首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A cyclic chimeric dodecapeptide (cCD) mimicking the conformation-specific domains of CCR5 and CXCR4 was prepared in which Gly-Asp links the amino and carboxyl termini of two combined pentapeptides (S169-G173 of CCR5; E179-R183 of CXCR4) derived from human immunodeficiency virus type-1 (HIV-1) coreceptors. The immunization of Balb/c mice with cCD conjugated with a multiple-antigen peptide (cCD-MAP) induced seven cCD-specific monoclonal antibodies (mAbs, CPMAb-I to -VII) that reacted with native CCR5 and CXCR4. Among the tested mAbs, CPMAb-I and -II potently inhibited the infection of both the R5 and X4 laboratory strains. CPMAb-III and -VI were effective against only R5 laboratory strains, and also against some X4 and R5 primary isolates. CPMAb-IV and -V had potent antiviral activities against the R5 and X4 primary isolates. In particular, CPMAb-VII was protective against not only R5 and X4 laboratory strains, but also most of the R5 and X4 primary isolates. Moreover, cCD-MAP immunization also induced antibodies that were effective against R5 and X4 multiclade HIV-1 isolates in vitro in two of three cynomolgus monkeys. Taken together, the results suggest that cCD-MAP is a candidate multiclade immunogen that can be used to block multiclade R5 and X4 HIV-1 infections.  相似文献   

2.
A novel synthetic peptide immunogen targeting the human immunodeficiency virus type-1 (HIV-1) coreceptor CXCR4 was evaluated for its capacity to induce CXCR4-specific antibodies with anti-HIV-1 activity in BALB/c mice and cynomolgus monkeys. A cyclic closed-chain dodecapeptide mimicking the conformation-specific domain of CXCR4 (cDDX4) was prepared in which Gly-Asp, as the dipeptide forming a spacer arm, links the amino and carboxyl termini of the decapeptidyl linear chain (linear DDX4, Asn176 to Ile185) derived from the undecapeptidyl arch (UPA; Asn176 to Cys186) of extracellular loop 2 (ECL-2) in CXCR4. Immunization of BALB/c mice with cDDX4 conjugated with a multiple-antigen peptide (cDDX4-MAP) induced conformational epitope-specific antibodies, and monoclonal antibody IA2-F9 reacted with cDDX4, but not with linear DDX4, as determined by real-time biomolecular interaction analysis using surface plasmon resonance. The antibody also reacted with cells expressing CXCR4 but not with cells expressing the other HIV coreceptor, CCR5. Furthermore, the antibody inhibited the replication of HIV-1 X4 virus (using CXCR4), as shown by an infection assay using both MAGIC-5 cells and MT4 cells, but not that of HIV-1 R5 virus (using CCR5). The antibody weakly interfered with chemotaxis induced by stromal cell-derived factor-1 alpha in THP-1 cells or moderately inhibited the chemotaxis of Molt4#8 cells under the same conditions. In addition, immunization of cynomolgus monkeys also induced cDDX4-specific antibodies with anti-HIV activity. Taken together, these results indicate that cDDX4 conjugated with a multi-antigen peptide induces the conformational epitope-specific antibodies to the undecapeptidyl arch of CXCR4 may be a novel candidate immunogen for preventing disease progression in HIV-1-infected individuals.  相似文献   

3.
A cyclic closed-chain dodecapeptide (cDDR5) mimicking the conformation-specific domain of CCR5 was prepared in which Gly-Asp, as a dipeptide forming a spacer arm, links the amino and carboxyl termini of the decapeptidyl linear chain (Arg(168) to Thr(177)) derived from the undecapeptidyl arch (UPA; Arg(168) to Cys(178)) of extracellular loop 2 (ECL2) in CCR5. Novel monoclonal antibodies were raised against cDDR5 conjugated with a multiple-antigen peptide (cDDR5-MAP), and the purified antibody [KB8C12, immunoglobulin M(kappa)] reacted with cDDR5, but not with linear DDR5, in real-time biomolecular interaction analysis using surface plasmon resonance. The antibody also reacted with cells expressing CCR5, but not with cells expressing CXCR4, and the immunoreaction was competed by cDDR5-MAP. The antibody significantly interfered with chemotaxis induced by macrophage inflammatory protein, 1beta, and at a concentration of 1.67 nM it almost completely inhibited infection by human immunodeficiency virus type 1 (HIV-1) R5, but not by HIV-1 X4, as observed by use of a new phenotypic assay for drug susceptibility of HIV-1 using the CCR5-expressing HeLa CD4(+) cell clone 1-10 (MAGIC-5). Furthermore, cDDR5-MAP suppressed infection by HIV-1 R5 at relatively high concentrations (50 to 400 microM) in a dose-dependent manner but did not suppress infection by HIV-1 X4. Taken together, these results indicate that the antibody is conformation specific and recognizes the conformation-specific domain of the UPA of ECL2. Moreover, both the antibody and its immunogen, the cDDR5-MAP conjugate, may be useful in developing a new candidate vaccine for HIV therapy.  相似文献   

