首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Human fibroblasts, cultured in medium containing 10% fetal calf serum, responded dramatically to choleragen with an increase in cyclic adenosine monophosphate content to greater than 48 times basal levels. Analysis of these cells for gangliosides indicated that the major ganglioside was N-acetylneuraminylgalactosylglucosylceramide (GM3) with trace amounts (less than or equal to 100 pmol/mg of protein) of other gangliosides including GM1, the putative choleragen receptor. Although the cells contained three glycosyltransferases required for ganglioside synthesis, the N-acetylgalactosaminyltransferase activity necessary for the conversion of GM3 to more complex gangliosides was not detected. When the cells were grown in medium containing [14C]galactose or N-acety[3H]mannosamine, however, all of the gangliosides became labeled, indicating that the cells can synthesize complex gangliosides. Although fetal calf serum contains gangliosides including GM1, [3H]GM1 was taken up poorly from the growth medium and uptake at the rate observed could have accounted for less than 2% of the GM1 content of the cells. When the cells were incubated in chemically defined medium containing [3H]GM1 at the concentrations present in fetal calf serum, rapid uptake of the ganglioside occurred and the total GM1 content of the cells increased threefold in less than 3 h. Thus, although the cells are capable of binding exogenous gangliosides, the gangliosides in fetal calf serum are in a form not readily available to the cells.  相似文献   

2.
3T3-L1 preadipocytes, when treated with 3-isobutyl-1-methylxanthine, dexamethasone, and insulin, differentiate into cells with the morphological and biochemical properties of adipocytes; the closely related 3T3-C2 cells, under identical conditions, exhibit a low frequency of adipocyte conversion. During differentiation, 3T3-L1 preadipocytes acquire an increased responsiveness to certain agonists (e.g. isoproterenol and adrenocorticotropic hormone) that influence lipolysis and lipogenesis through activation of adenylate cyclase, whereas 3T3-C2 cells do not. It has been suggested that changes in hormone responsiveness of 3T3-L1 cells during differentiation result from increased amounts of the guanyl nucleotide-binding protein of adenylate cyclase, as demonstrated by choleragen-catalyzed [32P]ADP ribosylation of 42 and 49-50-kilodalton particulate peptides. Particulate fractions from nondifferentiating 3T3-C2 cells, like those from 3T3-L1 cells, contained choleragen substrates of 42 and 46-47 (doublet) kilodaltons. Incubation of intact 3T3-L1 or 3T3-C2 cells with choleragen prior to preparation of particulate fractions prevented the subsequent in vitro choleragen-dependent [32P]ADP ribosylation of only these peptides. Increased incorporation of radioactivity into both the 42 and 46-47-kilodalton peptides was observed during differentiation of 3T3-L1 cells. However, a similar increase was also observed in nondifferentiating 3T3-C2 cells subjected to the differentiation protocol. Therefore, increased hormone responsiveness of 3T3-L1 adipocytes cannot be explained solely on the basis of increased labeling, and perhaps increased amounts, of the guanyl nucleotide-binding protein.  相似文献   

3.
Differentiation of 3T3-L1 cells from fibroblasts to adipocytes is accompanied by increased adenylate cyclase response to lipolytic agents. We used pertussis toxin and specific antibodies to measure the inhibitory guanine nucleotide-binding protein, Gi, and the novel G-protein, Go, in membranes from 3T3-L1 cells. Pertussis toxin-dependent labeling of a 39-40 kDa protein showed an initial 30% rise, followed by an 80% fall during differentiation. Immunoblots showed that 3T3-L1 cells contain Go, as well as Gi, and that changes in the former parallel the changes in pertussis toxin labeling. Changes in Gi and GO may contribute to altered adenylate cyclase response during 3T3-L1 cell differentiation.  相似文献   

