首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Role of platelet-derived growth factor in wound healing   总被引:16,自引:0,他引:16  
Platelet-derived growth factor (PDGF) is a potent activator for cells of mesenchymal origin. PDGF stimulates chemotaxis, proliferation, and new gene expression in monocytes-macrophages and fibroblasts in vitro, cell types considered essential for tissue repair. Therefore, we analyzed the influence of exogenously administered recombinant B chain homodimers of PDGF (PDGF-BB) on two experimental tissue repair paradigms, incisional and excisional wounds. In both types of wounds, as little as 20-200 picomoles applied a single time to wounds significantly augmented the time dependent influx of inflammatory cells and fibroblasts and accelerated provisional extracellular matrix deposition and subsequent collagen formation. In incisional wounds, PDGF-BB augmented wound breaking strength 50-70% over the first 3 weeks; in excisional wounds, PDGF-BB accelerated time to closure by 30%. PDGF-BB exaggerated, but did not alter, the normal course of soft tissue repair, resulting in a significant acceleration of healing. Long term observations established no apparent differences between PDGF-BB treated and non-treated wounds. Thus, the vulnerary effects of PDGF-BB were transient and fully reversible in both wound healing models. Furthermore, analysis of PDGF-treated and non-treated wounds has provided important insights into mechanisms of normal and deficient tissue repair processes. PDGF appears to transduce its signal through wound macrophages and may trigger the induction of positive autocrine feedback loops and synthesis of endogenous wound PDGF and other growth factors, thereby enhancing the cascade of tissue repair processes required for a fully-healed wound. Thus, PDGF and other wound produced polypeptide growth factors may be the critical regulators of extracellular matrix deposition within healing wounds.  相似文献   

2.
Early wound healing is associated with fibroblasts assembling a provisional fibronectin-rich extracellular matrix (ECM), which is subsequently remodeled and interlaced by type I collagen. This exposes fibroblasts to time-variant sets of matrices during different stages of wound healing. Our goal was thus to gain insight into the ECM-driven functional regulation of human foreskin fibroblasts (HFFs) being either anchored to a fibronectin (Fn) or to a collagen-decorated matrix, in the absence or presence of cyclic mechanical strain. While the cells reoriented in response to the onset of uniaxial cyclic strain, cells assembled exogenously added Fn with a preferential Fn-fiber alignment along their new orientation. Exposure of HFFs to exogenous Fn resulted in an increase in matrix metalloproteinase (MMP) expression levels, i.e. MMP-15 (RT-qPCR), and MMP-9 activity (zymography), while subsequent exposure to collagen slightly reduced MMP-15 expression and MMP-9 activity compared to Fn-exposure alone. Cyclic strain upregulated Fn fibrillogenesis and actin stress fiber formation, but had comparatively little effect on MMP activity. We thus propose that the appearance of collagen might start to steer HFFs towards homeostasis, as it decreased both MMP secretion and the tension of Fn matrix fibrils as assessed by Fluorescence Resonance Energy Transfer. These results suggest that HFFs might have a high ECM remodeling or repair capacity in contact with Fn alone (early event), which is reduced in the presence of Col1 (later event), thereby down-tuning HFF activity, a processes which would be required in a tissue repair process to finally reach tissue homeostasis.  相似文献   

3.
During wound healing and angiogenesis, fibrin serves as a provisional extracellular matrix. We use a model system of fibroblasts embedded in fibrin gels to study how cell-mediated contraction may influence the macroscopic mechanical properties of their extracellular matrix during such processes. We demonstrate by macroscopic shear rheology that the cells increase the elastic modulus of the fibrin gels. Microscopy observations show that this stiffening sets in when the cells spread and apply traction forces on the fibrin fibers. We further show that the stiffening response mimics the effect of an external stress applied by mechanical shear. We propose that stiffening is a consequence of active myosin-driven cell contraction, which provokes a nonlinear elastic response of the fibrin matrix. Cell-induced stiffening is limited to a factor 3 even though fibrin gels can in principle stiffen much more before breaking. We discuss this observation in light of recent models of fibrin gel elasticity, and conclude that the fibroblasts pull out floppy modes, such as thermal bending undulations, from the fibrin network, but do not axially stretch the fibers. Our findings are relevant for understanding the role of matrix contraction by cells during wound healing and cancer development, and may provide design parameters for materials to guide morphogenesis in tissue engineering.  相似文献   