4.
Human immunodeficiency virus type 1 (HIV-1) infection in vivo is dependent upon the interaction of the viral envelope glycoprotein gp120 with CC chemokine receptor 5 (CCR5) or CXC chemokine receptor 4 (CXCR4). To study the determinants of the gp120-coreceptor association, we generated a set of chimeric HIV-1 coreceptors which express all possible combinations of the four extracellular domains of CCR5 and CXCR4. Stable U87 astroglioma cell lines expressing CD4 and individual chimeric coreceptor proteins were tested against a variety of R5, X4, and R5X4 envelope glycoproteins and virus strains for their ability to support HIV-1-mediated cell fusion and infection, respectively. Each of the cell lines promoted fusion with cells expressing an HIV envelope glycoprotein, except for U87.CD4.5455, which presents the first extracellular loop (ECL1) and flanking sequences of CXCR4 in the context of CCR5. However, all of the chimeric coreceptors allowed productive infection by one or more of the viral strains tested. Viral phenotype was a predictive factor for the observed activity of the chimeric molecules; X4 and R5X4 HIV strains utilized a majority of the chimeras, while R5 strains were limited in their ability to infect cells expressing these chimeric molecules. The expression of CCR5 ECL2 within the CXCR4 backbone supported infection by an R5 primary isolate, but no chimeras bearing the N terminus of CCR5 exhibited activity with R5 strains. Remarkably, the introduction of any CXCR4 domain into the CCR5 backbone was sufficient to allow utilization by multiple X4 strains. However, critical determinants within ECL2 and/or ECL3 of CXCR4 were apparent for all X4 viruses upon replacement of these domains in CXCR4 with CCR5 sequences. Unexpectedly, chimeric coreceptor-facilitated entry was blocked in all cases by the presence of the CXCR4-specific inhibitor AMD3100. Our data provide proof that CCR5 contains elements that support usage by X4 viral strains and demonstrate that the gp120 interaction sites of CCR5 and CXCR4 are structurally related.  相似文献   

5.
The initial step of human immunodeficiency virus type 1 (HIV-1) infection has been studied by Env-mediated fusion or entry assays with appropriate cells expressing CD4 or CXCR4/CCR5 receptors in cultures, where many factors underlying cellular activities likely regulate the fusion/entry efficiency. Here we attempted to develop a more simplified in vitro cell-free fusion/entry reaction that mimics HIV-1 infection in cultures. Membrane fragments of target cells and intact infectious HIV-1 particles were purified, mixed and incubated. The core p24 protein was released from the purified virions and detected by ELISA without detergents in the supernatant of the reaction mixtures. This release reaction proceeded temperature-dependently and in a dose-dependent manner between the virion and membrane fractions, and was specific for HIV-1 Env and CD4. Env-deleted or VSV-G-pseudotyped HIV-1 released little p24, if any. Pretreatment of the membrane fragments with anti-CD4 antibodies inhibited the p24 induction from both X4-tropic and R5-tropic HIV-1. Furthermore, X4 but not R5 HIV-1 reacted with the membrane prepared from intrinsically CXCR4-positive HeLa-CD4 cells, whereas both viruses reacted with that prepared from CCR5-transduced HeLa-CD4 cells, indicating that this cell-free reaction mimics coreceptor usage of HIV-1 infection. Therefore, a potent entry inhibitor of X4 HIV-1, SDF-1alpha, blocked the release from X4 but not R5 HIV-1. Inversely, a weak entry inhibitor of R5 HIV-1, MIP-1beta, partially affected only the release from R5 HIV-1. These results suggest that this cell-free reaction system provides a useful tool to study biochemical fusion/entry mechanisms of HIV-1 and its inhibitors.  相似文献   