4.
Several studies have demonstrated that the intrinsic catalytic activity of cell surface glucose transporters is highly regulated in 3T3-L1 adipocytes expressing GLUT1 (erythrocyte/brain) and GLUT4 (adipocyte/skeletal muscle) glucose transporter isoforms. For example, inhibition of protein synthesis in these cells by anisomycin or cycloheximide leads to marked increases in hexose transport without a change in the levels of cell surface glucose transporter proteins (Clancy, B. M., Harrison, S. A., Buxton, J. M., and Czech, M. P. (1991) J. Biol. Chem. 266, 10122-10130). In the present work the exofacial hexose binding sites on GLUT1 and GLUT4 in anisomycin-treated 3T3-L1 adipocytes were labeled with the cell-impermeant photoaffinity reagent [2-3H]2-N-[4-(1-azitrifluoroethyl)benzoyl]-1,3-bis- (D-mannos-4-yloxy)-2-propylamine [( 2-3H] ATB-BMPA) to determine which isoform is activated by protein synthetic blockade. As expected, a 15-fold increase in 2-deoxyglucose uptake in response to insulin was associated with 1.7- and 2.6-fold elevations in plasma membrane GLUT1 and GLUT4 protein levels, respectively. Anisomycin treatment of cultured adipocytes for 5 h produced an 8-fold stimulation of hexose transport but no increase in the content of glucose transporters in the plasma membrane fraction as measured by protein immunoblot analysis. Cell surface GLUT1 levels were also shown to be unaffected on 3T3-L1 adipocytes in response to anisomycin using an independent method, the binding of an antiexofacial GLUT1 antibody to intact cells. In contrast, anisomycin fully mimicked the action of insulin to stimulate (about 4-fold) the radiolabeling of GLUT1 transporters specifically immunoprecipitated from intact 3T3-L1 adipocytes irradiated after incubation with [2-3H] ATB-BMPA. Photolabeling of GLUT4 under these conditions was also significantly enhanced (1.8-fold) by anisomycin treatment, but this effect was only 15% of that caused by insulin. These results suggest that: 1) the photoaffinity reagent [2-3H]ATB-BMPA labels those cell surface glucose transporters present in a catalytically active state rather than total cell surface transporters as assumed previously and 2) inhibition of protein synthesis in 3T3-L1 adipocytes stimulates sugar transport primarily by enhancing the intrinsic catalytic activity of cell surface GLUT1, and to a lesser extent, GLUT4 proteins.  相似文献   

5.
A new technique capable of demonstrating the presence and cellular localization of the ganglioside GM1 in primary cultured cells from the brains of newborn rats is described. The method is based on the highly specific binding of biotinylated choleragen to ganglioside GM1, and takes advantage of the high affinity of avidin for biotin. Thus, the biotinylated choleragen-ganglioside GM1 complex can be visualized by the use of avidin peroxidase. The results of this nonimmunologic method indicate that the concentration of ganglioside GM1 is much lower in culture astroglial cells than in neurons and oligodendroglial cells.  相似文献   

6.
It is well established that somatotropin (GH) antagonizes insulin action in vivo and that supraphysiologic concentrations of GH frequently result in insulin resistance and glucose intolerance. However, the demonstration of an anti-insulin activity by GH in vitro has been difficult. This study, therefore, set out to determine whether cultures of 3T3-L1 adipocytes could be used to examine the anti-insulin activity of GH. The ability of insulin to stimulate glucose utilization by 3T3-L1 adipocytes increases approximately five-fold during the first 4 days following treatment of the cells with a differentiation medium. It was found that glucose utilization in 3T3-L1 adipocytes is regulated in a reciprocal fashion by insulin and GH. Bovine or human GH directly inhibit up to 50% of insulin-stimulated [14C]-glucose incorporation into lipids in a concentration-dependent manner. The 3T3-L1 sensitivity to GH appears to be at the maximum (50% inhibition of an insulin response) immediately following removal of the cells from the differentiation medium and remains essentially constant during the subsequent 4 days. The GH inhibition of insulin action does not appear to be due GH enhancement of cellular degradation of insulin, competitive binding of GH to the insulin receptor, or GH-induced decrease in cell number. The 3T3-L1 adipocyte system appears to be a sensitive and reliable in vitro model with which to study the molecular mechanisms involved in both GH antagonism of insulin action and development of hormone responsiveness during cellular differentiation into adipocytes.  相似文献   

