首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nogo-66 receptor (NgR) has recently been identified as the neuronal receptor of the myelin-associated proteins Nogo-A, oligodendrocyte protein (OMgp) and myelin-associated glycoprotein (MAG), and mediates inhibition of axonal regeneration both in vitro and in vivo. Through database searches, we have identified two novel proteins (NgRH1 and NgRH2) that turned out to be homologous in their primary structures, biochemical properties and expression patterns to NgR. Like NgR, the homologues contain eight leucine-rich repeats (LRR) flanked by a leucine-rich repeat C-terminus (LRRCT) and a leucine-rich repeat N-terminus (LRRNT), and also have a C-terminal GPI signal sequence. Northern blot analysis showed predominant expression of NgRH1 and NgRH2 mRNA in the brain. In situ hybridization and immunohistochemistry on rat brain slices revealed neuronal expression of the genes. NgRH1 and NgRH2 were detected on the cell surface of recombinant cell lines as N-glycosylated GPI anchored proteins and, consistent with other GPI anchored proteins, were localized within the lipid rafts of cellular membranes. In addition, an N-terminal proteolytic fragment of NgR comprising the majority of the ectodomain was found to be constitutively secreted from cells. Our data indicate that NgR, NgRH1 and NgRH2 constitute a novel receptor protein family, which may play related roles within the CNS.  相似文献   

2.
The discoidin domain receptor 1 (DDR1) is a receptor tyrosine kinase that is highly expressed in breast carcinoma cells. Upon binding to collagen, DDR1 undergoes autophosphorylation followed by limited proteolysis to generate a tyrosine phosphorylated C-terminal fragment (CTF). Although it was postulated that this fragment is formed as a result of shedding of the N-terminal ectodomain, collagen-dependent release of the DDR1 extracellular domain has not been demonstrated. We now report that, in conjunction with CTF formation, collagen type I stimulates concentration-dependent, saturable shedding of the DDR1 ectodomain from two carcinoma cell lines, and from transfected cells. In contrast, collagen did not promote cleavage of other transmembrane proteins including the amyloid precursor protein (APP), ErbB2, and E-cadherin. Collagen-dependent tyrosine phosphorylation and proteolysis of DDR1 in carcinoma cells were reduced by a pharmacologic Src inhibitor. Moreover, expression of a dominant negative Src mutant protein in human embryonic kidney cells inhibited collagen-dependent phosphorylation and shedding of co-transfected DDR1. The hydroxamate-based metalloproteinase inhibitor TAPI-1 (tumor necrosis factor-alpha protease inhibitor-1), and tissue inhibitor of metalloproteinase (TIMP)-3, also blocked collagen-evoked DDR1 shedding, but did not reduce levels of the phosphorylated CTF. Neither shedding nor CTF formation were affected by the gamma-secretase inhibitor, L-685,458. The results demonstrate that collagen-evoked ectodomain cleavage of DDR1 is mediated in part by Src-dependent activation or recruitment of a matrix- or disintegrin metalloproteinase, and that CTF formation can occur independently of ectodomain shedding. Delayed shedding of the DDR1 ectodomain may represent a mechanism that limits DDR1-dependent cell adhesion and migration on collagen matrices.  相似文献   

3.
Nogo-66 receptor 1 (NgR1) is a glycosylphosphatidylinositol-anchored receptor for myelin-associated inhibitors that restricts plasticity and axonal regrowth in the CNS. NgR1 is cleaved from the cell surface of SH-SY5Y neuroblastoma cells in a metalloproteinase-dependent manner; however, the mechanism and physiological consequence of NgR1 shedding have not been explored. We now demonstrate that NgR1 is shed from multiple populations of primary neurons. Through a loss-of-function approach, we found that membrane-type matrix metalloproteinase-3 (MT3-MMP) regulates endogenous NgR1 shedding in primary neurons. Neuronal knockdown of MT3-MMP resulted in the accumulation of NgR1 at the cell surface and reduced the accumulation of the NgR1 cleavage fragment in medium conditioned by cortical neurons. Recombinant MT1-, MT2-, MT3-, and MT5-MMPs promoted NgR1 shedding from the surface of primary neurons, and this treatment rendered neurons resistant to myelin-associated inhibitors. Introduction of a cleavage-resistant form of NgR1 reconstitutes the neuronal response to these inhibitors, demonstrating that specific metalloproteinases attenuate neuronal responses to myelin in an NgR1-dependent manner.  相似文献   