6.
Chemokine receptors CCR5 and CXCR4 are the major coreceptors of HIV-1 infection and also play fundamental roles in leukocyte trafficking, metastasis, angiogenesis, and embyogenesis. Here, we show that transfection of CCR5 into CXCR4 and CD4 expressing 3T3 cells enhances the cell surface level of CXCR4. In CCR5 high expressing cells, cell surface level of CXCR4 was incompletely modulated in the presence of the CXCR4 ligand CXCL12/SDF-1alpha. CCR5 was resistant to ligand-dependent modulation with the CCR5 ligand CCL5/RANTES. Confocal laser microscopy revealed that CCR5 was colocalized with CXCR4 on the cell surface. In CD4 expressing CCR5 and CXCR4 double positive NIH 3T3 cells, immunoprecipitation followed by Western blot analysis revealed that CCR5 was associated with CXCR4 and CD4. CXCR4 and CCR5 were not co-immunoprecipitated in cells expressing CCR5 and CXCR4 but without CD4 expression. Compared to NIH 3T3CD4 cells expressing CXCR4, the entry of an HIV-1 X4 isolate (HCF) into NIH 3T3CD4 expressing both CXCR4 and CCR5 was reduced. Our data indicate that chemokine receptors interact with each other, which may modulate chemokine-chemokine receptor interactions and HIV-1 coreceptor functions.  相似文献   

7.
Here we report that the N-pyridinylmethyl cyclam analog AMD3451 has antiviral activity against a wide variety of R5, R5/X4, and X4 strains of human immunodeficiency virus type 1 (HIV-1) and HIV-2 (50% inhibitory concentration [IC(50)] ranging from 1.2 to 26.5 microM) in various T-cell lines, CCR5- or CXCR4-transfected cells, peripheral blood mononuclear cells (PBMCs), and monocytes/macrophages. AMD3451 also inhibited R5, R5/X4, and X4 HIV-1 primary clinical isolates in PBMCs (IC(50), 1.8 to 7.3 microM). A PCR-based viral entry assay revealed that AMD3451 blocks R5 and X4 HIV-1 infection at the virus entry stage. AMD3451 dose-dependently inhibited the intracellular Ca(2+) signaling induced by the CXCR4 ligand CXCL12 in T-lymphocytic cells and in CXCR4-transfected cells, as well as the Ca(2+) flux induced by the CCR5 ligands CCL5, CCL3, and CCL4 in CCR5-transfected cells. The compound did not interfere with chemokine-induced Ca(2+) signaling through CCR1, CCR2, CCR3, CCR4, CCR6, CCR9, or CXCR3 and did not induce intracellular Ca(2+) signaling by itself at concentrations up to 400 microM. In freshly isolated monocytes, AMD3451 inhibited the Ca(2+) flux induced by CXCL12 and CCL4 but not that induced by CCL2, CCL3, CCL5, and CCL7. The CXCL12- and CCL3-induced chemotaxis was also dose-dependently inhibited by AMD3451. Furthermore, AMD3451 inhibited CXCL12- and CCL3L1-induced endocytosis in CXCR4- and CCR5-transfected cells. AMD3451, in contrast to the specific CXCR4 antagonist AMD3100, did not inhibit but enhanced the binding of several anti-CXCR4 monoclonal antibodies (such as clone 12G5) at the cell surface, pointing to a different interaction with CXCR4. AMD3451 is the first low-molecular-weight anti-HIV agent with selective HIV coreceptor, CCR5 and CXCR4, interaction.  相似文献   