4.
During wound healing and angiogenesis, fibrin serves as a provisional extracellular matrix. We use a model system of fibroblasts embedded in fibrin gels to study how cell-mediated contraction may influence the macroscopic mechanical properties of their extracellular matrix during such processes. We demonstrate by macroscopic shear rheology that the cells increase the elastic modulus of the fibrin gels. Microscopy observations show that this stiffening sets in when the cells spread and apply traction forces on the fibrin fibers. We further show that the stiffening response mimics the effect of an external stress applied by mechanical shear. We propose that stiffening is a consequence of active myosin-driven cell contraction, which provokes a nonlinear elastic response of the fibrin matrix. Cell-induced stiffening is limited to a factor 3 even though fibrin gels can in principle stiffen much more before breaking. We discuss this observation in light of recent models of fibrin gel elasticity, and conclude that the fibroblasts pull out floppy modes, such as thermal bending undulations, from the fibrin network, but do not axially stretch the fibers. Our findings are relevant for understanding the role of matrix contraction by cells during wound healing and cancer development, and may provide design parameters for materials to guide morphogenesis in tissue engineering.  相似文献   

5.
Previously our laboratory, and others, described an in vitro model for the study of fibroblast wound repopulation. The so-called punch-wounded, fibroblast-populated collagen lattice has been used extensively in tissue repair research. We now identify certain shortcomings with this model, which have led to its enhancement by the introduction of a provisional matrix fabricated in situ from fibrinogen and alpha-thrombin. In the previous model, fibroblasts repopulate the wound defect (WD) as a monolayer of cells and on reaching confluence, a process reminiscent of fibroplasia fills the wound space. The enhanced model, with fibrin acting as a provisional matrix, allowed fibroblasts to repopulate the WD as a three-dimensional network of cells that were morphologically different from cells migrating over the collagen substratum of the previous model. Fibroblast repopulation of the fibrin matrix was typically around double the rate of repopulation of the empty wound space. We propose this model as an enhanced, yet sufficiently reproducible, model for the study of fibroblast responses to tissue damage. It can be further enhanced by the addition of other cell types and matrix components.  相似文献   

6.
Dermal fibroblasts are essential for the repair of cutaneous wounds. Fibroblasts presumably use cell surface receptors of the integrin family during migration into a wound from the adjacent uninjured tissue and for the subsequent matrix repairs. We have investigated the possible roles of platelet-derived growth factor and inflammatory cytokines in the regulation of integrin expression on wound fibroblasts using a porcine cutaneous wound model and cultured human cells. Tissue specimens collected from 4-day pig wounds were stained with antibodies specific for the α1 and α5 integrin subunits. Staining for α1 was markedly decreased on fibroblasts adjacent to the wound and in the granulation tissue, while staining for α5 was clearly enhanced in both locations. Normal adult human dermal fibroblasts in culture express the integrins α1β1, a collagen receptor, and α5β1, a fibronectin receptor. Quantitative flow cytometry was used to measure cell surface integrin expression after treatment with platelet-derived growth factor (PDGF)-AA, PDGF-AB, or PDGF-BB. Each isoform of PDGF produced a significant decrease in the level of α1 present on the cell surface and an increase in the level of α5. Furthermore, PDGF-BB produced a corresponding decrease in α1 mRNA and an increase in α5 mRNA. In contrast, treatment with three inflammatory cytokines, IL-1β, TNF-α, and IFN-γ, produced clear increases in the levels of α1 and α5 present on the cell surface. Our observations suggest that the differential effects of PDGF and inflammatory cytokines may be part of the mechanism regulating the expression of α1 and α5 integrins by dermal fibroblasts during wound repair. © 1996 Wiley-Liss, Inc.  相似文献   

7.
Fibrin has excellent biocompatibility and biological properties to support tissue regeneration and promote wound healing. However, the role of diluted fibrin in wound healing has yet to be elucidated as it is commonly used in high concentration. This study was aimed to examine the effects of diluted plasma-derived fibrin (PDF) on keratinocyte and fibroblast wound healing in term of cell proliferation, migration, extracellular matrix (ECM) production and soluble factor secretion. Two PDF concentrations, 10 and 20% (v/v) were tested on keratinocytes and fibroblasts indirectly co-cultured in the transwell system. The control group was cultured with 5% FBS. Results showed that PDF reduced the keratinocyte growth rate and fibroblast migration, and increased the fibroblast ECM gene expression whereby significant differences were found between the 20% PDF group and the 5% FBS group. Similar trend was seen for the 10% PDF group but the differences were not significant. Comparison of the soluble factors between the PDF groups demonstrated that the level of growth-related oncogene alpha, interleukin-8 and epithelial neutrophil-activating peptide-78 were significantly higher in the 10% PDF group, whilst interleukin-1 alpha and granulocyte–macrophage colony stimulating factor were significantly more concentrated in the 20% PDF group. Our results suggested that PDF selectively elevated the expression of collagen type 1 and collagen type 3 in fibroblasts but slowed down the migration in concentration-dependent manner. These novel findings provide new insight into the role of PDF in wound healing and may have important implications for the use of fibrin in skin tissue engineering.  相似文献   

8.

