首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Protease activities were detected in quiescent and germinating spores of the ostrich fern (Matteuccia struthiopteris [L.] Todaro). Peak endopeptidase, aminopeptidase, and carboxypeptidase activities were detected 12 to 24 hours after spores began imbibing under light. There was a correlation between activities of proteases, the onset of a decline in levels of soluble protein, and an increase in levels of free amino acids. The earliest visible event of spore germination, breakage of the spore coat and protrusion of a rhizoid cell, was observed after peak protease activity, 48 to 72 hours after the start of imbibition. Results of this study demonstrate similarities in the pattern of protease activities during germination of ostrich fern spores to those of some seeds.  相似文献   

2.
Dormant spores Bacillus megaterium contained a group of low-molecular-weight (5,000 to 11,000) basic (pI greater than 9.4) proteins (termed D, E, F, and G proteins) which could be extracted from disrupted spores with strong acids. These proteins were distinct from the previously described A, B, and C proteins which are degraded during spore germination. However, the D, E, F, and G proteins were also rapidly degraded during spore germination, accounting for 10 to 15% of the protein degraded. Proteins similar to the D, E, F, and G species were also present in spores of other bacterial species. In B. megaterium, the D, E, F, and G proteins were low or absent (less than 15% of the spore level) in vegetative and young sporulating cells and appeared only late in sporulation. The D, E, F, and G proteins were purified to homogeneity, and all contained a high percentage of hydrophilic amino acids; one protein (G) contained 31% basic amino acids and also contained tryptophan. All four proteins were rapidly degraded in vitro by dormant spore extracts. Two proteins (D and F) were degraded in vitro by the previously described spore protease which initiates degradation of the A, B, and C proteins in vivo; the spore enzyme (s) degrading proteins E and G have not been identified.  相似文献   

3.
The protease which initiates the massive protein degradation early in bacterial spore germination has been purified from Bacillus megaterium spores. The enzyme has a molecular weight of 160,000 and contains four apparently identical subunits, but only the tetramer is enzymatically active. A radioimmunoassay has been developed for this enzyme and has been used to show that the protease is absent from growing cells, but appears early in sporulation within the developing forespore. In contrast, the protease antigen disappears rapidly during spore germination, in parallel with the loss in enzyme activity.  相似文献   

4.
The DNA in the core of spores of Bacillus species is saturated with a group of small, acid-soluble proteins (SASP) that protect DNA from a variety of harsh treatments and play a major role in spore resistance and long-term spore survival. During spore germination, SASPs are rapidly degraded to amino acids and this degradation is initiated by a sequence-specific protease called germination protease (GPR), which exhibits no obvious mechanistic or amino acid sequence similarity to any known class of proteases. GPR is synthesized during sporulation as an inactive tetrameric zymogen termed P(46), which later autoprocesses to a smaller form termed P(41), which is active only during spore germination. Here, we report the crystal structure of P(46) from Bacillus megaterium at 3.0 A resolution and the fact that P(46) monomer adopts a novel fold. The asymmetric unit contains two P(46) monomers and the functional tetramer is a dimer of dimers, with an approximately 9 A channel in the center of the tetramer. Analysis of the P(46) structure and site-directed mutagenesis studies have provided some insight into the mechanism of zymogen activation as well as the zymogen's lack of activity and the inactivity of P(41) in the mature spore.  相似文献   

5.
A considerable amount of evidence suggests that metabolism of germinants or metabolism stimulated by them is involved in triggering bacterial-spore germination. On the assumption that such a metabolic trigger might lead to relatively small biochemical changes in the first few minutes of germination, sensitive analytical techniques were used to detect any changes in spore components during the L-alanine-triggered germination of Bacillus megaterium KM spores. These experiments showed that no changes in spore free amino acids or ATP occurred until 2-3 min after L-alanine addition. Spores contained almost no oxo acids (pyruvate, alpha-oxoglutarate, oxaloacetate), malate or reduced NAD. These compounds were again not detectable until 2-3 min after addition of germinants. It is suggested, therefore, that metabolism associated with these intermediates is not involved in the triggering of germination of this organism.  相似文献   

