首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Summary R-prime plasmids carrying regions of the symbiotic (Sym) plasmid of the broad host range Rhizobium strain NGR234 were isolated in intergeneric matings with Escherichia coli K12. Three R-primes carrying approximately 180 kb (pMN23), 220 kb (pMN31) and 330 kb (pMN49) of Sym DNA were characterized in more detail. Restriction enzyme analysis and hybridization studies showed that these R-primes carried large overlapping regions of the Sym plasmid, and had the symbiotic genes (two copies of nifH, D and K; nodA, B, C and D; region II; host specific nodulation (hsn) genes) located over half of the 470 kb Sym plasmid. Only the largest of these R-primes (pMN49) contained the complete nodulation host range of the original parent strain NGR234. This broad host range was shown to be present on plasmid pMN49 by being expressed in Agrobacterium tumefaciens strain A136. Furthermore the R-prime plasmids were shown to contain different regions of distinctive host specific nodulation (hsn) for tropical legume infection and for the nodulation of the non-legume Parasponia. Nodulation of soybeans, however, required an additional region that was not essential for the nodulation of other tropical legumes. Strain NGR234 was also found to nodulate the stem and roots of the tropical legume Sesbania rostrata at a very low efficiency. However, the R-prime mini Sym plasmid constructions enabled a greater efficiency of nodulation of Sesbania rostrata to occur.  相似文献   

3.
Summary A 6.7 kb HindIII fragment from the Sym-plasmid of strain NGR234 was found to code a nodD-like gene flanked by two loci which were required for siratro host range. Transfer of the 6.7 kb fragment from NGR234 to R. trifolii strain ANU843 conferred extended host range ability to this strain on siratro plants but not to other plants normally nodulated by strain NGR234. Tn5 mutagenesis of the 6.7 kb fragment showed that insertions located into loci flanking the nodD-like gene abolished the extended host range phenotype. A hybridization probe spanning one of the host specificity loci was shown to hybridize to three specific bands in the NGR234 genome. Complementation and DNA hybridization data showed that the nodD-like gene of strain NGR234 was functionally similar to that in R. trifolii. The introduction to R. trifolii of the 6.7 kb HindIII fragment containing Tn5 insertions located in the nodD-like gene did not abolish the ability to extend the host range of R. trifolii to siratro plants. However, transfer of the 6.7 kb HindIII to R. trifolii derivatives containing Tn5 insertions into either nodA, B or C or other R. trifolii nod genes failed to confer siratro nodulation to these recipients. Reconstruction experiments showed that the 6.7 kb fragment from strain NGR234 and the 14 kb nodulation region of R. trifolii could induce the nodulation of siratro plants when introduced together into Sym-plasmid-cured Rhizobium strains.  相似文献   

4.
5.
Summary Rhizobium sp. NGR234 in a fast-growing Rhizobium strain with a broad host range. The location and role of chromosomal genes involved in cellular metabolism or in the legume symbioses is unknown. We isolated a series of auxotrophic and antibiotic resistant mutants of NGR234 and utilized a chromosome mobilization system based on Tn5-Mob and pJB3JI; Tn5-Mob donor strains behaved like Hfr strains, transferring the chromosome polarly at high frequency from a fixed point of insertion. The use of four different strains with Tn5-Mob located at different nutritional loci in crosses with double auxotrophic recipients, allowed us to build up a circular linkage map of NGR234 based on relative recombination frequencies. Also, symbiotically important genes identified by site-directed mutagenesis, such as hemA and ntrA, could be located and mapped on the chromosome.Abbreviations Tc tetracycline - Sp spectinomycin - Rif rifampicin - Km kanamycin  相似文献   

6.
Summary The clonedntrA (rpoN) gene andntrA mutants ofRhizobium meliloti were used to isolate the homologous gene from the broad-host rangeRhizobium sp. NGR234 by hybridization and interspecies complementation. The NGR234 locus was analyzed by deletion and insertional mutagenesis. A site-directedntrA mutant, NGR234rn1, was made with an interposon, GmI, and its phenotype was examined ex planta and in symbiosis. NGR234rn1 formed Fix nodules on six genera tested from among its legume hosts, including both indeterminate and determinate nodule-type plants. Formation of nodules onMacroptilium was delayed, and expression of anR. meliloti nodABC-lacZ fusion was reduced by the mutant allele.  相似文献   

