首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Saccharomyces cerevisiae RAD27 gene encodes the yeast homologue of the mammalian FEN-1 nuclease, a protein that is thought to be involved in the processing of Okazaki fragments during DNA lagging-strand synthesis. One of the predicted DNA lesions occurring in rad27 strains is the presence of single-stranded DNA of the template strand for lagging-strand synthesis. We examined this prediction by analyzing the terminal DNA structures generated during telomere replication in rad27 strains. The lengths of the telomeric repeat tracts were found to be destabilized in rad27 strains, indicating that naturally occurring direct repeats are subject to tract expansions and contractions in such strains. Furthermore, abnormally high levels of single-stranded DNA of the templating strand for lagging-strand synthesis were observed in rad27 cells. Overexpression of Dna2p in wild-type cells also yielded single-stranded DNA regions on telomeric DNA and caused a cell growth arrest phenotype virtually identical to that seen for rad27 cells grown at the restrictive temperature. Furthermore, overexpression of the yeast exonuclease Exo1p alleviated the growth arrest induced by both conditions, overexpression of Dna2p and incubation of rad27 cells at 37 degrees C. However, the telomere heterogeneity and the appearance of single-stranded DNA are not prevented by the overexpression of Exo1p in these strains, suggesting that this nuclease is not simply redundant with Rad27p. Our data thus provide in vivo evidence for the types of DNA lesions predicted to occur when lagging-strand synthesis is deficient and suggest that Dna2p and Rad27p collaborate in the processing of Okazaki fragments.  相似文献   

2.
Okazaki fragment maturation to produce continuous lagging strands in eukaryotic cells requires precise coordination of strand displacement synthesis by DNA polymerase delta (Pol delta) with 5.-flap cutting by FEN1(RAD27) endonuclease. Excessive strand displacement is normally prevented by the 3.-exonuclease activity of Pol delta. This core maturation machinery can be assisted by Dna2 nuclease/helicase that processes long flaps. Our genetic studies show that deletion of the POL32 (third subunit of Pol delta) or PIF1 helicase genes can suppress lethality or growth defects of rad27Delta pol3-D520V mutants (defective for FEN1(RAD27) and the 3.-exonuclease of Pol delta) that produce long flaps and of dna2Delta mutants that are defective in cutting long flaps. On the contrary, pol32Delta or pif1Delta caused lethality of rad27Delta exo1Delta double mutants, suggesting that Pol32 and Pif1 are required to generate longer flaps that can be processed by Dna2 in the absence of the short flap processing activities of FEN1(RAD27) and Exo1. The genetic analysis reveals a remarkable flexibility of the Okazaki maturation machinery and is in accord with our biochemical analysis. In vitro, the generation of short flaps by Pol delta is not affected by the presence of Pol32; however, longer flaps only accumulate when Pol32 is present. The presence of FEN1(RAD27) during strand displacement synthesis curtails displacement in favor of flap cutting, thus suggesting an active hand-off mechanism from Pol delta to FEN1(RAD27). Finally, RNA-DNA hybrids are more readily displaced by Pol delta than DNA hybrids, thereby favoring degradation of initiator RNA during Okazaki maturation.  相似文献   

3.
The role of the primosome assembly and protein n' recognition site in replication of pBR322 plasmid was examined. The following evidence indicates that the primosome is involved in lagging-strand synthesis of pBR322 plasmid replication in vitro. Early replicative intermediates with newly synthesized leading strand, approximately 1 kilobase pair long, immediately downstream of the replication origin accumulate in products synthesized in extracts from a dnaT strain that lacks primosomal protein i or in wild-type extracts supplemented with anti-protein i antibody. These intermediates are converted efficiently into full-length DNA by addition of purified protein i. Consistent with the previously proposed role of the primosome (Arai, K. and Kornberg, A. (1981) Proc. Natl. Acad. Sci. U. S. A. 78, 69-73), an n' site on the lagging strand, but not on the leading strand, is required for efficient replication of the plasmid in vitro. Plasmids lacking an n' site on the lagging strand replicate only to a limited extent in vitro and early replicative intermediates carrying nascent leading strands are accumulated, although a portion of the intermediates complete replication to yield full-length DNA. The latter reaction is completely inhibited by addition of anti-protein i antibody. Insertion of the n' site of phage phi X174 into pBR322 plasmids lacking lagging-strand n' sites restores the replicative ability of the mutant plasmid comparable to that of the wild-type plasmid. These results indicate that protein i is essential for lagging-strand synthesis of pBR322 plasmid in vitro and that it may play an important role in the priming events as a part of either an n' site-dependent primosome or an n' site-independent, as yet unidentified, priming complex.  相似文献   