8.
9.
Coreceptor specificity of human immunodeficiency virus type 1 (HIV-1) strains is generally defined in vitro in cell lines expressing CCR5 or CXCR4, but lymphocytes and macrophages are the principal targets in vivo. CCR5-using (R5) variants dominate early in infection, but strains that use CXCR4 emerge later in a substantial minority of subjects. Many or most CXCR4-using variants can use both CXCR4 and CCR5 (R5X4), but the pathways that are actually used to cause infection in primary cells and in vivo are unknown. We examined several R5X4 prototype and primary isolates and found that they all were largely or completely restricted to CXCR4-mediated entry in primary lymphocytes, even though lymphocytes are permissive for CCR5-mediated entry by R5 strains. In contrast, in primary macrophages R5X4 isolates used both CCR5 and CXCR4. The R5X4 strains were also more sensitive than R5 strains to CCR5 blocking, suggesting that interactions between the R5X4 strains and CCR5 are less efficient. These results indicate that coreceptor phenotyping in transformed cells does not necessarily predict utilization in primary cells, that variability exists among HIV-1 isolates in the ability to use CCR5 expressed on lymphocytes, and that many or most strains characterized as R5X4 are functionally X4 in primary lymphocytes. Less efficient interactions between R5X4 strains and CCR5 may be responsible for the inability to use CCR5 on lymphocytes, which express relatively low CCR5 levels. Since isolates that acquire CXCR4 utilization retain the capacity to use CCR5 on macrophages despite their inability to use it on lymphocytes, these results also raise the possibility that a CCR5-mediated macrophage reservoir is required for sustained infection in vivo.  相似文献   

10.
To assess the role of naturally occurring basic amino acid substitutions in the V3 loop of human immunodeficiency virus type 1 (HIV-1) subtype E on viral coreceptor usage and cell tropism, we have constructed a panel of chimeric viruses with mutant V3 loops of HIV-1 subtype E in the genetic background of HIV-1LAI. The arginine substitutions naturally occurring at positions 8, 11, and 18 of the V3 loop in an HIV-1 subtype E X4 strain were systematically introduced into that of an R5 strain to generate a series of V3 loop mutant chimera. These chimeric viruses were employed in virus infectivity assays using HOS-CD4 cells expressing either CCR5 or CXCR4, peripheral blood mononuclear cells, T-cell lines, or macrophages. The arginine substitution at position 11 of the V3 loop uniformly caused the loss of infectivity in HOS-CD4-CCR5 cells, indicating that position 11 is critical for utilization of CCR5. CXCR4 usage was conferred by a minimum of two arginine substitutions, regardless of combination, whereas arginine substitutions at position 8 and 11 were required for T-cell line tropism. Nonetheless, macrophage tropism was not conferred by the V3 loop of subtype E R5 strain per se. We found that the specific combinations of amino acid changes in HIV-1 subtype E env V3 loop are critical for determining viral coreceptor usage and cell tropism. However, the ability to infect HOS-CD4 cells through either CXCR4 or CCR5 is not necessarily correlated with T-cell or macrophage tropism, suggesting that cellular tropism is not dictated solely by viral coreceptor utilization.  相似文献   

11.
The evolution of human immunodeficiency virus type 1 (HIV-1) coreceptor use has been described as the acquisition of CXCR4 use linked to accelerated disease progression. However, CXCR4-using virus can be isolated only from approximately one-half of individuals with progressive HIV-1 disease. The other half continue to yield only CCR5-using viruses (R5 phenotype) throughout the course of disease. In the present work, the use of receptor chimeras between CCR5 and CXCR4 allowed us to study the evolution of HIV-1 with the R5 phenotype, which was not revealed by studies of wild-type coreceptor use. All together, 246 isolates (173 with the R5 phenotype) from 31 individuals were tested for their ability to infect cells through receptor chimeras. R5(narrow) virus was able to use only wild-type CCR5, whereas R5(broad(1)) to R5(broad(3)) viruses were able to use one to three chimeric receptors, respectively. Broad use of chimeric receptors was interpreted as an increased flexibility in the mode of receptor use. R5(broad) isolates showed higher infectivity in cells expressing wild-type CCR5 than R5(narrow) isolates. Also, the increased flexibility of R5(broad) isolates was concomitant with a lower sensitivity to inhibition by the CC chemokine RANTES. Our results indicate a close relationship between HIV-1 phenotypic changes and the pathogenic process, since the mode and efficiency of CCR5 use as well as the decrease in the RANTES sensitivities of isolated viruses are significantly correlated with CD4(+)-T-cell decline in a patient. One possible explanation is that ligand competition at the CCR5 receptor or changed CCR5 availability may shape the outcome of HIV-1 infection.  相似文献   