7.
Rhizobium fredii is a nitrogen-fixing symbiont from China that combines broad host range for nodulation of legume species with cultivar specificity for nodulation of soybean. We have compared 10R. fredii strains withRhizobium sp. NGR234, a well known broad host range strain from Papua New Guinea. NGR234 nodulated 16 of 18 tested lugume species, and nodules on 14 of the 16 fixed nitrogen. TheR. fredii strains were not distinguishable from one another. They nodulated 13 of the legumes, and in only nine cases were nodules effective. All legumes nodulated byR. fredii were included within the host range of NGR234. Restriction fragment length polymorphisms (RFLPs) were detected with four DNA hybridization probes: the regulatory and commonnod genes,nodDABC; the soybean cultivar specificity gene,nolC; the nitrogenase structural genes, nifKDH; and RFRS1, a repetitive sequence fromR. fredii USDA257. A fifth locus, corresponding to a second set of soybean cultivar specificity genes,nolBTUVWX, was monomorphic. Using antisera against whole cells of threeR. fredii strains and NGR234, we separated the 11 strains into four serogroups. The anti-NGR234 sera reacted with a singleR. fredii strain, USDA191. Only one serogroup, which included USDA192, USDA201, USDA217, and USDA257, lacked cross reactivity with any of the others. Although genetic and phenotypic differences amongR. fredii strains were as great as those between NGR234 andR. fredii, our results confirm that NGR234 has a distinctly wider host range thanR. fredii.  相似文献   

8.
Summary Transposon Tn7 was inserted into wide host range plasmid pSUP202 and used as a suicide plasmid vehicle for transposon mutagenesis in Rhizobium leguminosarum. Tn7 is transposed with high frequency into the self-transmissible plasmid pJB5JI without affecting the transfer, nodulation and nitrogen fixation functions. Tn7 transposition provides a useful tool for marking symbiotic plasmids.  相似文献   

9.
Summary R-prime plasmids were constructed from a derivative of Rhizobium strain NGR234 (ANU280) and were shown to contain overlapping genomic DNA segments involved in biosynthesis of exopolysaccharides (EPS). The R-primes originally constructed carried the mutant allele from Tn5-induced EPS-deficient (Exo) mutant ANU2811. This plasmid-located mutant allele was dominant to the corresponding wild-type allele as merodiploid strains were Exo. Exo+ revertants occurred at a low rate (1×10-7) and these were shown to result from double reciprocal recombination events, which led to the isolation of R-prime plasmids carrying functional wild-type exo alleles. R-prime plasmids that carry overlapping segments of DNA from parental strain ANU280 complemented 28 of the 30 group 2 Exo mutants of strain ANU280. Complementation of these Exo mutants also restored their symbiotic abilities of effective nodulation. Subsequent in vivo recombination between the wild-type alleles located on the R-prime and the corresponding mutated allele on the genome, was used to generate a new family of R-primes, which carried mutations in the exo genes. The 30 group 2 Exo mutants were classified into 7 distinct genetic groups based upon complementation and physical mapping data. Five of the seven exo loci were gentically linked and located on a 15-kb region of DNA. Mutations at two loci were dominant only when the mutations were R-prime plasmid-located while a mutation at a second locus was cis-dominant to two other exo loci. At least five genes involved in the synthesis of acidic exopolysaccharide synthesis have been identified.  相似文献   

