首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Matings and RAPD-PCR analysis were used to differentiate two closely related basidiomycetes fungi, Pleurotus pulmonarius and P. ostreatus, which are widespread in Russian forest biocenoses with moderate continental climate. Monokaryon-monokaryon (mon-mon) and dikaryon-monokaryon (di-mon) matings demonstrated complete reproductive isolation of the two species, which have partly overlapping morphological traits. The prevalence of a particular species in nature was shown to depend to a great extent on the natural conditions, namely, the day and night temperature fluctuations. The clustering of natural Pleurotus strains displayed two trends: one was associated with natural reproductive isolation of the two species (D = 0.61) and the other, with the geographical factor (D = 0.39). A relatively recent origin is suggested for the divergence of the two species and the reproductive barrier between them. Adaptation to natural conditions was considered to be the main factor causing the divergence of natural Pleurotus populations and, eventually, allopatric speciation.  相似文献   

2.
Four sibling species from the melanogaster subgroup (Drosophila melanogaster, D. simulans, D. sechellia, and D. mauritiana) were studied for genetic divergence, by high-resolution two-dimensional protein electrophoresis (2DE) coupled with ultrasensitive silver staining. A total of eight tissues from larval and adult developmental stages representing both gonadal (germ-line) and nongonadal (somatic) tissues were analyzed for protein divergence between species. Close to 400 polypeptides (protein spots) were scored from each tissue and species, and protein divergence was measured on the basis of qualitative differences (presence/absence) of protein spots in pairwise species comparisons. The observed levels of genic divergence varied among tissues and among species. When larval hemolymph proteins (which are known to be highly polymorphic) were excluded, there was no evidence to suggest that either the larval or adult-stage proteins, as a whole, are more diverged than the other; variation between different tissues rather than between developmental stages appears to be the most significant factor affecting genetic divergence between species. The reproductive tissue (testis and accessory gland) showed more divergence than did the nonreproductive tissue; D. melanogaster testis (from both larvae and adult males) showed the highest level of divergence. In view of the previous observation that D. simulans, D. mauritiana, and D. sechellia show similar but significantly less reproductive isolation from each other than from D. melanogaster, the present results suggest a correlation between the levels of reproductive-tract-protein divergence and the degree of reproductive isolation in these species.  相似文献   

3.
Documenting natural hybrid systems builds our understanding of mate choice, reproductive isolation and speciation. The stick insect species Clitarchus hookeri and C. tepaki differ in their genital morphology and hybridize along a narrow peninsula in northern New Zealand. We utilize three lines of evidence to understand the role of premating isolation and species boundaries: (a) genetic differentiation using microsatellites and mitochondrial DNA; (b) variation in 3D surface topology of male claspers and 2D morphometrics of female opercular organs; and (c) behavioural reproductive isolation among parental and hybrid populations through mating crosses. The genetic data show introgression between the parental species and formation of a genetically variable hybrid swarm. Similarly, the male and female morphometric data show genital divergence between the parental species as well as increased variation within the hybrid populations. This genital divergence has not resulted in reproductive isolation between species, instead weak perimating isolation has enabled the formation of a hybrid swarm. Behavioural analysis demonstrates that the entire mating process influences the degree of reproductive isolation between species undergoing secondary contact. Mechanical isolation may appear strong, whereas perimating isolation is weak.  相似文献   

4.
The possible association between gonadal protein divergence and postzygotic reproductive isolation was investigated among species of the Drosophila melanogaster and D. virilis groups. Protein divergence was scored by high-resolution two-dimensional electrophoresis (2DE). Close to 500 protein spots from gonadal tissues (testis and ovary) and nongonadal tissues (malpighian tubules and brain) were analyzed and protein divergence was calculated based on presence vs absence. Both testis and ovary proteins showed higher divergence than nongonadal proteins, and also a highly significant positive correlation with postzygotic reproductive isolation but a weaker correlation with prezygotic reproductive isolation. Particularly, a positive and significant correlation was found between proteins expressed in the testis and postzygotic reproductive isolation among closely related species such as the within-phylad species in the D. virilis group. The high levels of male-reproductive-tract protein divergence between species might be associated with F1 hybrid male sterility among closely related species. If so, a lower level of ovary protein divergence should be expected on the basis that F1 female hybrids are fully fertile. However, this is not necessarily true if relatively few genes are responsible for the reproductive isolation observed between closely related species, as recent studies seem to suggest. We suggest that the faster rate of evolution of gonadal proteins in comparison to nongonadal proteins and the association of that rate with postzygotic reproductive isolation may be the result of episodic and/or sexual selection on male and female molecular traits. Correspondence to: A. Civetta  相似文献   