4.
Betacellulin belongs to the family of epidermal growth factor-like growth factors that are expressed as transmembrane precursors and undergo proteolytic ectodomain shedding to release a soluble mature growth factor. In this study, we investigated the ectodomain shedding of the betacellulin precursor (pro-BTC) in conditionally immortalized wild-type (WT) and ADAM-deficient cell lines. Sequential ectodomain cleavage of the predominant cell-surface 40-kDa form of pro-BTC generated a major (26-28 kDa) and two minor (20 and 15 kDa) soluble forms and a cellular remnant lacking the ectodomain (12 kDa). Pro-BTC shedding was activated by calcium ionophore (A23187) and by the metalloprotease activator p-aminophenylmercuric acetate (APMA), but not by phorbol esters. Culturing cells in calcium-free medium or with the protein kinase Cdelta inhibitor rottlerin, but not with broad-based protein kinase C inhibitors, blocked A23187-activated pro-BTC shedding. These same treatments were without effect for constitutive and APMA-induced cleavage events. All pro-BTC shedding was blocked by treatment with a broad-spectrum metalloprotease inhibitor (GM6001). In addition, constitutive and activated pro-BTC shedding was differentially blocked by TIMP-1 or TIMP-3, but was insensitive to treatment with TIMP-2. Pro-BTC shedding was functional in cells from ADAM17- and ADAM9-deficient mice and in cells overexpressing WT or catalytically inactive ADAM17. In contrast, overexpression of WT ADAM10 enhanced constitutive and activated shedding of pro-BTC, whereas overexpression of catalytically inactive ADAM10 reduced shedding. These results demonstrate, for the first time, activated pro-BTC shedding in response to extracellular calcium influx and APMA and provide evidence that ADAM10 mediates constitutive and activated pro-BTC shedding.  相似文献   

5.
Epidermal growth factor receptor (EGFR) ligands are synthesized as type I membrane protein precursors exposed at the cell surface. Shedding of the ectodomain of these proteins is the way cells regulate the equilibrium between cell-associated and diffusible forms of these growth factors. Whereas the regulated shedding of transforming growth factor-alpha, HB-EGF, and amphiregulin precursors have been clearly established, regulation of full-length pro-EGF shedding has not been clearly demonstrated. Here, using both wild-type and M2 mutant CHO-K1 as well as HeLa cell lines transiently transfected with epitope-tagged rat pro-EGF expression plasmid, we demonstrate that these cells synthesize EGF as a high molecular weight membrane-associated precursor glycoprotein expressed at the cell surface. All cell lines are able to release the entire ectodomain of pro-EGF in the extracellular medium following juxtamembrane cleavage of the precursor once it is present at the cell surface. More significantly we clearly established that CHO-M2 and HeLa cells only constitutively release low levels of pro-EGF. This shedding is a regulated phenomenon in wild-type CHO cells where it can be induced by different agents such as phorbol 12-myristate 13-acetate (PMA), pervanadate, and serum but not by calcium ionophores. Using specific inhibitors as well as protein kinase C (PKC) depletion, PMA stimulation was shown to be completely dependent on PKC activation whereas pervanadate and serum stimulation were not. Regulated ectodomain shedding involves the activity of a zinc metalloprotease as determined by inhibition with phenantrolin and TAPI-2 and by the results obtained with the CHO-M2 shedding defective mutant cell line. Comparison of the ability of CHO and HeLa cell lines to shed pro-EGF and pro-TNF-alpha upon stimulation greatly suggests that TACE (ADAM 17) may not be the ectoprotease involved in the secretion of pro-EGF ectodomain and that this protease, which remains to be identified, shows a restricted cellular expression pattern.  相似文献   