10.
A genomic library of Sinorhizobium sp. strain NGR234 was introduced into Escherichia coli LS5218, a strain with a constitutively active pathway for acetoacetate degradation, and clones that confer the ability to utilize D-3-hydroxybutyrate as a sole carbon source were isolated. Subcloning experiments identified a 2.3 kb EcoRI fragment that retained complementing ability, and an ORF that appeared orthologous with known bdhA genes was located within this fragment. The deduced NGR234 BdhA amino acid sequence revealed 91% identity to the Sinorhizobium meliloti BdhA. Site-directed insertion mutagenesis was performed by introduction of a OmegaSmSp cassette at a unique EcoRV site within the bdhA coding region. A NGR234 bdhA mutant, NGRPA2, was generated by homogenotization, utilizing the sacB gene-based lethal selection procedure. This mutant was devoid of D-3-hydroxybutyrate dehydrogenase activity, and was unable to grow on D-3-hydroxybutyrate as sole carbon source. NGRPA2 exhibited symbiotic defects on Leucaena but not on Vigna, Macroptilium or Tephrosia host plants. Furthermore, the D-3-hydroxybutyrate utilization phenotype of NGRPA2 was suppressed by presence of plasmid-encoded multiple copies of the S. meliloti acsA2 gene. The glpK-bdhA-xdhA gene organization and the bdhA-xdhA operon arrangement observed in S. meliloti are also conserved in NGR234.  相似文献   

11.
Cultured cells of Sinorhizobium sp. NGR234 produce an abundance of capsular polysaccharides, or K antigens; however, cells that are cultured in the presence of apigenin, a nod gene inducer, exhibited a significant reduction in K-antigen production. The flavonoid-induced modulation in capsule production appeared to be related to the phase-shift changes associated with bacteroid differentiation. Therefore, the polysaccharides were extracted from Sinorhizobium sp. NGR234 bacteroids recovered from Vigna unguiculata cv Red Caloona root nodules, and subsequent analyses showed that the bacteroid extracts were virtually devoid of K-antigen. Polysaccharide extracts from two nodulation mutants cultured in the presence of apigenin were then analyzed, and the results showed that the flavonoid-inducible decrease in K-antigen production is y4gM- and nodD1-dependent.  相似文献   

12.
【目的】研究青海干旱地区蚕豆根瘤菌的遗传多样性,获得与蚕豆品种共生匹配且具有耐旱性的根瘤菌株,促进蚕豆耐旱根瘤菌在青海干旱地区生产中的应用。【方法】以分离自青海干旱地区一株菌株QHCD22为材料,利用细菌形态学、生理生化指标鉴定、Biolog细菌鉴定系统、16S rRNA基因序列分析、全基因组分析等进行菌种鉴定和系统发育分析,进一步通过PEG6000模拟干旱胁迫、盆栽回接干旱胁迫处理及旱作田间接种验证试验对该菌株的耐旱性进行综合评价。【结果】QHCD22菌株属快生型根瘤菌属(Rhizobium),Rhizobium indicum种。随着PEG6000模拟干旱胁迫程度的加剧,在−0.6 mPa这一更低渗透势时菌株存活数量增高,浊度由61.48%上升到69.42%,表现出较强的耐旱性。盆栽试验表明,接种根瘤菌处理(NA)的株高、植株鲜干比、根瘤数、根瘤鲜重、叶绿素含量(SPAD)、叶片相对含水量(RWC)、脯氨酸含量(PRO)、超氧化物歧化酶活性(SOD)、根系活力(TCC)均高于不接种根瘤菌处理(NN),并且在正常供水条件下,NA处理的各指标也均高于NN处理。旱作田间验证试验表明接种该菌株显著提高固氮酶活性,青海13号蚕豆根瘤固氮酶活性由不接种的42.07 C2H4 nmol/(g·h)显著增加到221.78 C2H4 nmol/(g·h),青蚕14号蚕豆由40.60 C2H4 nmol/(g·h)显著增加到109.78 C2H4 nmol/(g·h),马牙蚕豆由33.41 C2H4 nmol/(g·h)显著增加到643.15 C2H4 nmol/(g·h)。接种根瘤菌对于增加产量具有促进作用,其中青蚕14号的增产效果显著,增产幅度达32.3%。【结论】QHCD22菌株可能为快生型根瘤菌属的一个种Rhizobium indicum,具有一定的耐旱性,研究表明接种根瘤菌可以提高蚕豆的耐旱性,尤其对干旱敏感型蚕豆品种增产效果显著,具有潜在的应用前景。  相似文献   