5.
Male-choice experiments using five isofemale lines of Drosophila ananassae originating from different localities were performed to study sexual isolation within the species. In most of the crosses homogamic matings outnumber heterogamic ones, and deviation from randomness is statistically significant in 11 of 20 crosses. This provides evidence for positive assortative mating within D. ananassae. Isolation indices range from -0.057 to 0.555. Eleven positive isolation indices are significantly greater than zero. Both types of sexual isolation, symmetrical and asymmetrical, have been observed among different strains. Thus the present results clearly indicate that the laboratory strains of D. ananassae have developed behavioural reproductive isolation as a result of genetic divergence.  相似文献   

6.
Hybridization is a well‐known phenomenon, but there are still relatively few studies addressing the question of reproductive isolation between related sympatric animal species with largely overlapping ranges. Population density, relative abundance, and operational sex ratio (OSR) are among the factors known to have an influence on the frequency of heterospecific matings in sympatric populations. Here we had two aims. First, we used microsatellite markers and field observations to study the frequency of hybrids, and backcrosses, and the rate of heterospecific matings between two sympatric damselfly species Calopteryx splendens (Harris, 1780) and Calopteryx virgo (Linné, 1758). Second, we investigated the role of population densities, relative abundances, and OSRs on conspecific and heterospecific mating rates. Altogether we genotyped 2104 individuals from both species and found four hybrids (0.19%), one of which was a backcross. Of all the 272 matings observed, 17 (6%) were between heterospecifics, and all of these were between a C. splendens male and a C. virgo female. In addition, all of the hybrids contained mitochondrial DNA (mtDNA) of C. virgo. We show that the population density of C. virgo, which was the maternal species of all the heterospecific matings and hybrid individuals, was the only significant factor covarying with the rate of the heterospecific matings. The OSRs did not correlate with the rate of con‐ or heterospecific matings. Studies on interspecific interactions in sympatric species can give information about the maintenance of reproductive isolation, and thus speciation. © 2012 The Linnean Society of London  相似文献   

7.
Postmating but prezygotic (PMPZ) interactions are increasingly recognized as a potentially important early‐stage barrier in the evolution of reproductive isolation. A recent study described a potential example between populations of the same species: single matings between Drosophila montana populations resulted in differential fertilisation success because of the inability of sperm from one population (Vancouver) to penetrate the eggs of the other population (Colorado). As the natural mating system of D. montana is polyandrous (females remate rapidly), we set up double matings of all possible crosses between the same populations to test whether competitive effects between ejaculates influence this PMPZ isolation. We measured premating isolation in no‐choice tests, female fecundity, fertility and egg‐to‐adult viability after single and double matings as well as second‐male paternity success (P2). Surprisingly, we found no PMPZ reproductive isolation between the two populations under a competitive setting, indicating no difficulty of sperm from Vancouver males to fertilize Colorado eggs after double matings. While there were subtle differences in how P2 changed over time, suggesting that Vancouver males’ sperm are somewhat less competitive in a first‐male role within Colorado females, these effects did not translate into differences in overall P2. Fertilisation success can thus differ dramatically between competitive and noncompetitive conditions, perhaps because the males that mate second produce higher quality ejaculates in response to sperm competition. We suggest that unlike in more divergent species comparisons, where sperm competition typically increases reproductive isolation, ejaculate tailoring can reduce the potential for PMPZ isolation when recently diverged populations interbreed.  相似文献   