7.
3T3-L1 adipocytes promote the growth of mammary epithelium   总被引:4,自引:0,他引:4  
Murine mammary epithelium grows in association with predominantly adipocyte stroma in vivo. To investigate potential growth-promoting effects of adipocytes on mammary epithelium, we developed a co-culture system of mammary epithelium and adipocytes by taking advantage of the 3T3-L1 cell line. These cells undergo adipocyte differentiation when the culture reaches confluence and growth ceases. Mid-pregnant murine mammary epithelium was plated on lethally irradiated feeder layers of 3T3-L1 adipocytes, undifferentiated 3T3-L1 cells, 3T3-C2 fibroblasts (a subclone of 3T3 cells that does not undergo adipocyte differentiation), or tissue culture plastic. Mammary epithelial colony size on adipocyte feeder layers was 2-fold larger than colonies on 3T3-C2 cells and 4-fold larger than colonies on tissue culture plastic. Measurement of tritiated thymidine [3H]TdR incorporation and labelling index in mammary cells was significantly higher on adipocytes than on other feeder layers or plastic. There was a 6-fold increase in mammary cell number after 5 days in culture when mammary epithelium was plated on substrate-attached material ('extracellular matrix') derived from 3T3-L1 cells and a 4-fold increase in cell number when plated on plastic in conditioned medium derived from 3T3-L1 adipocytes compared with growth on plastic in unconditioned medium. We conclude that interaction of mammary epithelium with adipocytes results in a marked increase in proliferation of mammary epithelium and that extracellular components may mediate this effect.  相似文献   

8.
Photoaffinity labeling and fatty acid permeation in 3T3-L1 adipocytes   总被引:7,自引:0,他引:7  
Long chain fatty acid uptake was investigated in 3T3-L1 cells. Differentiation of these cells from fibroblasts to adipocytes was accompanied by an 8.5-fold increase in the rate of oleate uptake. This was saturable in adipocytes with apparent Kt and Vmax values of 78 nM and 16 nmol/min/mg cell protein, respectively. A number of proteins in various subcellular fractions of differentiated cells were labeled with the photoreactive fatty acid 11-m-diazirinophenoxy[11-3H]undecanoate. A 15-kDa cytoplasmic protein was induced upon differentiation to adipocytes. This protein was labeled with the photoreactive fatty acid in cytoplasm isolated from differentiated adipocytes, but not in cytoplasm from undifferentiated, fibroblastic cells. Furthermore, a high affinity fatty acid binding protein of 22 kDa was identified in plasma membranes of undifferentiated cells, and its level of labeling increased 2-fold upon differentiation. These results indicate the usefulness of the photoreactive fatty acid in identifying cellular fatty acid binding proteins, and its potential to elucidate the spatial and temporal distribution of fatty acids in intact cells.  相似文献   

9.
3T3-L1 adipocytes have proven difficult to transfect with plasmid-encoded cDNAs or even infect with virally-derived cDNAs. We have developed and characterized a 3T3-L1 adipocyte cell line stably expressing the truncated receptor for coxsackievirus and adenovirus receptor (CAR) for its ability to be infected with adenoviruses at a low multiplicity of infection (m.o.i.). Using green fluorescent protein driven by the cytomegalovirus promoter in adenovirus fiber type 5 we compared infection efficiencies of CAR adipocytes versus the parental 3T3-L1 adipocytes. As assessed by immunofluorescence, CAR adipocytes were infected at approximately 100-fold greater efficiency than regular 3T3-L1 adipocytes. The efficiency of transduction for the CAR adipocytes was >90% at multiplicities of infection of 50 whereas standard adipocytes were poorly transduced even at an m.o.i. of 2000. Since many investigators studying insulin action use 3T3-L1 adipocytes, we compared CAR adipocytes versus regular adipocytes and showed that the two cell lines were similar with respect to insulin stimulation of insulin receptor, MAPK, and Akt phosphorylation and basal- and insulin-stimulated glucose transport. In addition, CAR adipocytes accumulated GLUT4 and SCD1 proteins during the adipogenesis program with the same time course as regular 3T3-L1 adipocytes. Lastly, CAR adipocytes produced and secreted the adipose-specific hormone Acrp30. These data suggest 3T3-L1CARDelta1 adipocytes are virtually indistinguishable from their parental cells, but demonstrate a significant advantage with improved efficiency of adenoviral transduction for gain or deletion of function studies.  相似文献   