13.
14.
Summary A simple method based upon the use of a Tn5 derivative, Tn5-Lux, has been devised for the introduction and stable expression of the character of bioluminescence in a variety of gram-negative bacteria. In Tn5-Lux, the luxAB genes of Vibrio harveyi encoding luciferase are inserted on a SalI-BglII fragment between the kanamycin resistance (Kmr) gene and the right insertion sequence. The transposon derivative was placed on a transposition suicide vehicle by in situ recombination with the Tn5 suicide vector pGS9, to yield pDB30. Mating between Escherichia coli WA803 (pDB30) and a strain from our laboratory, Pseudomonas sp. RB100C, gave a Kmr transfer frequency of 10-6 per recipient, a value 10 times lower than that obtained with the original suicide vehicle pGS9. Tn5-Lux was also introduced by insertion mutagenesis in other strains of gram-negative soil bacteria. The bioluminescence marker was expressed in the presence of n-decanal, and was monitored as chemiluminescence in a liquid scintillation counter. The recorded light intensities were fairly comparable among the strains, and ranged between 0.2 to 1.8x106 cpm for a cell density of 103 colony forming units/ml. Nodules initiated by bioluminescent strains of Rhizobium leguminosarum on two different hosts were compared for intensity of the bioluminescence they produced.  相似文献   

15.
Summary A Tn5-induced mutant strain of R. phaseoli which failed to synthesize exopolysaccharide (EPS) was isolated and was shown to induce normal nitrogen-fixing nodules on Phaseolus beans, the host of this Rhizobium species. The corresponding wild-type Rhizobium DNA was cloned in a wide host-range vector and by isolating Tn5 insertions in this cloned DNA, mutations in a gene termed pss (polysaccharide synthesis) were isolated. These were introduced by marker exchange into near-isogenic strains of R. leguminosarum and R. phaseoli which differed only in the identity of their symbiotic plasmids. Whereas the EPS-deficient mutant strain of R. phaseoli induced normal nitrogen-fixing nodules on Phaseolus beans, the same mutation prevented nodulation of peas by a strain of R. leguminosarum which normally nodulates this host. Further, it was found that DNA cloned from the plant pathogen Xanthomonas campestris pathover campestris could correct the defect in EPS synthesis in R. leguminosarum and R. phaseoli and also restored the ability to nodulate peas to the pss::Tn5 mutant strain of R. leguminosarum.  相似文献   

16.
Herb legumes have great potential for rehabilitation of semi-arid degraded soils in Sahelian ecosystems as they establish mutualistic symbiosis with N2-fixing rhizobia. A phylogenetic analysis was performed for 78 root nodule bacteria associated with the common Sahelian herb legume Zornia glochidiata Reichb ex DC in Senegal. Based on ITS (rDNA16S-23S) and recA sequences, these strains were shown to belong to the two genera Bradyrhizobium and Azorhizobium. Strains of this latter, although frequent, formed small and ineffective nodules and suggested a parasitism rather than a symbiotic association. A potential negative effect of Azorhizobium on Zornia growth was tested for when inoculated alone or in association with a Bradyrhizobium strain. Bradyrhizobium isolates were distributed in four groups. Groups A and B were two sister clades in a larger monophyletic group also including Bradyrhizobium liaoningense, Bradyrhizobium yuanmingense, and Bradyrhizobium japonicum. Strains of cluster D fell in a sister clade of the photosynthetic Bradyrhizobium sp. group, including ORS278, whereas group C appeared to be divergent from all known Bradyrhizobium clusters. Amplified fragment length polymorphism (AFLP) clustering was congruent with ITS and recA phylogenies, but displayed much more variability. However, within the main Bradyrhizobium clades, no obvious relationship could be detected between clustering and geographical origin of the strains. Each sub-cluster included strains sampled from different locations. Conversely, Azorhizobium strains showed a tendency in the phylogeny to group together according to the site of sampling. The predominance of ineffective Azorhizobium strains in the nodules of Zornia roots, the large Bradyrhizobium genetic diversity and the geographical genetic diversity pattern are explored.  相似文献   