8.
Abstract Barriers to gene flow that act after mating but before fertilization are often overlooked in studies of reproductive isolation. Where species are sympatric, such "cryptic' isolating barriers may be important in maintaining species as distinct entities. Drosophilayakuba and its sister species D. santomea have overlapping ranges on the island of Sao Tome, off the coast of West Africa. Previous studies have shown that the two species are strongly sexually isolated. However, the degree of sexual isolation observed in the laboratory cannot explain the low frequency (–1%) of hybrids observed in nature. This study identifies two "cryptic" isolating barriers that may further reduce gene flow between D. yakuba andD. santomea where they are sympatric. First, noncompetitive gametic isolation has evolved between D. yakuba and D. santomea: heterospecific matings between the two species produce significantly fewer offspring than do conspecific matings. Second, conspecific sperm precedence (CSP) occurs when D. yakuba females mate with conspecific and heterospecific males. However, CSP is asymmetrical: D. santomea females do not show patterns of sperm usage consistent with CSP. Drosophila yakuba and D. santomea females also differ with respect to remating propensity after first mating with conspecific males. These results suggest that noncompetitive and competitive gametic isolating barriers may contribute to reproductive isolation between D. yakuba and D. santomea.  相似文献   

9.
Nanda P  Singh BN 《Genetica》2011,139(2):273-279
The mechanisms of speciation that appear in the early stages of reproductive isolation has been of recent interest to evolutionary biologists. Experiments were conducted to study behavioral isolation between karyotypically different homozygous strains derived from natural populations of Drosophila ananassae. Three mass cultures stocks established from flies collected from natural populations were employed and homozygous stocks (ST/ST and AL/AL) were made through selection for homozygosity. By employing male-choice technique, mating success was scored by direct observation in the Elens–Wattiaux mating chamber. There is preference for homogamic matings in all the three populations and the differences between homogamic and heterogamic matings are statistically significant in two populations (Lucknow and Varanasi). These findings provide evidence that there is incipient sexual isolation between karyotypically different strains of D. ananassae derived from natural populations which shows that chromosome arrangements may affect the mate recognition system in D. ananassae.  相似文献   

10.
Identifying the factors that cause reproductive isolation and their relative importance in species divergence is crucial to our understanding of speciation processes. In most species, natural selection is commonly considered to play a large role in driving speciation. Based on whole genome re-sequencing data from 27 Populus alba and 28 Populus adenopoda individuals, we explored the factors related to reproductive isolation of these two closely related species. The results showed that the two species diverged ~5–10 million years ago (Ma), when the Qinghai–Tibet Plateau reached a certain height and the inland climate of the Asian continent became arid. In highly differentiated genomic regions, the relative divergence (FST) and absolute divergence (dxy) were significantly higher than the genomic background, θπ and shared polymorphisms decreased whereas fixed differences increased, which indicated that natural selection played a key role in the reproductive isolation of the two species. In addition, we found several genes that were related to reproduction that may be involved in explaining the reproductive isolation. Using phylogenetic trees resolved from haplotype data of Populus tomentosa and P. adenopoda, the maternal origin of P. tomentosa from P. adenopoda was likely to be located in Hubei and Chongqing Provinces.  相似文献   