Background  

During wound repair, fibroblasts orchestrate replacement of the provisional matrix formed during clotting with tenascin, cellular fibronectin and collagen III. These, in turn, are critical for migration of endothelial cells, keratinocytes and additional fibroblasts into the wound site. Fibroblasts are also important in the deposition of collagen I during scar formation. The CXC chemokine chicken Chemotactic and Angiogenic Factor (cCAF), is highly expressed by fibroblasts after wounding and during development of the granulation tissue, especially in areas where extracellular matrix (ECM) is abundant. We hypothesized that cCAF stimulates fibroblasts to produce these matrix molecules.  相似文献   

9.
Fibroblast biology in three-dimensional collagen matrices   总被引:26,自引:0,他引:26  
Research on fibroblast biology in three-dimensional collagen matrices offers new opportunities to understand the reciprocal and adaptive interactions that occur between cells and surrounding matrix in a tissue-like environment. Such interactions are integral to the regulation of connective tissue morphogenesis and dynamics that characterizes tissue homeostasis and wound repair. During fibroblast-collagen matrix remodeling, mechanical signals from the remodeled matrix feed back to modulate cell behavior in an iterative process. As mechanical loading (tension) within the matrix increases, the mechanisms used by cells to remodel the matrix change. Fibroblasts in matrices that are under tension or relaxed respond differently to growth factor stimulation, and switching between mechanically loaded and unloaded conditions influences whether cells acquire proliferative/biosynthetic active or quiescent/resting phenotypes.  相似文献   

10.
Fibrosis is believed to occur through the failure to terminate the normal tissue remodeling program. Tissue repair intimately involves the ability of fibroblasts to attach to extracellular matrix (ECM), resulting in cell migration and ECM contraction. Elevated, activated adhesive signaling is a key phenotypic hallmark of fibrotic cells. The precise contribution of adhesion to tissue remodeling and repair and fibrotic responses in fibroblasts is unclear, but involves focal adhesion kinase (FAK). FAK signals downstream of integrin-mediates attachment of fibroblasts to extracellular matrix. In this report, we show that FAK is required for the expression of a cohort of mRNAs encoding ECM and matrix remodeling genes including CCN2, alpha-smooth muscle actin (SMA) and type I collagen. Adhesion of fibroblasts to fibronectin, a component of the provisional matrix deposited in the initial phases of tissue repair, also resulted in the induction of CCN2, alpha-SMA and type I collagen mRNAs. Endothelin-1 (ET-1), a key inducer of pro-fibrotic gene expression, was also induced upon fibroblast attachment to ECM, and antagonism of the ET-1 receptors significantly reduced the ability of adhesion to induce expression of CCN2, alpha-SMA and type I collagen mRNAs. These results suggest that adhesion of fibroblasts to matrix during the initial phases of tissue remodeling and repair may actively contribute to the tissue repair program through the induction of pro-fibrotic gene expression.  相似文献   

11.
Gene therapy for tissue regeneration   总被引:6,自引:0,他引:6  
Tissue repair and regeneration are the normal biological responses of many different tissues in the body to injury. During the healing process, profound changes occur in cell composition and extracellular matrix (ECM) formation. Fibroblasts and equivalent reparative cells migrate to the wounded area and subsequently proliferate. These cells and reparative cells from the surrounding tissue are responsible for the rapid repair which results in tissue regeneration. Growth factors, one of which is transforming growth factor-beta (TGF-beta), stimulate fibroblasts and smooth muscle cells to proliferate and synthesize ECM proteins. This process of early repair provides a rapid way to restore new tissue and mechanical integrity. This early tissue repair process is normally followed by involution, which requires the production and activation of proteases, tissue maturation and remodeling, reorganization and finally regeneration. Alternately, failure to replace the critical components of the ECM, including elastin and basement membrane, results in abnormal regeneration of the epithelial cell layer. Although remodeling should occur during healing, provisional repair may be followed by excessive synthesis and deposition of collagen, which results in irreversible fibrosis and scarring. This excessive fibrosis which occurs in aberrant healing is at least in part mediated by persistent TGF-beta. Because of the central role of collagen in the wound healing process, the pharmacological control of collagen synthesis has been of paramount importance as a possible way to abrogate aberrant healing and prevent irreversible fibrosis. Fibrosis is an abnormal response to tissue injury.  相似文献   