4.
Holmes AM  Haber JE 《Cell》1999,96(3):415-424
Mitotic double-strand break (DSB)-induced gene conversion at MAT in Saccharomyces cerevisiae was analyzed molecularly in mutant strains thermosensitive for essential replication factors. The processivity cofactors PCNA and RFC are essential even to synthesize as little as 30 nucleotides following strand invasion. Both PCNA-associated DNA polymerases delta and epsilon are important for gene conversion, though a temperature-sensitive Pol epsilon mutant is more severe than one in Pol delta. Surprisingly, mutants of lagging strand replication, DNA polymerase alpha (pol1-17), DNA primase (pri2-1), and Rad27p (rad27 delta) also greatly inhibit completion of DSB repair, even in G1-arrested cells. We propose a novel model for DSB-induced gene conversion in which a strand invasion creates a modified replication fork, involving leading and lagging strand synthesis from the donor template. Replication is terminated by capture of the second end of the DSB.  相似文献   

5.
Rad50, Mre11, and Xrs2 form a nuclease complex that functions in both nonhomologous end-joining (NHEJ) and recombinational repair of DNA double-strand breaks (DSBs). A search for highly expressed cDNAs that suppress the DNA repair deficiency of rad50 mutants yielded multiple isolates of two genes: EXO1 and TLC1. Overexpression of EXO1 or TLC1 increased the resistance of rad50, mre11, and xrs2 mutants to ionizing radiation and MMS, but did not increase resistance in strains defective in recombination (rad51, rad52, rad54, rad59) or NHEJ only (yku70, sir4). Increased Exo1 or TLC1 RNA did not alter checkpoint responses or restore NHEJ proficiency, but DNA repair defects of yku70 and rad27 (fen) mutants were differentially suppressed by the two genes. Overexpression of Exo1, but not mutant proteins containing substitutions in the conserved nuclease domain, increased recombination and suppressed HO and EcoRI endonuclease-induced killing of rad50 strains. exo1 rad50 mutants lacking both nuclease activities exhibited a high proportion of enlarged, G2-arrested cells and displayed a synergistic decrease in DSB-induced plasmid:chromosome recombination. These results support a model in which the nuclease activity of the Rad50/Mre11/Xrs2 complex is required for recombinational repair, but not NHEJ. We suggest that the 5'-3' exo activity of Exo1 is able to substitute for Rad50/Mre11/Xrs2 in rescission of specific classes of DSB end structures. Gene-specific suppression by TLC1, which encodes the RNA subunit of the yeast telomerase complex, demonstrates that components of telomerase can also impact on DSB repair pathways.  相似文献   

6.
Chai W  Du Q  Shay JW  Wright WE 《Molecular cell》2006,21(3):427-435
G-rich 3' telomeric overhangs are required both for forming the distinct telomere structures to protect chromosome ends and for extending telomeres by telomerase. However, little is known about the molecular mechanisms generating telomere overhangs in human cells. We show here that cultured normal human diploid cells have longer G overhangs at telomeres generated by lagging-strand synthesis than by leading-strand synthesis. We also demonstrate that telomerase expression results in elongated overhangs at the leading daughter telomeres. Thus, the overhangs at the leading and lagging daughter telomeres are generated differently in human cells, and telomerase may preferentially affect overhangs generated at the telomeres produced by leading-strand synthesis.  相似文献   