6.
The betacellulin precursor (pro-BTC) is a novel substrate for ADAM10-mediated ectodomain shedding. In this report, we investigated the ability of novel physiologically relevant stimuli, including G-protein coupled receptor (GPCR) agonists and reactive oxygen species (ROS), to stimulate pro-BTC shedding. We found that in breast adenocarcinoma MCF7 cells overexpressing pro-BTC, hydrogen peroxide (H2O2) was a powerful stimulator of ectodomain shedding. The stimulation of pro-BTC shedding by H2O2 was blocked by the broad-spectrum metalloprotease inhibitor TAPI-0 but was still functional in ADAM17 (TACE)-deficient stomach epithelial cells indicating the involvement of a distinct metalloprotease. H2O2-induced pro-BTC shedding was blocked by co-culturing cells in the anti-oxidant N-acetyl-L-cysteine but was unaffected by culture in calcium-deficient media. By contrast, calcium ionophore, which is a previously characterized activator of pro-BTC shedding, was sensitive to calcium depletion but was unaffected by co-culture with the anti-oxidant, identifying a clear distinction between these stimuli. We found that in vascular smooth muscle cells overexpressing pro-BTC, the GPCR agonist endothelin-1 (ET-1) was a strong inducer of ectodomain shedding. This was blocked by a metalloprotease inhibitor and by overexpression of catalytically inactive E385A ADAM10. However, overexpression of wild-type ADAM10 or ADAM17 led to an increase in ET-1-induced pro-BTC shedding providing evidence for an involvement of both enzymes in this process. This study identifies ROS and ET-1 as two novel inducers of pro-BTC shedding and lends support to the notion of activated shedding occurring under the control of physiologically relevant stimuli.  相似文献   

7.
The type 1 55-kDa TNF receptor (TNFR1) is an important modulator of lung inflammation. Here, we hypothesized that the proteasome might regulate TNFR1 shedding from human airway epithelial cells. Treatment of NCI-H292 human airway epithelial cells for 2 h with the specific proteasome inhibitor clasto-lactacystin beta-lactone induced the shedding of proteolytically cleaved TNFR1 ectodomains. Clasto-lactacystin beta-lactone also induced soluble TNFR1 (sTNFR1) release from the A549 pulmonary epithelial cell line, as well as from primary cultures of human small airway epithelial cells and human umbilical vein endothelial cells. Furthermore, sTNFR1 release induced by clasto-lactacystin beta-lactone was not a consequence of apoptosis or the extracellular release of TNFR1 exosome-like vesicles. The clasto-lactacystin beta-lactone-induced increase in TNFR1 shedding was associated with reductions in cell surface receptors and intracytoplasmic TNFR1 stores that were primarily localized to vesicular structures. As expected, the broad-spectrum zinc metalloprotease inhibitor TNF-alpha protease inhibitor 2 (TAPI-2) attenuated clasto-lactacystin beta-lactone-mediated TNFR1 shedding, which is consistent with its ability to inhibit the zinc metalloprotease-catalyzed cleavage of TNFR1 ectodomains. TAPI-2 also reduced TNFR1 on the cell surface and attenuated the clasto-lactacystin beta-lactone-induced reduction of intracytoplasmic TNFR1 vesicles. This suggests that TNFR1 shedding induced by clasto-lactacystin beta-lactone involves the zinc metalloprotease-dependent trafficking of intracytoplasmic TNFR1 vesicles to the cell surface. Together, these data are consistent with the conclusion that proteasomal activity negatively regulates TNFR1 shedding from human airway epithelial cells, thus identifying previously unrecognized roles for the proteasome and zinc metalloproteases in modulating the generation of sTNFRs.  相似文献   

8.
9.
The low density lipoprotein receptor related protein 1B (LRP1B) is a large endocytic receptor that was first identified as a candidate tumor suppressor gene. In the current investigation we demonstrate that LRP1B undergoes regulated intramembrane proteolysis in a gamma-secretase-dependent process. The released intracellular domain (ICD) then translocates to the nucleus via a nuclear localization signal that is present within this domain. ICD release first requires shedding of the LRP1B ectodomain, which appears to be catalyzed by a member of the metalloproteinase family. Employing site-directed mutagenesis studies, we identified lysine residues 4432 and 4435 and arginine 4442 as key amino acids important for ectodomain shedding of LRP1B. We also demonstrate that an LRP1B minireceptor as well as the ICD domain alone suppresses anchorage-independent growth of LRP1B-deficient neuroglioma cells (H4 cells). Interestingly, abrogating ectodomain shedding resulted in a loss of the ability of LRP1B minireceptors to suppress anchorage-independent growth. Together, these studies reveal that LRP1B has tumor suppression function that is mediated by proteolytic processing of the receptor resulting in ICD release.  相似文献   