10.
11.
Mouse or human fibroblasts are commonly used as feeder cells to prevent differentiation in stem or primary cell culture. In the present study, we addressed whether fibroblasts can affect the differentiation of adipocytes. We found that the differentiation of 3T3-L1 preadipocytes was strongly suppressed when the cells were cocultured with human fibroblast (BJ) cells. BrdU incorporation analysis indicated that mitotic clonal expansion, an early event required for 3T3-L1 cell adipogenesis, was not affected by BJ cells. The 3T3-L1 cell expression levels of peroxisome proliferator-activated receptor γ2, CCAAT/enhancer-binding protein alpha (C/EBPα), sterol regulatory element binding protein-1c, and Krüppel-like factor 15, but not those of C/EBPβ or C/EBPδ, were decreased by coculture with BJ cells. When mature 3T3-L1 adipocytes were cocultured with BJ cells, their lipid contents were significantly reduced, with decreased fatty acid synthase expression and increased phosphorylated form of acetyl-CoA carboxylase 1. Our data indicate that coculture with BJ fibroblast cells inhibits the adipogenesis of 3T3-L1 preadipocytes and decreases the lipogenesis of mature 3T3-L1 adipocytes.  相似文献   

12.
Differentiation of confluent 3T3-L1 preadipocytes to adipocytes in the presence of dexamethasone and 1-methyl-3-isobutylxanthine for 7 days resulted in a 4-fold increase in the incorporation of acetoacetate-carbon into fatty acids and in the activity of 3-oxoacid CoA-transferase, which catalyzes the first committed step in the conversion of acetoacetate to acetoacetyl-CoA. The increase in enzyme activity was due to an increase in the cellular content of the enzyme, as determined by immunoprecipitation of 3-oxoacid CoA-transferase from 3T3-L1 preadipocytes and adipocytes with rabbit antiserum specific for the rat brain enzyme. The 4-fold increase in enzyme activity was accompanied by a 2.7-fold increase in the average relative rate of synthesis of 3-oxoacid CoA-transferase (between Days 4 and 7). Additionally, the half-life of the enzyme increased 1.9-fold relative to the half-life of total protein, indicating that changes in both synthesis and degradation of 3-oxoacid CoA-transferase are responsible for alterations in its activity. Previous studies on the turnover of other enzymes that are induced during differentiation of 3T3-L1 cells have assigned changes in enzyme synthesis as the primary or sole mechanism for changes in enzyme activity. This report provides the first documentation that both enzyme synthesis and degradation play a role in regulating the enzyme activity of an enzyme during differentiation of 3T3-L1 cells.  相似文献   

13.
The structural analysis of neutral glycolipids and gangliosides of the SV40 transformed Balb/c3T3 cells (SV3T3 cells) and concanavalin A-selected SV3T3 revertant cells, both compared with untransformed Balb/c3T3 cells, has shown: (i) a content of neutral glycolipids in revertant cells near to that found in the untransformed parental cells; (ii) a similar decrease of the higher gangliosides in transformed and revertant cells; (iii) a content of ganglioside GM3 in revertant cells much higher than that found in both SV3T3 and untransformed Balb/3T3 cells. The possible role of ganglioside GM3 in growth control is discussed.  相似文献   