6.
AIMS: To determine the mechanism of action of inhibitors of the germination of spores of Bacillus species, and where these inhibitors act in the germination process. METHODS AND RESULTS: Spores of various Bacillus species are significant agents of food spoilage and food-borne disease, and inhibition of spore germination is a potential means of reducing such problems. Germination of the following spores was studied: (i) wild-type B. subtilis spores; (ii) B. subtilis spores with a nutrient receptor variant allowing recognition of a novel germinant; (iii) B. subtilis spores with elevated levels of either the variant nutrient receptor or its wild-type allele; (iv) B. subtilis spores lacking all nutrient receptors and (v) wild-type B. megaterium spores. Spores were germinated with a variety of nutrient germinants, Ca2+-dipicolinic acid (DPA) and dodecylamine for B. subtilis spores, and KBr for B. megaterium spores. Compounds tested as inhibitors of germination included alkyl alcohols, a phenol derivative, a fatty acid, ion channel blockers, enzyme inhibitors and several other compounds. Assays used to assess rates of spore germination monitored: (i) the fall in optical density at 600 nm of spore suspensions; (ii) the release of the dormant spore's large depot of DPA; (iii) hydrolysis of the dormant spore's peptidoglycan cortex and (iv) generation of CFU from spores that lacked all nutrient receptors. The results with B. subtilis spores allowed the assignment of inhibitory compounds into two general groups: (i) those that inhibited the action of, or response to, one nutrient receptor and (ii) those that blocked the action of, or response to, several or all of the nutrient receptors. Some of the compounds in groups 1 and 2 also blocked action of at least one cortex lytic enzyme, however, this does not appear to be the primary site of their action in inhibiting spore germination. The inhibitors had rather different effects on germination of B. subtilis spores with nutrients or non-nutrients, consistent with previous work indicating that germination of B. subtilis spores by non-nutrients does not involve the spore's nutrient receptors. In particular, none of the compounds tested inhibited spore germination with dodecylamine, and only three compounds inhibited Ca2+-DPA germination. In contrast, all compounds had very similar effects on the germination of B. megaterium spores with either glucose or KBr. The effects of the inhibitors tested on spores of both Bacillus species were largely reversible. CONCLUSIONS: This work indicates that inhibitors of B. subtilis spore germination fall into two classes: (i) compounds (most alkyl alcohols, N-ethylmaleimide, nifedipine, phenols, potassium sorbate) that inhibit the action of, or response to, primarily one nutrient receptor and (ii) compounds [amiloride, HgCl2, octanoic acid, octanol, phenylmethylsulphonylfluoride (PMSF), quinine, tetracaine, tosyl-l-arginine methyl ester, trifluoperazine] that inhibit the action of, or response to, several nutrient receptors. Action of these inhibitors, is reversible. The similar effects of inhibitors on B. megaterium spore germination by glucose or KBr indicate that inorganic salts likely trigger germination by activating one or more nutrient receptors. The lack of effect of all inhibitors on dodecylamine germination suggests that this compound stimulates germination by creating channels in the spore's inner membrane allowing DPA release. SIGNIFICANCE AND IMPACT OF THE STUDY: This work provides new insight into the steps in spore germination that are inhibited by various chemicals, and the mechanism of action of these inhibitors. The work also provides new insights into the process of spore germination itself.  相似文献   

7.
The germination of Bacillus cereus T spore suspensions is partially prevented by several inhibitors of trypsin-like enzymes. Leupeptin, antipain, and tosyl-lysine-chloromethyl ketone are effective inhibitors, whereas chymostatin, elastatinal, and pepstatin are inactive. A synthetic substrate of trypsin, tosyl-arginine-methyl ester, also inhibits germination. Its inhibitory effect decreases as a function of incubation time in the presence of spores and is abolished by previous hydrolysis with trypsin. Germinating, but not dormant, spore suspensions hydrolyze tosyl-arginine-methyl ester; its hydrolysis is insensitive to chloramphenicol, sulfhydryl reagents, and EDTA. A crude extract of germinated B. cereus spores contains a trypsin-like enzyme whose activity, as measured by hydrolysis of benzoyl-arginine p-nitroanilide, is sensitive to germination-inhibitory compounds such as leupeptin, tosyl-arginine-methyl ester, and tosyl-lysine-chloromethyl ketone. Spore suspensions exposed to the above inhibitors under germination conditions lose only part of their heat resistance and some 10 to 30% of their dipicolinic acid content. Part of the germinating spore population becomes "phase grey" under phase optics. Based on a study of the inhibition of germination by protease inhibitors and the activity of a protease in germination spores and spore extracts, it is suggested that the activity of a trypsin-like enzyme may be involved in the mechanism of the breaking of dormancy in spores of B. cereus T.  相似文献   