12.
13.
We describe replication-competent, vaccine strain-based rabies viruses (RVs) that lack their own single glycoprotein and express, instead, a chimeric RV-human immunodeficiency virus type 1 (HIV-1) envelope protein composed of the ectodomain and transmembrane domains of HIV-1 gp160 and the cytoplasmic domain of RV G. The envelope proteins from both X4 (NL4-3)- and R5X4 (89.6)-tropic HIV-1 strains were utilized. These recombinant viruses very closely mimicked an HIV-1- like tropism, as indicated by blocking experiments. Infection was inhibited by SDF-1 on cells expressing CD4 and CXCR4 for both viruses, whereas RANTES abolished infection of cells expressing CCR5 in addition to CD4 in studies of the RV expressing HIV-1(89.6) Env. In addition, preincubation with soluble CD4 or monoclonal antibodies directed against HIV-1 gp160 blocked the infectivity of both G-deficient viruses but did not affect the G-containing RVs. Our results also indicated that the G-deficient viruses expressing HIV-1 envelope protein, in contrast to wild-type RV but similar to HIV-1, enter cells by a pH-independent pathway. As observed for HIV-1, the surrogate viruses were able to target human peripheral blood mononuclear cells, macrophages, and immature and mature human dendritic cells (DC). Moreover, G-containing RV-based vectors also infected mature human DC, indicating that infection of these cells is also supported by RV G. The ability of RV-based vectors to infect professional antigen-presenting cells efficiently further emphasizes the potential use of recombinant RVs as vaccines.  相似文献   

14.
Human immunodeficiency virus type 1 (HIV-1) infection of CD4(+) lymphocytes and macrophages involves interaction of the surface subunit of the envelope protein (gp120) with coreceptors. Isolates have been found with specific tropism for macrophages and/or T-cell lines, through the utilization of chemokine receptor CCR5 (R5) or CXCR4 (X4). The third hypervariable loop (V3 loop) of gp120 is the major determinant of tropism. Using chimeric envelopes between HXB2 (X4) and ADA (R5), we found that the C-terminal half of the V3 loop was sufficient to confer on HXB2 the ability to infect CCR5-expressing cells. A sequence motif was identified at positions 289 to 292 allowing 30% of wild-type levels of infection, whereas full activity was achieved with the conversion of Lys to Glu at position 287 in addition to the above motif. Moreover, V3 loops from either SF2 (X4R5) or SF162 (R5) also allowed infection of CCR5-expressing cells, supporting the importance of V3 loops in influencing CCR5 utilization. The effects of amino acid changes at position 287 on the level of infection via CCR5 showed that negatively charged residues (Glu and Asp) were optimal for efficient interaction whereas only bulky hydrophobic residues drastically reduced infection. In addition, sequences at the N terminus of the V3 loop independently modulated the level of infection via CCR5. This study also examined the susceptibility of chimeric envelopes to neutralization by anticoreceptor antibodies and suggested the presence of differential interaction between the chimeric envelopes and CCR5. These findings highlight the critical residues in the V3 loop that mediate HIV-1 infection.  相似文献   

15.
The G protein-coupled receptor CXCR4 is a coreceptor, along with CD4, for the human immunodeficiency virus type 1 (HIV-1) and has been implicated in breast cancer metastasis. We studied the binding of the HIV-1 gp120 envelope glycoprotein (gp) to CXCR4 but found that the gp120s from CXCR4-using HIV-1 strains bound nonspecifically to several cell lines lacking human CXCR4 expression. Therefore, we constructed paramagnetic proteoliposomes (CXCR4-PMPLs) containing pure, native CXCR4. CXCR4-PMPLs specifically bound the natural ligand, SDF-1alpha, and the gp120s from CXCR4-using HIV-1 strains. Conformation-dependent anti-CXCR4 antibodies and the CXCR4 antagonist AMD3100 blocked HIV-1 gp120 binding to CXCR4-PMPLs. The gp120-CXCR4 interaction was blocked by anti-gp120 antibodies directed against the third variable (V3) loop and CD4-induced epitopes, structures that have also been implicated in the binding of gp120 to the other HIV-1 coreceptor, CCR5. Compared with the binding of R5 HIV-1 gp120s to CCR5, the gp120-CXCR4 interaction exhibited a lower affinity (K(d) = 200 nm) and was dependent upon prior CD4 binding, even at low temperature. Thus, although similar regions of X4 and R5 HIV-1 gp120s appear to be involved in binding CXCR4 and CCR5, respectively, differences exist in nonspecific binding to cell surfaces, affinity for the chemokine receptor, and CD4 dependence at low temperature.  相似文献   

