replication capacity of virus isolates obtained at the peaks of viremia during five consecutive structured treatment interruptions in 12 chronically HIV-1-infected patients. Ten out of 12 patients had at least one sample with protease inhibitor hypersusceptibility (change 相似文献   

7.
Although many human immunodeficiency virus type 1 (HIV-1)-infected persons are treated with multiple protease inhibitors in combination or in succession, mutation patterns of protease isolates from these persons have not been characterized. We collected and analyzed 2,244 subtype B HIV-1 isolates from 1,919 persons with different protease inhibitor experiences: 1,004 isolates from untreated persons, 637 isolates from persons who received one protease inhibitor, and 603 isolates from persons receiving two or more protease inhibitors. The median number of protease mutations per isolate increased from 4 in untreated persons to 12 in persons who had received four or more protease inhibitors. Mutations at 45 of the 99 amino acid positions in the protease-including 22 not previously associated with drug resistance-were significantly associated with protease inhibitor treatment. Mutations at 17 of the remaining 99 positions were polymorphic but not associated with drug treatment. Pairs and clusters of correlated (covarying) mutations were significantly more likely to occur in treated than in untreated persons: 115 versus 23 pairs and 30 versus 2 clusters, respectively. Of the 115 statistically significant pairs of covarying residues in the treated isolates, 59 were within 8 A of each other-many more than would be expected by chance. In summary, nearly one-half of HIV-1 protease positions are under selective drug pressure, including many residues not previously associated with drug resistance. Structural factors appear to be responsible for the high frequency of covariation among many of the protease residues. The presence of mutational clusters provides insight into the complex mutational patterns required for HIV-1 protease inhibitor resistance.  相似文献   

8.
Many HIV-1-infected patients treated with protease inhibitors (PI) develop PI-resistant HIV-1 variants and rebounds in viremia, but their CD4+ T-cell counts often do not fall. We hypothesized that in these patients, T-cell counts remain elevated because PI-resistant virus spares intrathymic T-cell production. To test this, we studied recombinant HIV-1 clones containing wild-type or PI-resistant protease domains, as well as uncloned isolates from patients, in activated peripheral blood mononuclear cells, human thymic organ cultures and human thymus implants in SCID-hu Thy/Liv mice. In most cases, wild-type and PI-resistant HIV-1 isolates replicated to similar degrees in peripheral blood mononuclear cells. However, the replication of PI-resistant but not wild-type HIV-1 isolates was highly impaired in thymocytes. In addition, patients who had PI-resistant HIV-1 had abundant thymus tissue as assessed by computed tomography. We propose that the inability of PI-resistant HIV-1 to replicate efficiently in thymus contributes to the preservation of CD4+ T-cell counts in patients showing virologic rebound on PI therapy.  相似文献   

9.
10.
The high incidence of cross-resistance between human immunodeficiency virus type 1 (HIV-1) protease inhibitors (PIs) limits their sequential use. This necessitates the development of PIs with a high genetic barrier and a broad spectrum of activity against PI-resistant HIV, such as tipranavir and darunavir (TMC114). We performed a surface plasmon resonance-based kinetic study to investigate the impact of PI resistance-associated mutations on the protease binding of five PIs used clinically: amprenavir, atazanavir, darunavir, lopinavir, and tipranavir. With wild-type protease, the binding affinity of darunavir was more than 100-fold higher than with the other PIs, due to a very slow dissociation rate. Consequently, the dissociative half-life of darunavir was much higher (>240 h) than that of the other PIs, including darunavir's structural analogue amprenavir. The influence of protease mutations on the binding kinetics was tested with five multidrug-resistant (MDR) proteases derived from clinical isolates harboring 10 to 14 PI resistance-associated mutations with a decreased susceptibility to various PIs. In general, all PIs bound to the MDR proteases with lower binding affinities, caused mainly by a faster dissociation rate. For amprenavir, atazanavir, lopinavir, and tipranavir, the decrease in affinity with MDR proteases resulted in reduced antiviral activity. For darunavir, however, a nearly 1,000-fold decrease in binding affinity did not translate into a weaker antiviral activity; a further decrease in affinity was required for the reduced antiviral effect. These observations provide a mechanistic explanation for darunavir's potent antiviral activity and high genetic barrier to the development of resistance.  相似文献   