10.
The Type III TGF-β receptor, betaglycan, is a widely expressed proteoglycan co-receptor for TGF-β superfamily ligands. The full-length protein undergoes ectodomain cleavage with release of a soluble ectodomain fragment. The fate of the resulting transmembrane-cytoplasmic fragment, however, has never been explored. We demonstrate here that the transmembrane-cytoplasmic fragment is stable in transfected cells and in cell lines expressing endogenous betaglycan. Production of this fragment is inhibited by the ectodomain shedding inhibitor TAPI-2. Treatment of cells with inhibitors of the intramembrane protease γ-secretase stabilizes this fragment, suggesting that it is a substrate of γ-secretase. Expression of the transmembrane-cytoplasmic fragment as well as γ-secretase inhibitor stabilization are independent of TGF-β1 or -β2 and are unaffected by mutation of the cytoplasmic domain serines that undergo phosphorylation. γ-Secretase inhibition or the expression of a transmembrane-cytoplasmic fragment in HepG2 cells blunted TGF-β2 signaling. Our findings thus suggest that the transmembrane-cytoplasmic fragment remaining after betaglycan ectodomain cleavage is stable and a substrate of γ-secretase, which may have significant implications for the TGF-β signaling response.  相似文献   

11.
Syndecans are constitutively shed from growing epithelial cells as the part of normal cell surface turnover. However, increased serum levels of the soluble syndecan ectodomain have been reported to occur during bacterial infections. The aim of this study was to evaluate the potential of lipopolysaccharide (LPS) from the periodontopathogen Porphyromonas gingivalis to induce the shedding of syndecan-1 expressed by human gingival epithelial cells. We showed that the syndecan-1 ectodomain is constitutively shed from the cell surface of human gingival epithelial cells. This constitutive shedding corresponding to the basal level of soluble syndecan-1 ectodomain was significantly increased when cells were stimulated with P. gingivalis LPS and reached a level comparable to that caused by phorbol myristic acid (PMA), an activator of protein kinase C (PKC) which is well known as a shedding agonist. The syndecan-1 shedding was paralleled by pro-inflammatory cytokine interleukin-1 beta (IL-1beta), IL-6, IL-8, and tumor necrosis factor alpha (TNF-alpha) release. Indeed, secretion of IL-1beta and TNF-alpha increased following stimulation by P. gingivalis LPS and PMA, respectively. When recombinant forms of these proteins were added to the cell culture, they induced a concentration-dependent increase in syndecan-1 ectodomain shedding. A treatment with IL-1beta converting enzyme (ICE) specific inhibitor prevented IL-1beta secretion by epithelial cells stimulated by P. gingivalis LPS and decreased the levels of shed syndecan-1 ectodomain. We also observed that PMA and TNF-alpha stimulated matrix metalloproteinase-9 secretion, whereas IL-1beta and P. gingivalis LPS did not. Our results demonstrated that P. gingivalis LPS stimulated syndecan-1 shedding, a phenomenon that may be mediated in part by IL-1beta, leading to an activation of intracellular signaling pathways different from those involved in PMA stimulation.  相似文献   

12.
The transferrin receptor (TfR) is a transmembrane protein that mediates cellular uptake of iron. Although the serum concentration of the soluble TfR (sTfR) is altered in several diseases and used for diagnostic purposes, the identity and regulation of the shedding protease is unknown. In this study we quantified sTfR release from microsomal membranes and leukocytic cell lines in the presence of numerous protease inhibitors and cell activating compounds. We show that sTfR release is mediated by an integral membrane metalloprotease and can be inhibited by matrix metalloproteinase inhibitor 2 and tumor necrosis factor alpha protease inhibitor-2 (TAPI-2). Cleavage is also inhibited by a specific furin inhibitor, indicating that the protease is activated by a furin-like proprotein convertase. Whereas stimulation of the cells by the ectodomain shedding activator phorbol 12-N-myristate 13-acetate did not alter sTfR release significantly, the phosphatase inhibitor pervanadate led to an increase of TfR shedding in several leukocytic cell lines. Our results suggest that TfR shedding is constitutively mediated by a member of the metalloprotease family known as ADAM (for a disintegrin and metalloprotease).  相似文献   