16.
Human immunodeficiency virus type 1 (HIV-1) subtype C viruses with different coreceptor usage profiles were isolated from 29 South African patients with advanced AIDS. All 24 R5 isolates were inhibited by the CCR5-specific agents, PRO 140 and RANTES, while the two X4 viruses and the three R5X4 viruses were sensitive to the CXCR4-specific inhibitor, AMD3100. The five X4 or R5X4 viruses were all able to replicate in peripheral blood mononuclear cells that did not express CCR5. When tested using coreceptor-transfected cell lines, one R5 virus was also able to use CXCR6, and another R5X4 virus could use CCR3, BOB/GPR15, and CXCR6. The R5X4 and X4 viruses contained more-diverse V3 loop sequences, with a higher overall positive charge, than the R5 viruses. Hence, some HIV-1 subtype C viruses are able to use CCR5, CXCR4, or both CXCR4 and CCR5 for entry, and they are sensitive to specific inhibitors of entry via these coreceptors. These observations are relevant to understanding the rapid spread of HIV-1 subtype C in the developing world and to the design of intervention and treatment strategies.  相似文献   

17.

Background

HIV-1 R5 viruses are characterized by a large phenotypic variation, that is reflected by the mode of coreceptor use. The ability of R5 HIV-1 to infect target cells expressing chimeric receptors between CCR5 and CXCR4 (R5broad viruses), was shown to correlate with disease stage in HIV-1 infected adults. Here, we ask the question whether phenotypic variation of R5 viruses could play a role also in mother-to-child transmission (MTCT) of HIV-1 and pediatric disease progression.

Methodology/Principal Findings

Viral isolates obtained from a total of 59 HIV-1 seropositive women (24 transmitting and 35 non transmitting) and 28 infected newborn children, were used to infect U87.CD4 cells expressing wild type or six different CCR5/CXCR4 chimeric receptors. HIV-1 isolates obtained from newborn infants had predominantly R5narrow phenotype (n = 20), but R5broad and R5X4 viruses were also found in seven and one case, respectively. The presence of R5broad and R5X4 phenotypes correlated significantly with a severe decline of the CD4+ T cells (CDC stage 3) or death within 2 years of age. Forty-three percent of the maternal R5 isolates displayed an R5broad phenotype, however, the presence of the R5broad virus was not predictive for MTCT of HIV-1. Of interest, while only 1 of 5 mothers with an R5X4 virus transmitted the dualtropic virus, 5 of 6 mothers carrying R5broad viruses transmitted viruses with a similar broad chimeric coreceptor usage. Thus, the maternal R5broad phenotype was largely preserved during transmission and could be predictive of the phenotype of the newborn''s viral variant.

Conclusions/Significance

Our results show that R5broad viruses are not hampered in transmission. When transmitted, immunological failure occurs earlier than in children infected with HIV-1 of R5narrow phenotype. We believe that this finding is of utmost relevance for therapeutic interventions in pediatric HIV-1 infection.  相似文献   

18.
Dual-tropic human immunodeficiency virus type 1 (HIV-1) strains infect both primary macrophages and transformed T-cell lines. Prototype T-cell line-tropic (T-tropic) strains use CXCR4 as their principal entry coreceptor (X4 strains), while macrophagetropic (M-tropic) strains use CCR5 (R5 strains). Prototype dual tropic strains use both coreceptors (R5X4 strains). Recently, CXCR4 expressed on macrophages was found to support infection by certain HIV-1 isolates, including the dual-tropic R5X4 strain 89.6, but not by T-tropic X4 prototypes like 3B. To better understand the cellular basis for dual tropism, we analyzed the macrophage coreceptors used for Env-mediated cell-cell fusion as well as infection by several dual-tropic HIV-1 isolates. Like 89.6, the R5X4 strain DH12 fused with and infected both wild-type and CCR5-negative macrophages. The CXCR4-specific inhibitor AMD3100 blocked DH12 fusion and infection in macrophages that lacked CCR5 but not in wild-type macrophages. This finding indicates two independent entry pathways in macrophages for DH12, CCR5 and CXCR4. Three primary isolates that use CXCR4 but not CCR5 (tybe, UG021, and UG024) replicated efficiently in macrophages regardless of whether CCR5 was present, and AMD3100 blocking of CXCR4 prevented infection in both CCR5 negative and wild-type macrophages. Fusion mediated by UG021 and UG024 Envs in both wild-type and CCR5-deficient macrophages was also blocked by AMD3100. Therefore, these isolates use CXCR4 exclusively for entry into macrophages. These results confirm that macrophage CXCR4 can be used for fusion and infection by primary HIV-1 isolates and indicate that CXCR4 may be the sole macrophage coreceptor for some strains. Thus, dual tropism can result from two distinct mechanisms: utilization of both CCR5 and CXCR4 on macrophages and T-cell lines, respectively (dual-tropic R5X4), or the ability to efficiently utilize CXCR4 on both macrophages and T-cell lines (dual-tropic X4).  相似文献   