7.
Diede SJ  Gottschling DE 《Cell》1999,99(7):723-733
To better understand the requirements for telomerase-mediated telomere addition in vivo, we developed an assay in S. cerevisiae that creates a chromosome end immediately adjacent to a short telomeric DNA tract. The de novo end acts as a telomere: it is protected from degradation in a CDC13-dependent manner, telomeric sequences are added efficiently, and addition occurs at a faster rate in mutant strains that have long telomeres. Telomere addition was detected in M phase arrested cells, which permitted us to determine that the essential DNA polymerases alpha and delta and DNA primase were required. This indicates that telomeric DNA synthesis by telomerase is tightly coregulated with the production of the opposite strand. Such coordination prevents telomerase from generating excessively long single-stranded tails, which may be deleterious to chromosome stability in S. cerevisiae.  相似文献   

8.
During telomere replication in yeast, chromosome ends acquire a long single-stranded extension of the strand making the 3' end. Previous work showed that these 3' tails are generated late in S-phase, when conventional replication is virtually complete. In addition, the extensions were also observed in cells that lacked telomerase. Therefore, a model was proposed that predicted an activity that recessed the 5' ends at yeast telomeres after conventional replication was complete. Here, we demonstrate that this processing activity is dependent on the passage of a replication fork through yeast telomeres. A non-replicating linear plasmid with telomeres at each end does not acquire single-stranded extensions, while an identical construct containing an origin of replication does. Thus, the processing activity could be associated with the enzymes at the replication fork itself, or the passage of the fork through the telomeric sequences allows a transient access for the activity to the telomeres. We therefore propose that there is a mechanistic link between the conventional replication machinery and telomere maintenance.  相似文献   

9.
In the yeast Saccharomyces cerevisiae, Cdc13, Yku, and telomerase define three parallel pathways for telomere end protection that prevent chromosome instability and death by senescence. We report here that cdc13-1 yku70delta mutants generated telomere deprotection-resistant cells that, in contrast with telomerase-negative senescent cells, did not display classical crisis events. cdc13-1 yku70delta cells survived telomere deprotection by exclusively amplifying TG(1-3) repeats (type II recombination). In a background lacking telomerase (tlc1delta), this process predominated over type I recombination (amplification of subtelomeric Y' sequences). Strikingly, inactivation of the Rad50/Rad59 pathway (which is normally required for type II recombination) in cdc13-1 yku70delta or yku70delta tlc1delta mutants, but also in cdc13-1 YKU70(+) tlc1delta mutants, still permitted type II recombination, but this process was now entirely dependent on the Rad51 pathway. In addition, delayed senescence was observed in cdc13-1 yku70delta rad51delta and cdc13-1 tlc1delta rad51delta cells. These results demonstrate that in wild-type cells, masking by Cdc13 and Yku prevents the Rad51 pathway from amplifying telomeric TG(1-3) sequences. They also suggest that Rad51 is more efficient than Rad50 in amplifying the sequences left uncovered by the absence of Cdc13 or Yku70.  相似文献   

10.
Colaiácovo MP  Pâques F  Haber JE 《Genetics》1999,151(4):1409-1423
Repair of a double-strand break (DSB) by homologous recombination depends on the invasion of a 3'-ended strand into an intact template sequence to initiate new DNA synthesis. When the end of the invading DNA is not homologous to the donor, the nonhomologous sequences must be removed before new synthesis can begin. In Saccharomyces cerevisiae, the removal of these ends depends on both the nucleotide excision repair endonuclease Rad1p/Rad10p and the mismatch repair proteins Msh2p/Msh3p. In rad1 or msh2 mutants, when both ends of the DSB have nonhomologous ends, repair is reduced approximately 90-fold compared to a plasmid with perfect ends; however, with only one nonhomologous end, repair is reduced on average only 5-fold. These results suggest that yeast has an alternative, but less efficient, way to remove a nonhomologous tail from the second end participating in gene conversion. When the removal of one nonhomologous end is impaired in rad1 and msh2 mutants, there is also a 1-hr delay in the appearance of crossover products of gene conversion, compared to noncrossovers. We interpret these results in terms of the formation and resolution of alternative intermediates of a synthesis-dependent strand annealing mechanism.  相似文献   