11.
Divergence and reproductive isolation in the early stages of speciation   总被引:2,自引:0,他引:2  
Tregenza T 《Genetica》2002,116(2-3):291-300
To understand speciation we need to identify the factors causing divergence between natural populations. The traditional approach to gaining such insights has been to focus on a particular theory and ask whether observed patterns of reproductive isolation between populations or species are consistent with the hypothesis in question. However, such studies are few and they do not allow us to compare between hypotheses, so often we cannot determine the relative contribution to divergence of different potential factors. Here, I describe a study of patterns of phenotypic divergence and premating and postmating isolation between populations of the grasshopper Chorthippus parallelus. Information on the phylogeographic relationships of the populations means that a priori predictions from existing hypotheses for the evolution of reproductive isolation can be compared with observations. I assess the relative contributions to premating isolation, postmating isolation and phenotypic divergence of long periods of allopatry, adaptation to different environments and processes associated with colonisation (such as population bottlenecks). Likelihood analysis reveals that long periods of allopatry in glacial refugia are associated with postmating reproductive isolation, but not premating isolation, which is more strongly associated with colonisation. Neither premating nor postmating isolation is higher between populations differing in potential environmental selection pressures. There are only weak correlations between patterns of genetic divergence and phenotypic divergence and no correlation between premating and postmating isolation. This suggests that the potential of a taxon to exercise mate choice may affect the types of factor that promote speciation in that group. I discuss the advantages and disadvantages of the general approach of simultaneously testing competing hypotheses for the evolution of reproductive isolation.  相似文献   

12.
How natural selection might be involved in speciation remains a fundamental question in evolutionary biology. When two or more species co-occur in the same areas, natural selection may favor divergence in mating traits. By acting in sympatric but not allopatric populations, natural selection can also affect mate choice within species and ultimately initiate speciation among conspecific populations. Here, we address this potential effect in the sea rock-pool beetles Ochthebius quadricollis and O. urbanelliae. The two species, which inhabit the Mediterranean coasts, co-occurr syntopically in an area along the Italian Tyrrhenian coast and completed reproductive isolation by reinforcement. In this article, through mating trials under laboratory conditions between conspecific populations, we found in O. quadricollis no deviations from random mating. Conversely, in O. urbanelliae, we found a clear pattern of premating isolation between the reinforced populations sympatric with O. quadricollis and those nonreinforced allopatric. This pattern is consistent with the view that natural selection, which completed the reproductive isolation between the two species in sympatry, led incidentally also to partial premating reproductive isolation (I(PSI) estimator from 0.683 to 0.792) between conspecific populations of O. urbanelliae. This case study supports an until recently underappreciated role of natural selection resulting from species interactions in initiating speciation.  相似文献   

13.
Abstract.— .Drosophila yakuba is widespread in Africa, whereas D. santomea, its newly discovered sister species, is endemic to the volcanic island of São Tomé in the Gulf of Guinea. Drosophila santomea probably formed after colonization of the island by a D. yakuba‐like ancestor. The species presently have overlapping ranges on the mountain Pico do São Tome, with some hybridization occurring in this region. Sexual isolation between the species is uniformly high regardless of the source of the populations, and, as in many pairs of Drosophila species, is asymmetrical, so that hybridizations occur much more readily in one direction than the other. Despite the fact that these species meet many of the conditions required for the evolution of reinforcement (the elevation of sexual isolation by natural selection to avoid maladaptive interspecific hybridization), there is no evidence that sexual isolation between the species is highest in the zone of overlap. Sexual isolation is due to evolutionary changes in both female preference for heterospecific males and in the vigor with which males court heterospecific females. Heterospecific matings are also slower to take place than are homospecific matings, constituting another possible form of reproductive isolation. Genetic studies show that, when tested with females of either species, male hybrids having a D. santomea X chromosome mate much less frequently with females of either species than do males having a D. yakuba X chromosome, suggesting that the interaction between the D. santomea X chromosome and the D. yakuba genome causes behavioral sterility. Hybrid F1 females mate readily with males of either species, so that sexual isolation in this sex is completely recessive, a phenomenon seen in other Drosophila species. There has also been significant evolutionary change in the duration of copulation between these species; this difference involves genetic changes in both sexes, with at least two genes responsible in males and at least one in females.  相似文献   