11.
12.
Continued use of antiretroviral therapy despite the emergence of drug-resistant human immunodeficiency virus (HIV) has been associated with the durable maintenance of plasma HIV RNA levels below pretherapy levels. The factors that may account for this partial control of viral replication were assessed in a longitudinal observational study of 20 HIV-infected adults who remained on a stable protease inhibitor-based regimen despite ongoing viral replication (plasma HIV RNA levels consistently >500 copies/ml). Longitudinal plasma samples (n = 248) were assayed for drug susceptibility and viral replication capacity (measured by using a single-cycle recombinant-virus assay). The initial treatment-mediated decrease in plasma viremia was directly proportional to the reduction in replicative capacity (P = 0.01). Early virologic rebound was associated the emergence of a virus population exhibiting increased protease inhibitor phenotypic resistance, while replicative capacity remained low. During long-term virologic failure, plasma HIV RNA levels often remained stable or increased slowly, while phenotypic resistance continued to increase and replicative capacity decreased slowly. The emergence of primary genotypic mutations within protease (particularly V82A, I84V, and L90M) was temporally associated with increasing phenotypic resistance and decreasing replicative capacity, while the emergence of secondary mutations within protease was associated with more-gradual changes in both phenotypic resistance and replicative capacity. We conclude that HIV may be constrained in its ability to become both highly resistant and highly fit and that this may contribute to the continued partial suppression of plasma HIV RNA levels that is observed in some patients with drug-resistant viremia.  相似文献   

13.
Muzammil S  Ross P  Freire E 《Biochemistry》2003,42(3):631-638
A major problem in the chemotherapy of HIV-1 infection is the appearance of drug resistance. In the case of HIV-1 protease inhibitors, resistance originates from mutations in the protease molecule that lower the affinity of inhibitors while still maintaining a viable enzymatic profile. Drug resistance mutations can be classified as active site or non-active site mutations depending on their location within the protease molecule. Active site mutations directly affect drug/target interactions, and their action can be readily understood in structural terms. Non-active site mutations influence binding from distal locations, and their mechanism of action is not immediately apparent. In this paper, we have characterized a mutant form of the HIV-1 protease, ANAM-11, identified in clinical isolates from HIV-1 infected patients treated with protease inhibitors. This mutant protease contains 11 mutations, 10 of which are located outside the active site (L10I/M36I/S37D/M46I/R57K/L63P/A71V/G73S/L90M/I93L) and 1 within the active site (I84V). ANAM-11 lowers the binding affinity of indinavir, nelfinavir, saquinavir, and ritonavir by factors of 4000, 3300, 5800, and 80000, respectively. Surprisingly, most of the loss in inhibitor affinity is due to the non-active site mutations as demonstrated by additional experiments performed with a protease containing only the 10 non-active site mutations (NAM-10) and another containing only the active site mutation (A-1). Kinetic analysis with two different substrates yielded comparable catalytic efficiencies for A-1, ANAM-11, NAM-10, and the wild-type protease. These studies demonstrate that non-active site mutations can be the primary source of resistance and that their role is not necessarily limited to compensate deleterious effects of active site mutations. Analysis of the structural stability of the proteases by differential scanning calorimetry reveals that ANAM-11 and NAM-10 are structurally more stable than the wild-type protease while A-1 is less stable. Together, the binding and structural thermodynamic results suggest that the non-active site mutants affect inhibitor binding by altering the geometry of the binding site cavity through the accumulation of mutations within the core of the protease molecule.  相似文献   

14.
Indinavir (IDV) (also called CRIXIVAN, MK-639, or L-735,524) is a potent and selective inhibitor of the human immunodeficiency virus type 1 (HIV-1) protease. During early clinical trials, in which patients initiated therapy with suboptimal dosages of IDV, we monitored the emergence of viral resistance to the inhibitor by genotypic and phenotypic characterization of primary HIV-1 isolates. Development of resistance coincided with variable patterns of multiple substitutions among at least 11 protease amino acid residues. No single substitution was present in all resistant isolates, indicating that resistance evolves through multiple genetic pathways. Despite this complexity, all of 29 resistant isolates tested exhibited alteration of residues M-46 (to I or L) and/or V-82 (to A, F, or T), suggesting that screening of these residues may be useful in predicting the emergence of resistance. We also extended our previous finding that IDV-resistant viral variants exhibit various patterns of cross-resistance to a diverse panel of HIV-1 protease inhibitors. Finally, we noted an association between the number of protease amino acid substitutions and the observed level of IDV resistance. No single substitution or pair of substitutions tested gave rise to measurable viral resistance to IDV. The evolution of this resistance was found to be cumulative, indicating the need for ongoing viral replication in this process. These observations strongly suggest that therapy should be initiated with the most efficacious regimen available, both to suppress viral spread and to inhibit the replication that is required for the evolution of resistance.  相似文献   