8.
Spores may be reversibly activated by the application of heat, dimethyl sulfoxide, urea, or ethylene glucol. Severe changes in four environmental variables (high osmotic pressure, low oxygen tension, low or high pH, and low or high temperature) interfere with the germination process. Spores at the end of the postactivation lag phase of germination were usually deactivated if exposed to severe environmental conditions and thus did not swell; spores in the swelling and oxygen uptake which began during spore activation was primarily attributable to a cyanide-sensitive pathway and secondarily to a salicylhydroxamic acid (SHAM) sensitive pathway. Inhibition of the SHAM-sensitive pathway did not cause spore deactivation while the addition of cyanide resulted in rapid spore deactivation. Treatment of activated spores with azide or environmental shifts also resulted in inhibition of oxygen uptake and spore deactivation. Deactivating spores did not demonstrate the amino acid incorporation, uridine incorporation, and expression of trehalase activity which is found in the later stages of germinating control spores. Protein synthesis inhibitors did not cause spore deactivation or a decrease in oxygen uptake but they inhibited amino acid incorporation and the expression trehalase activity in swollen spores. It is concluded that control of respiratory activity is involved in regulation of reversible activation.  相似文献   

9.
A proteolytic activity present in spores of Bacillus megaterium has previously been implicated in the initiation of hydrolysis of the A, B, and C proteins which are degraded during spore germination. Four mutants of B. megaterium containing 20 to 30% of the normal level of spore proteolytic activity have been isolated. Partial purification of the protease from wild-type spores by a reviewed procedure resulted in the resolution of spore protease activity on the A, B, and C proteins into two peaks--a major one (protease II) and a minor one (protease I). The protease mutants tested lacked active protease II. All of the mutants exhibited a decreased rate of degradation of the A, B, and C proteins during spore germination at 30 degrees C, but degradation of the proteins did occur. Degradation of the A, B, and C proteins during germination of the mutant spores was decreased neither by blockade of ATP production nor by germination at 44 degrees C. Initiation of spore germination was normal in all four mutants, and all four mutants went through outgrowth, grew, and sporulated normally in rich medium. Similarly, outgrowth of spores of two of the four mutants was normal in minimal medium at 30 degrees C. In the two mutants studied, the kinetics of loss of spore heat resistance and spore UV light resistance during germination were identical to those of wild-type spores. This indicates that the A, B, and C proteins alone are not sufficient to account for the heat or UV light resistance of the dormant spore.  相似文献   

10.
CO2 in required continuously during germination of Streptomyces viridochromogenes spores. Spores incubated in a defined germination medium in the absence of CO2 remain phase bright and do not release spore carbon. In the presence of CO2, the spores initiate germination accompanied by loss of refractility and spore carbon. The CO2 requirement is replaced by oxaloacetate or a mixture of tricarboxylic acid cycle (TCA) intermediates. Labeled CO2 is taken up by germinating spores, and is incorporated into protein and RNA. TCA cycle intermediates and related amino acids contain most of the acid-soluble label following short term exposures of germinating spores to 14CO2. TCA cycle inhibitors repress germination and 14CO2 uptake whereas folic acid antagonists do not. The results indicate that CO2 is incorporated into oxaloacetate which is converted to biosynthetic intermediates required for germination. Operation of the TCA cycle appears to be essential for spore germination. The conclusion is reached that CO2 is required during germination in order to maintain the cycle by an anaplerotic reaction.Abbreviations SN sucrose-nitrate medium - TX buffer Trisbuffer pH 7.3 containing-Triton X-100 - DGM defined germination medium - TX salts TX buffer plus Mg and Ca ions - TA trichloroacctic acid - TCA tricarboxylic acid  相似文献   