14.
The study of reproductive isolation between populations, combined with estimates of genetic divergence, provides important insights into mechanisms of speciation. In this study, sixteen morphologically heterogeneous sympatric clones of Eunotia bilunaris sensu lato (Bacillariophyta) were brought into culture to study their phylogenetic relationships and pre- and postzygotic reproductive barriers. An ITS rDNA phylogeny was congruent with morphology and divided the clones into three groups ('slender', 'robust' and 'labile'), pointing to the presence of several species in E. bilunaris. Whereas most strains had a heterothallic mating system, four 'labile' clones displayed apomictic behaviour. A further 'labile' clone had a heterothallic mating behaviour, however, suggesting a very recent origin for apomixis. Despite high sequence divergence, hybridization occurred between clones belonging to different groups, but was 20-400 times less frequent than in intra-group matings. F1 hybrids had an intermediate morphology and were almost completely sterile; gamete formation was generally arrested in the early stages of meiosis I. The ITS divergence of 11.5-12.3% between the 'robust' and 'slender' clones seems to represent an upper limit of divergence in which cell pairing, gamete formation and auxosporulation are still possible but heavily reduced, and where hybrid sterility has already evolved.  相似文献   

15.
Hybridization can either reinforce or erode species boundaries; therefore, hybrid zones offer a natural experimental setting in which to assess the dynamics of reproductive isolation. Secondary contact zones, in particular, present a partial separation of the original divergence mechanisms and the subsequent genomic architecture of reproductive isolation (or lack thereof). The spatial context of secondary contact and its consequent effect on dispersal play vital roles on the contact’s outcome. In a hybrid complex between two towhee species in Mexico, Pipilo maculatus and Pipilo ocai, two major hybrid gradients provide natural replicates for comparison. However, genetic analyses demonstrate significant divergence between geographically separate parental populations of each species and divergence of populations within each hybrid zone. The two hybrid transects (Teziutlán and Transvolcanic) are distinct and evidence suggests allelic introgression both across the species boundary and between the two transects. Habitat corridors for dispersal represent functional connectivity hotspots where the two transects meet. Both habitat connectivity and genetic differentiation between geographically disparate parental populations appear to influence the dynamics of gene flow across the hybrid gradients. In southern sympatric populations (Mt. Orizaba and Oaxaca) where morphological evidence for hybridization is scarce, opposing species’ alleles appear to traverse through the hybrid zones rather than arising from cryptic local hybridization. These results illustrate the importance of environmentally mediated gene flow in the context of secondary contact as an important force influencing evolutionary trajectory.  相似文献   

16.
Sexual selection may lead to reproductive isolation between populations through divergence in female mate choice, and population differentiation driven by female mate choice is expected to produce pre- but not post-mating isolation. We tested these hypotheses by looking at whether allopatric populations of the Amarillo (Girardinichthys multiradiatus), a sexually dimorphic viviparous fish with effective female choice, (i) have undergone phenotypical differentiation that may be attributed to divergence in female mate choice, and (ii) are already separated by pre- and/or post-mating reproductive barriers. We found substantial divergence in morphological traits which are the target of female mate choice, and in male courtship behaviour. Strong female preferences for homogametic males indicate substantial and symmetric pre-copulatory isolation, but the few successful heterogametic crosses produced in confinement yielded litters of the same size as those produced in homogametic matings, suggesting that post-copulatory isolation between populations is non-existent or weak. It appears that the studied populations have undergone incipient speciation with a pattern that is consistent with speciation driven by sexual selection, yet further work should assess whether divergence in female preferences has promoted male phenotypic differentiation or whether variation in male attributes has driven divergence in female preferences.  相似文献   

17.
The threespine stickleback ( Gasterosteus aculeatus ) species complex is well suited for identifying the types of phenotypic divergence and isolating barriers that contribute to reproductive isolation at early stages of speciation. In the present study, we characterize the patterns of genetic and phenotypic divergence as well as the types of isolating barriers that are present between two sympatric pairs of threespine sticklebacks in Hokkaido, Japan. One sympatric pair consists of an anadromous and a resident freshwater form and shows divergence in body size between the forms, despite the lack of genetic differentiation between them. The second sympatric pair consists of two anadromous forms, which originated before the last glacial period and are currently reproductively isolated. These two anadromous forms have diverged in many morphological traits as well as in their reproductive behaviours. Both sexual isolation and hybrid male sterility contribute to reproductive isolation between the anadromous species pair. We discuss the shared and unique aspects of phenotypic divergence and reproductive isolation in the Japanese sympatric pairs compared with postglacial stickleback species pairs. Further studies of these divergent species pairs will provide a deeper understanding of the mechanisms of speciation in sticklebacks.  © 2007 The Linnean Society of London, Biological Journal of the Linnean Society , 2007, 91 , 671–685.  相似文献   