15.
Human immunodeficiency virus type 1 (HIV-1) Gag protease cleavage sites (CS) undergo sequence changes during the development of resistance to several protease inhibitors (PIs). We have analyzed the association of sequence variation at the p7/p1 and p1/p6 CS in conjunction with amprenavir (APV)-specific protease mutations following PI combination therapy with APV. Querying a central resistance data repository resulted in the detection of significant associations (P < 0.001) between the presence of APV protease signature mutations and Gag L449F (p1/p6 LP1'F) and P453L (p1/p6 PP5'L) CS changes. In population-based sequence analyses the I50V mutant was invariably linked to either L449F or P453L. Clonal analysis revealed that both CS mutations were never present in the same genome. Sequential plasma samples from one patient revealed a transition from I50V M46L P453L viruses at early time points to I50V M46I L449F viruses in later samples. Various combinations of the protease and Gag mutations were introduced into the HXB2 laboratory strain of HIV-1. In both single- and multiple-cycle assay systems and in the context of I50V, the L449F and P453L changes consistently increased the 50% inhibitory concentration of APV, while the CS changes alone had no measurable effect on inhibitor sensitivity. The decreased in vitro fitness of the I50V mutant was only partially improved by addition of either CS change (I50V M46I L449F mutant replicative capacity approximately 16% of that of wild-type virus). Western blot analysis of Pr55 Gag precursor cleavage products from infected-cell cultures indicated accumulation of uncleaved Gag p1-p6 in all I50V viruses without coexisting CS changes. Purified I50V protease catalyzed cleavage of decapeptides incorporating the L449F or P453L change 10-fold and 22-fold more efficiently than cleavage of the wild-type substrate, respectively. HIV-1 protease CS changes are selected during PI therapy and can have effects on both viral fitness and phenotypic resistance to PIs.  相似文献   

16.
17.
Amino acid substitutions in human immunodeficiency virus type 1 (HIV-1) Gag cleavage sites have been identified in HIV-1 isolated from patients with AIDS failing chemotherapy containing protease inhibitors (PIs). However, a number of highly PI-resistant HIV-1 variants lack cleavage site amino acid substitutions. In this study we identified multiple novel amino acid substitutions including L75R, H219Q, V390D/V390A, R409K, and E468K in the Gag protein at non-cleavage sites in common among HIV-1 variants selected against the following four PIs: amprenavir, JE-2147, KNI-272, and UIC-94003. Analyses of replication profiles of various mutant clones including competitive HIV-1 replication assays demonstrated that these mutations were indispensable for HIV-1 replication in the presence of PIs. When some of these mutations were reverted to wild type amino acids, such HIV-1 clones failed to replicate. However, virtually the same Gag cleavage pattern was seen, indicating that the mutations affected Gag protein functions but not their cleavage sensitivity to protease. These data strongly suggest that non-cleavage site amino acid substitutions in the Gag protein recover the reduced replicative fitness of HIV-1 caused by mutations in the viral protease and may open a new avenue for designing PIs that resist the emergence of PI-resistant HIV-1.  相似文献   

18.
19.
Population-based sequence analysis revealed the presence of a variant of human immunodeficiency virus type 1 (HIV-1) containing an insertion of amino acid Ile in the protease gene at codon 19 (19I) and amino acid substitutions in the protease at codons 21 (E21D) and 22 (A22V) along with multiple mutations associated with drug resistance, M46I/P63L/A71V/I84V/I93L, in a patient who had failed protease inhibitor (PI) therapy. Longitudinal analysis revealed that the P63L/A71V/I93L changes were present prior to PI therapy. Polymorphisms in the Gag sequence were only seen in the p1/p6 cleavage site at the P1' position (Leu to Pro) and the P5' position (Pro to Leu). To characterize the role of these mutations in drug susceptibility and replication capacity, a chimeric HIV-1 strain containing the 19I/E21D/A22V mutations with the M46I/P63L/A71V/I84V/I93L and p1/p6 mutations was constructed. The chimera displayed high-level resistance to multiple PIs, but not to lopinavir, and grew to 30% of that of the wild type. To determine the relative contribution of each mutation to the phenotypic characteristic of the virus, a series of mutants was constructed using site-directed mutagenesis. A high level of resistance was only seen in mutants containing the 19I/A22V and p1/p6 mutations. The E21D mutation enhanced viral replication. These results suggest that the combination of the 19I/E21D/A22V mutations may emerge and lead to high-level resistance to multiple PIs. The combination of the 19I/A22V mutations may be associated with PI resistance; however, the drug resistance may be caused by the presence of a unique set of mutations in the p1/p6 mutations. The E21D mutation contributes to replication fitness rather than drug resistance.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号