12.
Platelet-derived growth factor (PDGF) and transforming growth factor-beta (TGF-beta) markedly potentiate tissue repair in vivo. In the present experiments, both in vitro and in vivo responses to PDGF and TGF-beta were tested to identify mechanisms whereby these growth factors might each enhance the wound-healing response. Recombinant human PDGF B-chain homodimers (PDGF-BB) and TGF-beta 1 had identical dose-response curves in chemotactic assays with monocytes and fibroblasts as the natural proteins from platelets. Single applications of PDGF-BB (2 micrograms, 80 pmol) and TGF-beta 1 (20 micrograms, 600 pmol) were next applied to linear incisions in rats and each enhanced the strength required to disrupt the wounds at 5 d up to 212% of paired control wounds. Histological analysis of treated wounds demonstrated an in vivo chemotactic response of macrophages and fibroblasts to both PDGF-BB and to TGF-beta 1 but the response to TGF-beta 1 was significantly less than that observed with PDGF-BB. Marked increases of procollagen type I were observed by immunohistochemical staining in fibroblasts in treated wounds during the first week. The augmented breaking strength of TGF-beta 1 was not observed 2 and 3 wk after wounding. However, the positive influence of PDGF-BB on wound breaking strength persisted through the 7 wk of testing. Furthermore, PDGF-BB-treated wounds had persistently increased numbers of fibroblasts and granulation tissue through day 21, whereas the enhanced cellular influx in TGF-beta 1-treated wounds was not detectable beyond day 7. Wound macrophages and fibroblasts from PDGF-BB-treated wounds contained sharply increased levels of immunohistochemically detectable intracellular TGF-beta. Furthermore, PDGF-BB in vitro induced a marked, time-dependent stimulation of TGF-beta mRNA levels in cultured normal rat kidney fibroblasts. The results suggest that TGF-beta transiently attracts fibroblasts into the wound and may stimulate collagen synthesis directly. In contrast, PDGF is a more potent chemoattractant for wound macrophages and fibroblasts and may stimulate these cells to express endogenous growth factors, including TGF-beta, which, in turn, directly stimulate new collagen synthesis and sustained enhancement of wound healing over a more prolonged period of time.  相似文献   

13.
The dose-response effects of platelet-derived growth factor BB (PDGF-BB) on rat dermal fibroblast (RDF) behavior in mechanically stressed and unstressed type I collagen and fibrin were investigated using quantitative assays developed in our laboratory. In chemotaxis experiments, RDFs responded optimally (P < 0.05) to a gradient of 10 ng/ml PDGF-BB in both collagen and fibrin. In separate experiments, the migration of RDFs and the traction exerted by RDFs in the presence of PDGF-BB (0, 0.1, 1, 10, or 100 ng/ml) were assessed simultaneously in the presence or absence of stress. RDF migration increased significantly (P < 0.05) at doses of 10 and 100 ng/ml PDGF-BB in collagen and fibrin in the presence and absence of stress. In contrast, the effects of PDGF-BB on RDF traction depended on the gel type and stress state. PDGF-BB decreased fibroblast traction in stressed collagen, but increased traction in unstressed collagen (P < 0.05). No statistical conclusion could be inferred for stressed fibrin, but increasing PDGF-BB decreased traction in unstressed fibrin (P < 0.05). These results demonstrate the complex response of fibroblasts to environmental cues and suggest that mechanical resistance to compaction may be a crucial element in dictating fibroblast behavior.  相似文献   

14.
During wound healing and inflammation, fibroblasts express elevated alkaline phosphatase (ALP), but are not in contact with collagen fibrils in the fibronectin (FN)-rich granulation tissue. We hypothesized that the extracellular matrix (ECM) environment might influence the induction of ALP in fibroblasts. Here we tested this hypothesis by studying the ALP-inductive response of normal human gingival fibroblasts to ascorbic acid (AsA). AsA induced ALP activity and protein in cells in conventional monolayer culture. This induction was inhibited by blocking-antibodies to the FN receptor alpha 5 beta 1 integrin and by the proline analog 3,4-dehydroproline (DHP). DHP prevented cells from arranging FN fibrils into a pericellular network and reduced the activity of cell spreading on FN. Plating of cells on FN facilitated the up-regulation by AsA of ALP expression, but did not substitute for AsA. In contrast, AsA did not cause ALP induction in cells cultured on and in polymerized type I collagen gels. Collagen fibrils inhibited the up-regulation by AsA of ALP expression in cells plated on FN. These results indicate that the ECM regulates the induction of ALP expression by AsA in fibroblasts: FN enables them to express ALP in response to AsA through interaction with integrin alpha 5 beta 1, whereas type I collagen fibrils cause the suppression of ALP expression and overcome FN.  相似文献   