17.
Summary Rhizobium and Bradyrhizobium bacteria gain intercellular entry into roots of the non-legume Parasponia andersonii by stimulating localized sites of cell division which disrupt the epidermis. Infection threads are then initiated from intercellular colonies within the cortex. Infection via the information of infection threads within curled root hairs, which commonly occurs in legumes, was not observed in Parasponia. The conserved nodulation genes nodABC, necded for the curling of legume root hairs, were not essential for the initiation of infection, however, these genes were required for Parasponia prenodule development. In contrast, the nodD gene of Rhizobium strain NGR234 was essential for the initiation of infection. In addition, successful infection required not only nodD but a region of the NGR234 symbiotic plasmid which is not needed for the nodulation of legumes. Agrobacterium tumefaciens carrying this Parasponia specific region, as well as legume nod genes, was able to form nodules on Parasponia which reached an advanced stage of development.  相似文献   

18.
In the biosynthesis of lipochitin oligosaccharides (LCOs) theRhizobium nodulation protein NodA plays an essential role in the transfer of an acyl chain to the chitin oligosaccharide acceptor molecule. The presence ofnodA in thenodABCIJ operon makes genetic studies difficult to interpret. In order to be able to investigate the biological and biochemical functions of NodA, we have constructed a test system in which thenodA, nodB andnodC genes are separately present on different plasmids. Efficient nodulation was only obtained ifnodC was present on a low-copy-number vector. Our results confirm the notion thatnodA ofRhizobium leguminosarum biovarviciae is essential for nodulation onVicia. Surprisingly, replacement ofR. l. bv.viciae nodA by that ofBradyrhizobium sp. ANU289 results in a nodulation-minus phenotype onVicia. Further analysis revealed that theBradyrhizobium sp. ANU289 NodA is active in the biosynthesis of LCOs, but is unable to direct the transfer of theR. l. bv.viciae nodF E-dependent multi-unsaturated fatty acid to the chitin oligosaccharide acceptor. These results lead to the conclusion that the original notion thatnodA is a commonnod gene should be revised.  相似文献   

19.
Host plant specificity was examined in symbiosis between Rhizobium strains isolated from legume-tree root nodules and herbaceous or woody legumes from which they were isolated. Strain GRH2 isolated from Acacia cyanophylla formed effective nodules on Acacia, Prosopis and Medicago sativa as well. Nitrogenase activity, measured as acetylene reduction, of strain GRH2 in symbiosis with Prosopis chilensis was the highest (P 0.05) among the tropical legumes studied and was similar to those found for other associations involving herbaceous legumes. Relative efficiency of nitrogenase varied from 0.3 to near 1 during the light time of the photoperiod. However no hydrogen uptake activity was detected by the amperometric method used. Rhizobium strains GRH3, GRH5 and GRH9 isolated from A. melanoxylon, P. chilensis and Sophora microphylla, respectively, also showed a very low host-range specificity. All isolates were infective and effective on at least one of the herbaceous legumes tested. These data demonstrate the lack of specificity of Rhizobium strains isolated from nitrogen-fixing tree root nodules and that these strains can form effective nodules on herbaceous legumes.  相似文献   

20.
Fourteen heat resistant mutant strains were isolated from a wild-type strain (PP201, Nod+ Fix+) of Rhizobium sp. (Cajanus) by giving it a heat shock of 43°C. These mutant strains showed a greater increase in optical density (O.D.) and a higher viable cell count in both rhizospheric and non-rhizospheric soil at high temperature. Symbiotic studies showed that pigeon pea plants inoculated with a few mutant strains had ineffective nodules (Nod+ Fix) under controlled temperature (43°C) conditions, but under natural high temperature (40–45°C) conditions, the host plants infected with all the mutant strains showed higher total shoot nitrogen than the plants inoculated with the parent strain. Four mutant strains (HR-3, HR-6, HR-10 and HR-12) were found to be highly efficient for all the symbiotic parameters, and thus have the potential to be used as bioinoculants in the North-Western regions of India during the summer season.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号