14.
The role of iron-dependent oxidative metabolism in protecting the oxidable substrates contained in mature adipocytes is still unclear. Because differentiation increases ferritin formation in several cell types, thereby leading to an accumulation of H-rich isoferritins, we investigated whether differentiation affects iron metabolism in 3T3-L1 pre-adipocytes. To this aim, we evaluated the expression of the genes coding for the H and L ferritin subunits and for cytoplasmic iron regulatory protein (IRP) during the differentiation of 3T3-L1 cells in adipocytes induced by the addition of isobutylmethylxanthine, insulin, and dexamethasone. Differentiation enhanced ferritin formation and caused overexpression of the H subunit, thus altering the H/L subunit ratio. Northern blot analysis showed increased levels of H subunit mRNA. A gel retardation assay of cytoplasmic extract from differentiated cells, using an iron-responsive element as a probe, revealed enhanced an RNA binding capacity of IRP1, which correlated with the increase of IRP1 mRNA. The observed correlation between differentiation and iron metabolism in adipocytes suggests that an accumulation of H-rich isoferritin may limit the toxicity of iron in adipose tissue, thus exerting an antioxidant function.  相似文献   

15.
In this study we show that the ganglioside content and pattern of human skin fibroblasts change along the process of cell subculture progression by varying the cell density.GM3, GD3 and GD1a were components of the total cell ganglioside mixtures extracted from cells, but GD1a was in all the extracts a minor component or very scant. Other gangliosides present in traces were not characterised. The fibroblast ganglioside content of 52 pools of cells obtained from 5 different cell lines cultured at variable cell density ranged from 2.0 to 13.1 nmoles per mg of cell protein. The molar ratio between GM3 and GD3 varied from 418 to 0.6 in the ganglioside mixtures, as determined by densitometric quantitative analysis after thin layer chromatographic separation.Both the ganglioside content and the GM3/GD3 molar ratio were constant along several passages of subculture progression performed by plating cells collected at confluence. Instead, when the subculture progression was performed by plating cells collected at a few days after reaching confluence, a progressive increase of the ganglioside content was observed. GD3 increased proportionally more than GM3 so that a progressive decrease of the ratio between GM3 and GD3 was observed. In some experiments, GD3 was very scant at the beginning of the progression, while it was near 30% after 5 passages under these conditions. The progressive increase of GD3 along the high density cell population subculture progression was associated to a moderate increase of the mRNA GD3 synthase. Published in 2003.  相似文献   

16.
STAT6 is abundantly expressed in 3T3-L1 preadipocytes and adipocytes but activating ligands are not well defined. In this report, we provide evidence that interleukin 4 (IL-4) induced JAK2-mediated STAT6 tyrosine phosphorylation and DNA binding in 3T3-L1 preadipocytes but not in 3T3-L1 adipocytes. Loss of IL-4-mediated STAT6 tyrosine phosphorylation occurred 2 days after preadipocytes were induced to differentiate into adipocytes but when cells remained phenotypically preadipocytes. 3T3-L1 adipocytes were still responsive to IL-4 through tyrosine phosphorylation of other cellular proteins. We conclude that IL-4 signals through STAT6 in 3T3-L1 preadipocytes but not in 3T3-L1 adipocytes. This differentiation-dependent loss of STAT6 activation may be critical for distinct biological effects of IL-4 in 3T3-L1 preadipocytes and adipocytes.  相似文献   

17.
Summary A virally transformed, ganglioside GM1-deficient cell line binds 2% of the cholera toxin (choleragen) bound by the parent, line and is less responsive to choleragen with respect to adenylate cyclase stimulation. This biological response is maximal when 10% of choleragen-binding sites in the transformed line, or 0.5% in the parent line, are occupied. In contrast, in isolated fat cells saturation of binding and adenylate cyclase stimulation are seen at very similar concentrations.Incubation of ganglioside GM1 with intact cells increases choleragen binding (defined here as ganglioside incorporation) in the transformed cell line but does not enhance the biological response to choleragen. Stimulation of adenylate cyclase is enhanced in isolated fat cells, however, by exogenous ganglioside GM1. The binding and cyclase response in fat cells can be reduced by the addition of the inactive analog and competitive antagonist, choleragenoid, and there is recovery of the enzyme response and binding upon subsequent addition of exogenous GM1. Failure of enhancement in the transformed cell line is explained by the presence of a five- to tenfold excess of binding sites over the number required for the full biological effect of choleragen. Cells with a large excess of toxin receptors are relatively refractory to the blocking effects of choleragenoid on biological responses. Notably, untransformed cells, which contain large quantities of toxin receptor, cannot incorporate exogenously added ganglioside GM1. These findings suggest the possible existence in the cytoplasmic membrane of specific molecular structures, present in finite and limited number, for recognizing and accepting ganglioside molecules exposed to the external medium.  相似文献   