15.
16.
Fibrin serves as a provisional extracellular matrix (ECM) for arterial smooth muscle cells (ASMC) after vascular injury, yet little is known about the effect of fibrin on ECM remodeling by these cells. To address this question, monkey ASMC were grown on fibrin gels and tissue culture (TC) plastic, and proteoglycan synthesis and accumulation were assessed by radiolabeling. Initial rates of (35)S-sulfate incorporation into proteoglycans were identical for both groups, but increased proteoglycan accumulation was observed in cultures grown for 48 h on fibrin. This increased accumulation on fibrin was due to reduced proteoglycan turnover and retention within the fibrin gel. Decorin and biglycan constituted 40 and 14% of the total proteoglycan in the fibrin gels, whereas their combined contribution was only 12% in control matrices. To explore whether the retention of decorin in fibrin had any influence on the properties of the fibrin gel, ASMC-mediated fibrin contraction assays were performed. Both de novo synthesis of decorin as well as decorin added during polymerization inhibited the ability of the cells to contract fibrin. In contrast, decorin added exogenously to mature fibrin matrices had no effect on fibrin gel contraction. This study illustrates that decorin derived from ASMC selectively accumulates in fibrin and modifies fibrin architecture and mechanical properties. Such an accumulation may influence wound healing and the thrombotic properties of this provisional pro-atherosclerotic ECM.  相似文献   

17.
Regulation of extracellular matrix gene expression by mechanical stress.   总被引:19,自引:0,他引:19  
M Chiquet 《Matrix biology》1999,18(5):417-426
  相似文献   

18.
Extracellular matrix components play an important role in modulating cellular activity. To study such capacities of the matrix, fibroblasts are frequently cultured in a three-dimensional gel and contraction is assessed as a measure of cellular activity. Since a connective tissue contains several types of collagen, we investigated the effect of gels composed of collagen I alone or in combination with 10% collagen III and/or 5% collagen V on contraction by human periodontal ligament fibroblasts. Gels containing collagen V contracted much faster than those without this type of collagen. Blocking of the integrin beta1-subunit with an activity-blocking antibody delayed (gels with collagen V) or almost completely blocked (gels without collagen V) contraction. Use of an antibody directed against integrin alpha2beta1 resulted in delay of gel contraction for gels both with and without collagen V. Anti-integrin alpha v beta3 or RGD peptides partially blocked contraction of gels containing collagen V, but had no effect on gels consisting of collagen I alone. The beta1-containing integrins are involved in the basal contraction by fibroblasts that bind to collagens I and III. The enhanced contraction, stimulated by collagen V, appears to be mediated by integrin alpha v beta3. We conclude that collagen V may play an important modulating role in connective tissue contraction. Such a modulation may occur during the initial stages of wound healing and/or tissue regeneration.  相似文献   

19.
Homeostasis of the extracellular matrix (ECM) of tissues is regulated by controlling deposition and degradation of ECM proteins. The breakdown of ECM is essential in blastocyst implantation and embryonic development, tissue morphogenesis, menstrual shedding, bone formation, tissue resorption after delivery, and tumor growth and invasion. TGF-beta family members are one of the classes of proteins that actively participate in the homeostasis of ECM. Here, we report on the effect of lefty, a novel member of the TGF-beta family, on the homeostasis of extracellular matrix in a fibrosarcoma model. Fibroblastic cells forced to express lefty by retroviral transduction lost their ability to deposit collagen in vivo. This event was associated with down-regulation of the steady-state level of connective tissue growth factor that induces collagen type I mRNA. In addition, lefty transduction significantly decreased collagen type I mRNA expression and simultaneously increased collagenolytic, gelatinolytic, elastolytic, and caseinolytic activities in vivo by the transduced fibroblasts. These findings provide a new insight on the actions of lefty and suggest that this cytokine plays an active role in remodeling of the extracellular matrix in vivo.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号