首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
MicroRNAs (miRNAs) regulate various developmental programs of plants. This review focuses on miRNA involvement in early events of plant development, such as seed germination, seedling development and the juvenile to adult phase transition. miR159 and miR160 are involved in the regulation of seed germination through their effects on the sensitivity of seeds to ABA. miR156 and miR172 play critical roles in the emergence of vegetative leaves at post-germinative stages, which is important for the transition to autotrophic growth. The phase transition from the juvenile to adult stage in both monocots and dicots is also regulated by miR156 and miR172. In these early developmental processes, there are miRNA gene regulation cascades where the miR156 pathway acts upstream of the miR172 pathway. Moreover, targets of miR156 and miR172 exert positive feedback on the expression of MIR genes that suppress themselves. The early events of plant development appear to be controlled by complex mechanisms involving sequential expression of different miRNA pathways and feedback loops among miRNAs and their target genes.  相似文献   

3.
Hybrid vigour (heterosis) has been used for decades in crop industries, especially in the production of maize and rice. Hybrid varieties usually exceed their parents in plant biomass and seed yield. But the molecular basis of hybrid vigour is not fully understood. In this project, we studied heterosis at early stages of seedling development in Arabidopsis hybrids derived from crossing Ler and C24 accessions. We found that early heterosis is associated with non‐additive gene expression that resulted from earlier changes in gene expression in the hybrids relative to the parents. The non‐additively expressed genes are involved in metabolic pathways, including photosynthesis, critical for plant growth. The early increased expression levels of genes involved in energy production in hybrids is associated with heterosis in the young seedlings that could be essential for biomass heterosis at later developmental stages of the plant.  相似文献   

4.
5.
6.
7.
8.
9.
10.
11.
12.
WUSCHEL-related homeobox(WOX)家族是植物特有的转录因子家族,参与分生组织细胞分裂分化、初生和次生物质代谢及植物激素信号转导等多个发育过程,目前尚未有从全基因组分析该基因家族参与杨树茎部发育的相关研究。本项研究旨在对杨树WOX基因家族进行鉴定,在杨树基因中发现18个WOX候选基因,将这些候选基因分为三组,同一分组的大多数WOX家族成员具有相似的基因结构和保守的基序。根据不同发育阶段茎部转录组数据,系统分析了WOX家族成员在茎部不同发育阶段的特异表达情况,并采用qRT-PCR对上述结果进行了验证。结果表明,杨树WOX基因家族在茎部不同发育阶段表现出不同的表达模式,为毛果杨WOX家族的功能研究与利用奠定基础。  相似文献   

13.
14.

Background

Since drought can seriously affect plant growth and development and little is known about how the oscillations of gene expression during the drought stress-acclimation response in soybean is affected, we applied Illumina technology to sequence 36 cDNA libraries synthesized from control and drought-stressed soybean plants to verify the dynamic changes in gene expression during a 24-h time course. Cycling variables were measured from the expression data to determine the putative circadian rhythm regulation of gene expression.

Results

We identified 4866 genes differentially expressed in soybean plants in response to water deficit. Of these genes, 3715 were differentially expressed during the light period, from which approximately 9.55 % were observed in both light and darkness. We found 887 genes that were either up- or down-regulated in different periods of the day. Of 54,175 predicted soybean genes, 35.52 % exhibited expression oscillations in a 24 h period. This number increased to 39.23 % when plants were submitted to water deficit. Major differences in gene expression were observed in the control plants from late day (ZT16) until predawn (ZT20) periods, indicating that gene expression oscillates during the course of 24 h in normal development. Under water deficit, dissimilarity increased in all time-periods, indicating that the applied stress influenced gene expression. Such differences in plants under stress were primarily observed in ZT0 (early morning) to ZT8 (late day) and also from ZT4 to ZT12. Stress-related pathways were triggered in response to water deficit primarily during midday, when more genes were up-regulated compared to early morning. Additionally, genes known to be involved in secondary metabolism and hormone signaling were also expressed in the dark period.

Conclusions

Gene expression networks can be dynamically shaped to acclimate plant metabolism under environmental stressful conditions. We have identified putative cycling genes that are expressed in soybean leaves under normal developmental conditions and genes whose expression oscillates under conditions of water deficit. These results suggest that time of day, as well as light and temperature oscillations that occur considerably affect the regulation of water deficit stress response in soybean plants.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1731-x) contains supplementary material, which is available to authorized users.  相似文献   

15.
16.
17.
18.
19.
A barley cDNA macroarray comprising 1,440 unique genes was used to analyze the spatial and temporal patterns of gene expression in embryo, scutellum and endosperm tissue during different stages of germination. Among the set of expressed genes, 69 displayed the highest mRNA level in endosperm tissue, 58 were up-regulated in both embryo and scutellum, 11 were specifically expressed in the embryo and 16 in scutellum tissue. Based on Blast X analyses, 70% of the differentially expressed genes could be assigned a putative function. One set of genes, expressed in both embryo and scutellum tissue, included functions in cell division, protein translation, nucleotide metabolism, carbohydrate metabolism and some transporters. The other set of genes expressed in endosperm encodes several metabolic pathways including carbohydrate and amino acid metabolism as well as protease inhibitors and storage proteins. As shown for a storage protein and a trypsin inhibitor, the endosperm of the germinating barley grain contains a considerable amount of residual mRNA which was produced during seed development and which is degraded during early stages of germination. Based on similar expression patterns in the endosperm tissue, we identified 29 genes which may undergo the same degradation process. Electronic Publication  相似文献   

20.
Bowman-Birk soybean trypsin inhibitor (BBSTI) but not Kunitz soybean trypsin inhibitor (KSTI) was found in samples of undifferentiated and partially differentiated Amsoy 71 tissue culture callus. This suggests the differential metabolism of these two classes of proteinase inhibitors, whether the difference be in synthesis, in rates of degradation, or both. The differential metabolism of the proteinase inhibitors is also seen in the plant. Both BBSTI and KSTI were found in the hypocotyl, root, and epicotyl of the Amsoy 71 soybean seedling in addition to their expected presence in the cotyledons. Whereas the ratio of KSTI to BBSTI in the cotyledon was higher, the ratio of BBSTI to KSTI was higher in the extracotyledonary tissues of the seedling. The levels of both classes of proteinase inhibitors declined during seedling growth, except in the epicotyl and the proximal root. In both of these tissues, an increase in BBSTI, but not in KSTI content, expressed as milligrams inhibitor per plant part, occurred.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号