11.
To address the different functions of Pol delta and FEN1 (Rad27) in Okazaki fragment maturation, exonuclease-deficient polymerase Pol delta-01 and Pol delta-5DV (corresponding to alleles pol3-01-(D321A, E323A) and pol3-5DV-(D520V), respectively) were purified and characterized in this process. In the presence of the replication clamp PCNA, both wild-type and exo(-) Pol delta carried out strand displacement synthesis with similar rates; however, initiation of strand displacement synthesis was much more efficient with Pol delta-exo(-). When Pol delta-exo(-) encountered a downstream primer, it paused with 3-5 nucleotides of the primer displaced, whereas the wild type carried out precise gap filling. Consequently, in the absence of FEN1, Pol delta exonuclease activity was essential for closure of simple gaps by DNA ligase. Compared with wild type, Okazaki fragment maturation with Pol delta-exo(-) proceeded with an increased duration of nick translation prior to ligation. Maturation was efficient in the absence of Dna2 and required Dna2 only when FEN1 activity was compromised. In agreement with these results, the proposed generation of double strand breaks in pol3-exo(-) rad27 mutants was suppressed by the overexpression of DNA2. Further genetic studies showed that pol3-exo(-) rad27 double mutants were sensitive to alkylation damage consistent with an in vivo defect in gap filling by exonuclease-deficient Pol delta.  相似文献   

12.
In eukaryotes, the nuclease activity of Rad27p (Fen1p) is thought to play a critical role in lagging-strand DNA replication by removing ribonucleotides present at the 5' ends of Okazaki fragments. Genetic analysis of Saccharomyces cerevisiae also has identified a role for Rad27p in mutation avoidance. rad27Delta mutants display both a repeat tract instability phenotype and a high rate of forward mutations to canavanine resistance that result primarily from duplications of DNA sequences that are flanked by direct repeats. These observations suggested that Rad27p activities in DNA replication and repair could be altered by mutagenesis and specifically assayed. To test this idea, we analyzed two rad27 alleles, rad27-G67S and rad27-G240D, that were identified in a screen for mutants that displayed repeat tract instability and mutator phenotypes. In chromosome stability assays, rad27-G67S strains displayed a higher frequency of repeat tract instabilities relative to CAN1 duplication events; in contrast, the rad27-G240D strains displayed the opposite phenotype. In biochemical assays, rad27-G67Sp displayed a weak exonuclease activity but significant single- and double-flap endonuclease activities. In contrast, rad27-G240Dp displayed a significant double-flap endonuclease activity but was devoid of exonuclease activity and showed only a weak single-flap endonuclease activity. Based on these observations, we hypothesize that the rad27-G67S mutant phenotypes resulted largely from specific defects in nuclease function that are important for degrading bubble intermediates, which can lead to DNA slippage events. The rad27-G240D mutant phenotypes were more difficult to reconcile to a specific biochemical defect, suggesting a structural role for Rad27p in DNA replication and repair. Since the mutants provide the means to relate nuclease functions in vitro to genetic characteristics in vivo, they are valuable tools for further analyses of the diverse biological roles of Rad27p.  相似文献   

13.
Jacob NK  Kirk KE  Price CM 《Molecular cell》2003,11(4):1021-1032
Processing of telomeric DNA is required to generate the 3' G strand overhangs necessary for capping chromosome ends. We have investigated the steps involved in telomere processing by examining G overhang structure in Tetrahymena cells that lack telomerase or have altered telomeric sequences. We show that overhangs are generated by two precise cleavage steps involving nucleases that are robust but lack sequence specificity. Our data suggest that a G overhang binding protein delineates the boundaries for G and C strand cleavage. We also show that telomerase is not the nuclease responsible for G strand cleavage, although telomerase depletion alters the precision of processing. This change in processing indicates that telomerase affects multiple transactions at the telomere and provides a physical footprint for the continued association of telomerase with the telomere after repeat addition is complete.  相似文献   