11.
家蚕微孢子虫孢壁蛋白与其发芽的相关性   总被引:3,自引:0,他引:3  
为了研究孢壁蛋白与家蚕微孢子虫发芽(孢原质弹出)的相关性,我们采用碳酸钾诱导微孢子虫体外发芽结合密度梯度离心的方法(简称GDGC法),收集纯化发芽后的孢子空壳(简称孢壳),对发芽液、纯化的孢壳及成熟孢子的孢壁蛋白组分进行了分析。结果表明:GDGC法可以获得高纯度孢壳,计算出其密度为1.130g/cm^3;与发芽前成熟孢子提取的孢壁蛋白相比,空孢壳可以提取到主要孢壁蛋白SWP32、SWP30、SWP25,同时发现SWP32、SWP25丰度有所降低;结合碳酸钾发芽液的蛋白电泳分析,发现孢壳上丰度降低的SWP32在发芽液蛋白样品中存在,LC—MS/MS数据分析也发现SWP32、SWP30、SWP25在碳酸钾处理液中都有存在;而用碳酸钾溶液处理冷冻孢子时,未观察到发芽现象,电泳结果显示此时K2CO,溶液中只有SWP30条带,说明在碳酸钾溶液诱导的发芽过程中SWP32和SWP25从孢壳上脱落可能与发芽相关而不是被碱性的碳酸钾溶解下来的[动物学报54(6):1068—1074,2008]。  相似文献   

12.
The amino acid sequence-specific protease (termed GPR) in the bacterium Bacillus megaterium initiates the rapid degradation of small, acid-soluble spore proteins during the germination of spores of this organism. GPR is synthesized during spore formation as an inactive zymogen termed P46, which later autoprocesses to a smaller active form termed P41, which acts during spore germination. However, GPR exhibits no obvious mechanistic or amino acid sequence similarity to any of the known classes of proteases. To initiate the determination of the mechanisms of P46 to P41 conversion, P46 inactivity, and P41 catalysis, B. megaterium GPR has been overexpressed in Escherichia coli and purified to homogeneity by anion-exchange and size exclusion chromatography, and crystals of both P46 and P41 have been obtained by the vapor diffusion method. P46 crystals diffracted x rays to 3.5 A but the crystals of P41 diffracted x rays to only 6.5 A. A native x-ray diffraction data set of P46 has been collected; the unit cell parameters are a = b = 76.8, c = 313.1 A, alpha = beta = gamma = 90 degrees; the space group is tetragonal P41212 or P43212. The asymmetric unit contains two monomeric molecules with a crystal volume per unit protein mass of 2. 85 A3/Da and a solvent content of about 57%. An isomorphous heavy atom derivative data set has also been obtained for P46 crystals with potassium dicyanoaurate (I).  相似文献   

13.
The exudate of fully germinated spores of Clostridium perfringens was found to contain a large amount of a spore lytic enzyme which acted directly on alkali-treated spores of the organism to cause germination. Although no detectable amount of the enzyme was found in dormant spores during germination in a KCl medium, the enzyme was produced rapidly and released into the medium. The optimal conditions for enzyme activity were pH 6.0 and 45 degrees C. Maximum activity occurred in the presence of various univalent cations at a concentration of 50 mM. The enzyme was readily inactivated by several sulfhydryl reagents. A strong reducing condition was generated in the ionic germination of the spores, a minimum Eh level of -350 mV being reached 30 min after initiation of germination. Furthermore, adenosine triphosphate-dependent pyruvate:ferredoxin oxidoreductase (EC 1.2.7.1) was identified in both dorman and germinated spores. The relationship between the release of active enzyme and the generation of reducing conditions during germination is discussed.  相似文献   

