首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
Microgermination of Bacillus cereus spores   总被引:5,自引:3,他引:2  
The biphasic nature of germination curves of individual Bacillus cereus T spores was further characterized by assessing the effects of temperature, concentration of germinants, and some inorganic cations on microgermination. Temperature was shown to affect both phases of microgermination as well as the microlag period, whereas the concentration of l-alanine and supplementation with adenosine exerted a significant effect only on the microlag period. The germination curves of individual spores induced by inosine were also biphasic and resembled those of spores induced by l-alanine. High concentrations (0.1 m or higher) of calcium and other inorganic cations prolonged both phases of microgermination, particularly the second phase, and had a less pronounced effect on the microlag period. The second phase of microgermination was completely inhibited when spores were germinated either in the presence of 0.3 m CaCl(2) or at a temperature of 43 C; this inhibition was reversible. Observations on the germination of spore suspensions (kinetics of the release of dipicolinic acid and mucopeptides, loss of heat resistance, increase in stainability, decrease in turbidity and refractility) were interpreted on the basis of the biphasic nature of microgermination. Dye uptake by individual spores during germination appeared also to be a biphasic process.  相似文献   

5.
A proteolytic activity is associated with the dormant spores of Bacillus cereus T and can be solubilized by washing the spores with 1 M KCl. This proteolytic activity is responsible for the attack of beta chains of ribonucleic acid-polymerase in extracts of dormant spores of this organism.  相似文献   

6.
Acetyl esterase in Bacillus cereus spores   总被引:2,自引:0,他引:2  
  相似文献   

7.
8.
9.
Heat activation of bacterial spores at low pH was investigated in detail. Unlike activation of spores in distilled water at a neutral pH, activation at low pH involves two superimposed processes: enhanced activation and death. Low-pH-activated spores failed to germinate in d-alanine, in contrast to spores activated at neutral pH, owing to the abolition of alanine-racemase activity. Morphological and permeability changes such as release and partial disruption of spores were dipicolinic acid-observed during low-pH activation. The kinetics pattern of low-pH activation, as well as the change in properties of the spores thereafter, suggest that the mechanism of low-pH activation differs from that of other kinds of heat-activation.  相似文献   

10.
11.
12.
Inactivation of Bacillus cereus spores during cooling (10 degrees C/h) from 90 degrees C occurred in two phases. One phase occurred during cooling from 90 to 80 degrees C; the second occurred during cooling from 46 to 38 degrees C. In contrast, no inactivation occurred when spores were cooled from a maximum temperature of 80 degrees C. Inactivation of spores at a constant temperature of 45 degrees C was induced by initial heat treatments from 80 to 90 degrees C. The higher temperatures accelerated the rate of inactivation. Germination of spores was required for 45 degrees C inactivation to occur; however, faster germination was not the cause of accelerated inactivation of spores receiving higher initial heat treatments. Repair of possible injury was not observed in Trypticase soy broth (BBL Microbiology Systems), peptone, beef extract, starch, or L-alanine at 30 or 35 degrees C. Microscopic evaluation of spores outgrowing at 45 degrees C revealed that when inactivation occurred, outgrowth halted at the swelling stage. Inhibition of protein synthesis by chloramphenicol at the optimum temperature also stopped outgrowth at swelling; thus protein synthesis may play a role in the 45 degree C inactivation mechanism.  相似文献   

13.
Crystals of β-lactamase I from Bacillus cereus 569 are monoclinic, space group C2 with unit cell dimensions a = 143·0 (± 0·5), b = 35·8 (± 0·1), c = 52·7 (± 0·2) A?, β = 97·0 (± 0·1) °, and one molecule of molecular weight about 28,000 per asymmetric unit.  相似文献   

14.
15.
Aims: To compare physical properties of spores that were produced in broth sporulation media at greater than 108 spores ml−1. Methods and Results: Bacillus atrophaeus reproducibly sporulated in nutrient broth (NB) and sporulation salts. Microscopy measurements showed that the spores were 0·68 ± 0·11 μm wide and 1·21 ± 0·18 μm long. Coulter Multisizer (CM3) measurements revealed the spore volumes and volume-equivalent spherical diameters, which were 0·48 ± 0·38 μm3 and 0·97 ± 0·07 μm, respectively. Bacillus cereus reproducibly sporulated in NB, sporulation salts, 200 mmol l−1 glutamate and antifoam. Spores were 0·95 ± 0·11 μm wide and 1·31 ± 0·17 μm long. Spore volumes were 0·78 ± 0·61 μm3 and volume-equivalent spherical diameters were 1·14 ± 0·11 μm. Bacillus atrophaeus spores were hydrophilic and B. cereus spores were hydrophobic. However, spore hydrophobicity was significantly altered after treatment with pH-adjusted bleach. Conclusions: The utility of a CM3 for both quantifying Bacillus spores and measuring spore sizes was demonstrated, although the volume between spore exosporium and spore coat was not measured. This study showed fundamental differences between spores from a Bacillus subtilis- and B. cereus-group species. Significance and Impact of the Study: This is useful for developing standard methods for broth spore production and physical characterization of both living and decontaminated spores.  相似文献   

16.
Previous genetic analysis indicated that at least two genes determine the ultraviolet (UV) sensitivity of Bacillus subtilis spores. The present study shows that these genes independently control two distinguishable processes for removing UV-induced spore photoproduct (5-thyminyl-5,6-dihydrothymine, or TDHT) from spore deoxyribonucleic acid. The first, is a spore repair mechanism by which TDHT is removed rapidly without appearing in acid-soluble form. This mechanism, which is demonstrated in both UV-resistant and excision-deficient strains, operates to a certain extent during germination without requiring vegetative growth. The second, demonstrated in a mutant which lacks the first mechanism, removes TDHT relatively slowly and only if germinated spores are allowed to develop toward vegetative cells. The latter mechanism appears identical to excision-resynthesis repair, since the mutation abolishing it renders the irradiated vegetative cells incapable of removing cyclobutane-type pyrimidine dimers. Blocking either one of these mechanisms only slightly affects the UV sensitivity of spores, but blocking both prevents TDHT removal and gives high UV sensitivity.  相似文献   

17.
D-cycloserine and germination of Bacillus cereus spores   总被引:1,自引:0,他引:1  
  相似文献   

18.
Beta-lactamase type I is reported for the first time to occur in the sporulated form in a penicillin-resistant Bacillus species. The enzyme was readily characterized from the B. cereus 5/B line (ATCC 13061) by mass spectrometry and two-dimensional gel electrophoresis.  相似文献   

19.
1. Mutants of Bacillus cereus 569/H/9 have been screened in a search for strains that synthesize variants of beta-lactamase II. 2. One of these mutants (strain 569/H/9/1) produces a beta-lactamase II-like enzyme that shows a selective decrease in cephalosporinase activity. 3. beta-Lactamase II from strain 569/H/9/1 has been purified to apparent homogeneity and its kinetic properties have been examined. This enzyme resembles the parent beta-lactamase II in its relative activity with benzylpenicillin as substrate when Zn(II) is replaced by other metal ions, but differs detectably from the parent enzyme in its isoelectric point.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号