18.
Skeletal muscle cells and adipose cells have a close relationship in developmental lineage. Our previous study has shown that the heterokaryons between quail myoblasts and undifferentiated 3T3-L1 cells (preadipocytes) normally differentiated into myotubes, whereas the heterokaryons between myoblasts and differentiated 3T3-L1 cells (adipocytes) failed myogenic differentiation. These results suggest differences between preadipocytes and adipocytes. The purpose of this study was to clarify whether preadipocytes have flexibility in differentiation before terminal adipose differentiation. Presumptive quail myoblasts transformed with a temperature-sensitive mutant of Rous sarcoma virus (QM-RSV cells) and mouse 3T3-L1 cells (either preadipocytes or adipocytes) were co-cultured for 48 h under conditions allowing myogenic differentiation. On co-culture between myoblasts and undifferentiated 3T3-L1 cells, heterokaryotic myotubes formed spontaneously, but not on co-culture with differentiated 3T3-L1 cells. In addition, the heterokaryotic myotubes expressed mouse myogenin derived from the 3T3-L1 cell gene. Our previous study indicated that the fusion sensitivity of differentiating myoblasts change with decreasing cholesterol of the cell membrane during myoblast fusion. Thus we compared the level of membrane cholesterol between undifferentiated and differentiated 3T3-L1 cells. The result showed that the level of membrane cholesterol in 3T3-L1 cells increases during adipose differentiation. Corresponding to the increase in membrane cholesterol content, differentiated 3T3-L1 cells had lower sensitivity to HVJ (Sendai virus)-mediated cell fusion than undifferentiated 3T3-L1 cells. This study demonstrated that 3T3-L1 cells at an undifferentiated state have a capacity for spontaneous fusion with differentiating myoblasts following myogenic differentiation, and that the capacity is lost after terminal adipose differentiation.  相似文献   

19.
20.
Non-esterified fatty acids are thought to be one of the causes for insulin resistance. However, the molecular mechanism of fatty acid-induced insulin resistance is not clearly known. In this study, we first examined the effect of palmitate on insulin signaling in 3T3-L1 adipocytes. We found that 1h treatment with 1 mmol/l palmitate had no effect on insulin binding, tyrosine phosphorylation of insulin receptors, 185 kDa proteins and Shc, and PI3 kinase activity in 3T3-L1 adipocytes. Then, the effects of palmitate on MAP kinase activity and glucose uptake in fully differentiated 3T3-L1 adipocytes were compared with those in poorly differentiated 3T3-L1 cells and in HIRc-B cells. Palmitate treatment had no effect on MAP kinase activity in fully differentiated 3T3-L1 adipocytes, while it inhibited MAP kinase in poorly differentiated 3T3-L1 cells and HIRc-B cells. Glucose transport in 3T3-L1 adipocytes treated with palmitate for 1 h, 4 h and 16 h was higher than that in control cells, but palmitate treatment caused a rightward shift of the insulin-dose responsive curve for glucose uptake in HIRc-B cells. Palmitate treatment did not significantly affect basal and insulin-stimulated GLUT4 translocation. When the cells were treated with PD98059, a specific MEK inhibitor, insulin-stimulated glucose uptake was not affected in 3T3-L1 adipocytes, while it was almost completely inhibited in HIRc-B cells. These results suggest the primary effect of palmitate on adipocytes may not involve insulin resistance of adipocytes themselves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号