14.
A number of studies of Saccharomyces cerevisiae have revealed RAD51-independent recombination events. These include spontaneous and double-strand break-induced recombination between repeated sequences, and capture of a chromosome arm by break-induced replication. Although recombination between inverted repeats is considered to be a conservative intramolecular event, the lack of requirement for RAD51 suggests that repair can also occur by a nonconservative mechanism. We propose a model for RAD51-independent recombination by one-ended strand invasion coupled to DNA synthesis, followed by single-strand annealing. The Rad1/Rad10 endonuclease is required to trim intermediates formed during single-strand annealing and thus was expected to be required for RAD51-independent events by this model. Double-strand break repair between plasmid-borne inverted repeats was less efficient in rad1 rad51 double mutants than in rad1 and rad51 strains. In addition, repair events were delayed and frequently associated with plasmid loss. Furthermore, the repair products recovered from the rad1 rad51 strain were primarily in the crossover configuration, inconsistent with conservative models for mitotic double-strand break repair.  相似文献   

15.
16.
Rozhon WM  Petutschnig EK  Jonak C 《Plasmid》2006,56(3):202-215
A small cryptic plasmid designated pHW15 was isolated from Rahnella genomospecies 2 WMR15 and its complete nucleotide sequence was determined. The plasmid contained 3002 bp with a G+C content of 47.4%. The origin of replication was identified by deletion analysis as a region of about 600 bp. This region had an identity of 70% to the replication origin of the ColE1 plasmid at the nucleotide level. Sequence analysis revealed the typical elements: RNA I, RNA II and their corresponding promoters, a sequence allowing hybridisation of RNA II to the DNA and favouring processing by RNaseH, a single-strand initiation determinant (ssi) that allows initiation of lagging-strand synthesis, and a terH sequence required for termination of lagging-strand synthesis. The plasmid contained three expressed open reading frames, one of which showed homology to a ColE1 plasmid-encoded protein. Furthermore, a multimer resolution site was identified by sequence analysis. Its deletion resulted in formation of plasmid multimers during growth leading to an increased plasmid loss rate.  相似文献   

17.
E C Becker  H Zhou    R J Meyer 《Journal of bacteriology》1996,178(16):4870-4876
The origin of replication of the plasmid R1162 contains an initiation site for the synthesis of each DNA strand. When one of these sites (oriL) is deleted, synthesis on the corresponding strand is no longer initiated efficiently in vitro by the R1162-encoded replication proteins, and the plasmid is no longer stably maintained in the cell. However, in vivo the two strands of the plasmid duplex molecule are active at a similar level as templates for DNA synthesis, and newly synthesized copies of each strand are incorporated into daughter molecules at a similar rate. No secondary, strong initiation sites on the delta oriL strand were detected in the region of the origin. The delta oriL plasmid induces the SOS response, and this is important for plasmid maintenance even in a recombination-proficient strain. Our results indicate that an SOS-induced host system can maintain an R1162 derivative lacking one of its initiation sites.  相似文献   