19.
Most human immunodeficiency virus (HIV) strains require both CD4 and a chemokine receptor for entry into a host cell. In order to analyze how the HIV-1 envelope glycoprotein interacts with these cellular molecules, we constructed single-molecule hybrids of CD4 and chemokine receptors and expressed these constructs in the mink cell line Mv-1-lu. The two N-terminal (2D) or all four (4D) extracellular domains of CD4 were linked to the N terminus of the chemokine receptor CXCR4. The CD4(2D)CXCR4 hybrid mediated infection by HIV-1(LAI) to nearly the same extent as the wild-type molecules, whereas CD4(4D)CXCR4 was less efficient. Recombinant SU(LAI) protein competed more efficiently with the CXCR4-specific monoclonal antibody 12G5 for binding to CD4(2D)CXCR4 than for binding to CD4(4D)CXCR4. Stromal cell-derived factor 1 (SDF-1) blocked HIV-1(LAI) infection of cells expressing CD4(2D)CXCR4 less efficiently than for cells expressing wild-type CXCR4 and CD4, whereas down-modulation of CXCR4 by SDF-1 was similar for hybrids and wild-type CXCR4. In contrast, the bicyclam AMD3100, a nonpeptide CXCR4 ligand that did not down-modulate the hybrids, blocked hybrid-mediated infection at least as potently as for wild-type CXCR4. Thus SDF-1, but not the smaller molecule AMD3100, may interfere at multiple points with the binding of the surface unit (SU)-CD4 complex to CXCR4, a mechanism that the covalent linkage of CD4 to CXCR4 impedes. Although the CD4-CXCR4 hybrids yielded enhanced SU interactions with the chemokine receptor moiety, this did not overcome the specific coreceptor requirement of different HIV-1 strains: the X4 virus HIV-1(LAI) and the X4R5 virus HIV-1(89. 6), unlike the R5 strain HIV-1(SF162), infected Mv-1-lu cells expressing the CD4(2D)CXCR4 hybrid, but none could use hybrids of CD4 and the chemokine receptor CCR2b, CCR5, or CXCR2. Thus single-molecule hybrid constructs that mimic receptor-coreceptor complexes can be used to dissect coreceptor function and its inhibition.  相似文献   

20.
The molecular mechanism of human immunodeficiency virus type 1 (HIV-1) entry into cells involves specific interactions between the viral envelope glycoprotein gp120 and two target cell proteins, CD4 and either CCR5 or CXCR4 chemokine receptors. In order to delineate the functional role of HIV-1 gp120 subdomains of dualtropic strains in CCR5 coreceptor usage, we used a panel of chimeric viruses in which the V1/V2 and V3 domains of gp120 from the dualtropic HIV-1(KMT) isolate were introduced either alone or in combination into the T-tropic HIV-1(NL4-3) background. These chimeric constructs were employed in cell-cell fusion and cell-free virus infectivity assays using cell lines expressing CD4 and the CCR5 chemokine receptor. In both assays, the V3 domain of HIV-1(KMT) but not the V1/V2 domain proved to be the principal determinant of CCR5 coreceptor usage. However, in the cell-free viral infectivity assay although a chimeric virus with a combined V1/V2 and V3 domains of HIV-1(KMT) efficiently fused with coreceptor expressing cells, yet its infectivity was markedly diminished in CCR5 as well as CXCR4 expressing cells. Restoring a comparable level of infection of such chimeric virus required the C3-V5 domain from HIV-1(KMT) to be introduced. Our present findings confirmed that the V3 domain is the major determinant of fusion activity and cellular tropism, and demonstrated a dispensable role for the V1/V2 domain. In addition the C3-V5 domain appeared to play an important role in viral infectivity when the corresponding V1/V2 and V3 domains are present.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号