14.
Germination of spores of Bacillus subtilis with dodecylamine   总被引:1,自引:0,他引:1  
AIMS: To determine the properties of Bacillus subtilis spores germinated with the alkylamine dodecylamine, and the mechanism of dodecylamine-induced spore germination. METHODS AND RESULTS: Spores of B. subtilis prepared in liquid medium were germinated efficiently by dodecylamine, while spores prepared on solid medium germinated more poorly with this agent. Dodecylamine germination of spores was accompanied by release of almost all spore dipicolinic acid (DPA), degradation of the spore's peptidoglycan cortex, release of the spore's pool of free adenine nucleotides and the killing of the spores. The dodecylamine-germinated spores did not initiate metabolism, did not degrade their pool of small, acid-soluble spore proteins efficiently and had a significantly lower level of core water than did spores germinated by nutrients. As measured by DPA release, dodecylamine readily induced germination of B. subtilis spores that: (a) were decoated, (b) lacked all the receptors for nutrient germinants, (c) lacked both the lytic enzymes either of which is essential for cortex degradation, or (d) had a cortex that could not be attacked by the spore's cortex-lytic enzymes. The DNA in dodecylamine-germinated wild-type spores was readily stained, while the DNA in dodecylamine-germinated spores of strains that were incapable of spore cortex degradation was not. These latter germinated spores also did not release their pool of free adenine nucleotides. CONCLUSIONS: These results indicate that: (a) the spore preparation method is very important in determining the rate of spore germination with dodecylamine, (b) wild-type spores germinated by dodecylamine progress only part way through the germination process, (c) dodecylamine may trigger spore germination by a novel mechanism involving the activation of neither the spore's nutrient germinant receptors nor the cortex-lytic enzymes, and (d) dodecylamine may trigger spore germination by directly or indirectly activating release of DPA from the spore core, through the opening of channels for DPA in the spore's inner membrane. SIGNIFICANCE AND IMPACT OF THE STUDY: These results provide new insight into the mechanism of spore germination with the cationic surfactant dodecylamine, and also into the mechanism of spore germination in general. New knowledge of mechanisms to stimulate spore germination may have applied utility, as germinated spores are much more sensitive to processing treatments than are dormant spores.  相似文献   

15.
AIMS: To elucidate the factors that determine the rate of germination of Bacillus subtilis spores with very high pressure (VHP) and the mechanism of VHP germination. METHODS AND RESULTS: Spores of B. subtilis were germinated rapidly with a VHP of 500 MPa at 50 degrees C. This VHP germination did not require the spore's nutrient-germinant receptors, as found previously, and did not require diacylglycerylation of membrane proteins. However, the spore's pool of dipicolinic acid (DPA) was essential. Either of the two redundant enzymes that degrade the spore's peptidoglycan cortex, and thus allow completion of spore germination, was essential for completion of VHP germination. However, neither of these enzymes was needed for DPA release triggered by VHP treatment. Completion of spore germination as well as DPA release with VHP had an optimum temperature of approx. 60 degrees C, in contrast to an optimum temperature of 40 degrees C for germination with the moderately high pressure of 150 MPa. The rate of spore germination by VHP decreased approx. fourfold when the sporulation temperature increased from 23 degrees C to 44 degrees C, and decreased twofold when 1 mol l(-1) salt was present in sporulation. However, large variations in levels of unsaturated fatty acids in the spore's inner membranes did not affect rates of VHP germination. Complete germination of spores by VHP was not inhibited significantly by killing of spores with several oxidizing agents, and was not inhibited by ethanol, octanol or o-chlorophenol at concentrations that abolish nutrient germination. Completion of spore germination by VHP was also inhibited by Hg(2+), but this ion did not inhibit DPA release caused by VHP. In contrast, dodecylamine, a surfactant that can trigger spore germination, strongly inhibited DPA release caused by VHP treatment. CONCLUSIONS: VHP does not cause spore germination by acting upon the spore's nutrient-germinant receptors, but by directly causing DPA release. This DPA release then leads to subsequent completion of germination. VHP likely acts on the spore's inner membrane to cause DPA release, targeting either a membrane protein or the membrane itself. However, the precise identity of this target is not yet clear. SIGNIFICANCE AND IMPACT OF THE STUDY: There is significant interest in the use of VHP to eliminate or reduce levels of bacterial spores in foods. As at least partial spore germination by pressure is almost certainly essential for subsequent spore killing, knowledge of factors involved and the mechanism of VHP germination are crucial to the understanding of spore killing by VHP. This work provides new insight into factors that can affect the rate of B. subtilis spore germination by VHP, and into the mechanism of VHP germination itself.  相似文献   