18.
The Saccharomyces cerevisiae Pif1p helicase is a negative regulator of telomere length that acts by removing telomerase from chromosome ends. The catalytic subunit of yeast telomerase, Est2p, is telomere associated throughout most of the cell cycle, with peaks of association in both G1 phase (when telomerase is not active) and late S/G2 phase (when telomerase is active). The G1 association of Est2p requires a specific interaction between Ku and telomerase RNA. In mutants lacking this interaction, telomeres were longer in the absence of Pif1p than in the presence of wild-type PIF1, indicating that endogenous Pif1p inhibits the active S/G2 form of telomerase. Pif1p abundance was cell cycle regulated, low in G1 and early S phase and peaking late in the cell cycle. Low Pif1p abundance in G1 phase was anaphase-promoting complex dependent. Thus, endogenous Pif1p is unlikely to act on G1 bound Est2p. Overexpression of Pif1p from a non-cell cycle-regulated promoter dramatically reduced viability in five strains with impaired end protection (cdc13–1, yku80Δ, yku70Δ, yku80–1, and yku80–4), all of which have longer single-strand G-tails than wild-type cells. This reduced viability was suppressed by deleting the EXO1 gene, which encodes a nuclease that acts at compromised telomeres, suggesting that the removal of telomerase by Pif1p exposed telomeres to further C-strand degradation. Consistent with this interpretation, depletion of Pif1p, which increases the amount of telomere-bound telomerase, suppressed the temperature sensitivity of yku70Δ and cdc13–1 cells. Furthermore, eliminating the pathway that recruits Est2p to telomeres in G1 phase in a cdc13–1 strain also reduced viability. These data suggest that wild-type levels of telomere-bound telomerase are critical for the viability of strains whose telomeres are already susceptible to degradation.  相似文献   

19.
DNA double-strand break (DSB) repair in mammalian cells is dependent on the Ku DNA binding protein complex. However, the mechanism of Ku-mediated repair is not understood. We discovered a Saccharomyces cerevisiae gene (KU80) that is structurally similar to the 80-kDa mammalian Ku subunit. Ku8O associates with the product of the HDF1 gene, forming the major DNA end-binding complex of yeast cells. DNA end binding was absent in ku80delta, hdf1delta, or ku80delta hdf1delta strains. Antisera specific for epitope tags on Ku80 and Hdf1 were used in supershift and immunodepletion experiments to show that both proteins are directly involved in DNA end binding. In vivo, the efficiency of two DNA end-joining processes were reduced >10-fold in ku8Odelta, hdfldelta, or ku80delta hdf1delta strains: repair of linear plasmid DNA and repair of an HO endonuclease-induced chromosomal DSB. These DNA-joining defects correlated with DNA damage sensitivity, because ku80delta and hdf1delta strains were also sensitive to methylmethane sulfonate (MMS). Ku-dependent repair is distinct from homologous recombination, because deletion of KU80 and HDF1 increased the MMS sensitivity of rad52delta. Interestingly, rad5Odelta, also shown here to be defective in end joining, was epistatic with Ku mutations for MMS repair and end joining. Therefore, Ku and Rad50 participate in an end-joining pathway that is distinct from homologous recombinational repair. Yeast DNA end joining is functionally analogous to DSB repair and V(D)J recombination in mammalian cells.  相似文献   

20.
Backup pathways of NHEJ are suppressed by DNA-PK   总被引:1,自引:0,他引:1  
In cells of higher eukaryotes double strand breaks (DSBs) induced in the DNA after exposure to ionizing radiation (IR) are rapidly rejoined by a pathway of non-homologous end joining (NHEJ) that requires DNA dependent protein kinase (DNA-PK) and is therefore termed here D-NHEJ. When this pathway is chemically or genetically inactivated, cells still remove the majority of DSBs using an alternative, backup pathway operating independently of the RAD52 epistasis group of genes and with an order of magnitude slower kinetics (B-NHEJ). Here, we investigate the role of DNA-PK in the functional coordination of D-NHEJ and B-NHEJ using as a model end joining by cell extracts of restriction endonuclease linearized plasmid DNA. Although DNA end joining is inhibited by wortmannin, an inhibitor of DNA-PK, the degree of inhibition depends on the ratio between DNA ends and DNA-PK, suggesting that binding of inactive DNA-PK to DNA ends not only blocks processing by D-NHEJ, but also prevents the function of B-NHEJ. Residual end joining under conditions of incomplete inhibition, or in cells lacking DNA-PK, is attributed to the function of B-NHEJ operating on DNA ends free of DNA-PK. Thus, DNA-PK suppresses alternative pathways of end joining by efficiently binding DNA ends and shunting them to D-NHEJ.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号