18.
Intraspecific sexual isolation was examined among wild strains of Drosophila malerkotliana, D. parabipectinata and D. pseudoananassae by multiple-choice method in Elens-Wattiaux mating chamber. In D. pseudoananassae, mating between two strains tested was random and isolation estimate was close to one. In one out of 6 crosses, involving geographic strains of D. malerkotliana, there was significant deviation from randomness and isolation estimate remained low which shows non-random (preferential or positive assortative) mating. In D. parabipectinata, the deviation from randomness was statistically significant due to higher number of homogamic matings in three crosses involving wild strains derived from geographically distant places and isolation estimate remained low in these crosses. The results provide evidence for incipient sexual isolation within D. malerkotliana and D. parabipectinata as a result of genetic divergence.  相似文献   

19.
It is widely accepted that the genetic divergence and reproductive incompat- ibility between closely related species and/or populations is often viewed as an important step toward speciation. In this study, sexual compatibility in crosses between the southern XS population and the northern TA population of the polyandrous cabbage beetle Co- laphellus bowringi was investigated by testing their mating preferences, mating latency, copulation duration, and reproductive performances of post-mating. In choice mating ex- periments, the percentages ofmatings were significantly higher in intra-population crosses than in inter-population crosses. Both isolation index (/) and index of pair sexual isolation (/PSi) indicated partial mating incompatibility or assortative mating in crosses between the two different geographical populations. In single pair mating experiments, XS females in inter-population crosses mated significantly later and copulated significantly shorter than those in intra-population crosses. However, TA females in inter-population crosses mated significantly earlier and copulated longer than those in intra-population crosses, suggesting that larger XS males may enhance heterotypic mating. The lifetime fecundity was highest in XS homotypic matings, lowest in TA homotypic matings, and intermedi- ate in heterotypic rnatings between their parents. The inter-population crosses resulted in significantly lower egg hatching rate and shorter female longevity than intra-population crosses. These results demonstrated that there exist some incompatibilities in premating, postmating-prezygotic, and postzygotic stages between the southern XS population and northern TA population of the cabbage beetle Colaphellus bowringi.  相似文献   

20.
We critically examined methods for recognizing species in the model filamentous fungal genus Neurospora by comparing traditional biological species recognition (BSR) with more comprehensive applications of both BSR and phylogenetic species recognition (PSR). Comprehensive BSR was applied to a set of 73 individuals by performing extensive crossing experiments and delineating biological species based on patterns of reproductive success. Within what were originally considered two species, N. crassa and N. intermedia, we recognized four reproductively isolated biological species. In a concurrent study (Dettman et al. 2003), we used genealogical concordance of four independent nuclear loci to recognize phylogenetic species in Neurospora. Overall, the groups of individuals identified as species were similar whether recognized by reproductive success or by phylogenetic criteria, and increased genetic distance between parents was associated with decreased reproductive success of crosses, suggesting that PSR using genealogical concordance can be used to reliably recognize species in organisms that are not candidates for BSR. In one case, two phylogenetic species were recognized as a single biological species, indicating that significant phylogenetic divergence preceded the development of reproductive isolation. However, multiple biological species were never recognized as a single phylogenetic species. Each of the putative N. crassa x N. intermedia hybrids included in this study was confidently assigned to a single species, using both PSR and BSR. As such, no evidence for a history of hybridization in nature among Neurospora species was observed. By performing reciprocal mating tests, we found that mating type, parental role, and species identity of parental individuals could all influence the reproductive success of matings. We also observed sympatry-associated sexual dysfunction in interspecific crosses, which was consistent with the existence of reinforcement mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号