16.
Initiation of germination of heat-activated Streptomyces viridochromogenes spore occurs in media containing only calcium ions and organic buffer. The calcium-induced initiation of germination was accompanied by a decrease in absorbance of the spore suspension, an increased rate of endogenous metabolism, the loss of spore carbon, and the loss of heat resistance. Calcium amounts to 0.28% of the dry weight of freshly harvested spores. The amount of calcium remained the same after incubation of spores in water after heat activation. The spore content of calcium doubled after incubation in 0.5 mM CaCl2 for 5 min at 4 degrees C and during calcium-induced germination. Nearly all of the calcim appears to be bound to sites external to the spore membrane, since the chelating agents (ethylenedinitrilo) tetraacetic acid and arsenazo III removed virtually all of the calcium ions. The calcium ions must be present during the entire initiation of germination period. Germination ceases after an (ethylenedinitrilo) tetraacetic acid wash and begins again immediately after addition of calcium ions.  相似文献   

17.
The release of free H2O2 from spores of Clostridium perfringens and Bacillus megaterium during germination has been demonstrated using the scopoletin fluorescence assay. Scopoletin oxidation was markedly inhibited when exogenous catalase was added, and was also influenced by the concentration of spores. H2O2 release into the germination medium was observed to parallel the O2 consumption during germination, suggesting that the H2O2 may arise from certain O2-dependent metabolism associated with initiation of spore germination.  相似文献   

18.
Sequence of events during Bacillus megaterim spore germination   总被引:14,自引:10,他引:4  
Levinson, Hillel S. (U.S. Army Natick Laboratories, Natick, Mass.), and Mildred T. Hyatt. Sequence of events during Bacillus megaterium spore germination. J. Bacteriol. 91:1811-1818. 1966.-An integrated investigation of the sequence of events during the germination of Bacillus megaterium spores produced on three different media-Liver "B" (LB), synthetic, and Arret and Kirshbaum (A-K)-is reported. Heat-activated spores were germinated in a mixture of glucose and l-alanine. For studies of dipicolinic acid (DPA) release and increase in stainability and phase-darkening, germination levels were stabilized by the addition of 2 mm HgCl(2). Heat resistance was measured by conventional plating techniques and by a new microscopic method. The sequence (50% completion time) of LB spore germination events was: loss of resistance to heat and to toxic chemicals (3.0 min); DPA loss (4.7 min); stainability and Klett-measured loss of turbidity (5.5 min); phase-darkening (7.0 min); and Beckman DU-measured loss of turbidity (7.2 min). The time difference between 50% completion of stainability and complete phase darkening was 1.5 min, in excellent agreement with the microgermination time of 1.49 min as determined by observation of spores darkening under phase optics. Alteration of the sporulation medium modified the 50% completion times of these germination events, and, in some cases, their sequence. In the A-K spores, the rates of loss of heat resistance and DPA were substantially higher than those of the other germination events, whereas in spores produced in the LB and synthetic media all germination events followed an approximately parallel time course. This is discussed from the point of view of spore population heterogeneity and germination mechanisms.  相似文献   

19.
Summary The effects of a number of organic compounds on the germination of spores of Agaricus bisporus (J. Lange) Pilat has been investigated and a preliminary analysis of spore lipids carried out. Germination was stimulated by isocaproic acid but not by straight-chain C5 to C11 fatty acids or by the amino acids leucine and iso-leucine. Cholesterol at a concentration of 1 ppm was inhibitory. The lipid reserve of the spore comprised mono-, di- and tri-glycerides, free fatty acids and sterols. The phospholipid fraction was unusually small and contained a lecithin and cephalin fraction, phosphatidylinositol and cardiolipin phosphatidic acid; phosphatidylcholine being the most prominent component. The role of lipids and various germination stimulants in the physiology of A. bisporus spores is discussed.  相似文献   

20.
Antibodies were raised against purified germination-specific cortex-lytic enzyme (GSLE) from spores of Bacillus megaterium KM which neutralized the ability of GSLE to germinate permeabilized spores. Western blotting of dormant spore and vegetative cell fractions separated by SDS-PAGE demonstrated that GSLE is spore-specific and that greater than 90% of the GSLE is associated with the dormant spore cortex peptidoglycan as a phosphorylated 63kD pro-form, which could only be visualized after lysozyme digestion of the peptidoglycan. During germination, the 63kD pro-form of GSLE is processed to release the active enzyme, which had an apparent molecular weight of 30kD. Inhibitor studies demonstrated that GSLE activation occurs as part of the commitment reaction and thus represents the first-identified enzymatic event to occur during germination triggering. Proteins that cross-react with anti-GSLE sera are present in spore fractions of other species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号