13.
Numerous external stimuli, including G protein-coupled receptor agonists, cytokines, growth factors, and steroids activate mitogen-activated protein kinases (MAPKs) through phosphorylation of the epidermal growth factor receptor (EGF-R). In immortalized hypothalamic neurons (GT1-7 cells), agonist binding to the gonadotropin-releasing hormone receptor (GnRH-R) causes phosphorylation of MAPKs that is mediated by protein kinase C (PKC)-dependent transactivation of the EGF-R. An analysis of the mechanisms involved in this process showed that GnRH stimulation of GT1-7 cells causes release/shedding of the soluble ligand, heparin binding epidermal growth factor (HB-EGF), as a consequence of metalloprotease activation. GnRH-induced phosphorylation of the EGF-R and, subsequently, of Shc, ERK1/2, and its dependent protein, p90RSK-1 (p90 ribosomal S6 kinase 1 or RSK-1), was abolished by metalloprotease inhibition. Similarly, blockade of the effect of HB-EGF with the selective inhibitor CRM197 or a neutralizing antibody attenuated signals generated by GnRH and phorbol 12-myristate 13-acetate, but not those stimulated by EGF. In contrast, phosphorylation of the EGF-R, Shc, and ERK1/2 by EGF and HB-EGF was independent of PKC and metalloprotease activity. The signaling characteristics of HB-EGF closely resembled those of GnRH and EGF in terms of the phosphorylation of EGF-R, Shc, ERK1/2, and RSK-1 as well as the nuclear translocation of RSK-1. However, neither the selective Src kinase inhibitor PP2 nor the overexpression of negative regulatory Src kinase and dominant negative Pyk2 had any effect on HB-EGF-induced responses. In contrast to GT1-7 cells, human embryonic kidney 293 cells expressing the GnRH-R did not exhibit metalloprotease induction and EGF-R transactivation during GnRH stimulation. These data indicate that the GnRH-induced transactivation of the EGF-R and the subsequent ERK1/2 phosphorylation result from ectodomain shedding of HBEGF through PKC-dependent activation of metalloprotease(s) in neuronal GT1-7 cells.  相似文献   

14.
Exosomes are small membrane vesicles derived from intracellular multivescicular bodies (MVBs) that can undergo constitutive and regulated secretion from cells. Exosomes can also secrete soluble proteins through metalloprotease-dependent ectodomain shedding. In this study, we sought to determine whether ErbB1 receptors are present within exosomes isolated from the human keratinocyte cell line, HaCaT, and whether exosome-associated ErbB1 receptors can undergo further proteolytic processing. We show that full-length transmembrane ErbB1 is secreted in HaCaT exosomes. EGF treatment and calcium flux stimulated the release of phosphorylated ErbB1 in exosomes but only ligand-stimulated release was blocked by the ErbB1 kinase inhibitor, AG1478, indicating that ligand-dependent ErbB1 receptor activation can initiate ErbB1 secretion into exosomes. In addition, other immunoreactive but truncated ErbB1 isoforms were detected in exosomes suggestive of additional proteolytic processing. We demonstrate that cellular and exosomal ErbB1 receptors can undergo ectodomain shedding to generate soluble N-terminal ectodomains and membrane-associated C-terminal remnant fragments (CTFs). ErbB1 shedding was activated by calcium flux and the metalloprotease activator APMA (4-aminophenylmercuric acetate) and was blocked by a metalloprotease inhibitor (GM6001). Soluble ErbB1 ectodomains shed into conditioned medium retained the ability to bind exogenous ligand. Our results provide new insights into the proteolysis, trafficking and fate of ErbB1 receptors and suggest that the novel ErbB1 isoforms may have functions distinct from the plasma membrane receptor.  相似文献   

15.
The transmembrane protein with epidermal growth factor and two follistatin motifs 2 (TMEFF2) is expressed in prostate and brain and shed from the cell surface in a metalloproteinase-dependent fashion. Neither the sheddase(s) responsible for TMEFF2 shedding nor the physiological significance or activity of the soluble TMEFF2 ectodomain (TMEFF2-ECD) has been identified. In the present study we present new evidence that a disintegrin and metalloproteinase-17 (ADAM17) is responsible for phorbol 12-myristate 13-acetate-induced release of TMEFF2-ECD using small interfering RNA to ablate ADAM17 expression or by inhibiting enzymatic activity. A single well shedding assay monitoring the release of alkaline phosphatase-tagged TMEFF2-ECD into medium and the generation of 22- and 14-kDa C-terminal fragments in lysates were dependent on ADAM17 activity. A gamma-secretase inhibitor prevented the formation of a 10-kDa fragment in cell lysates, thus establishing TMEFF2 as a novel substrate for regulated intramembrane proteolysis. We assigned proliferation-inducing activity to TMEFF2. Inhibition of TMEFF2 shedding using synthetic metalloproteinase inhibitors or small interfering RNA targeting TMEFF2 expression yielded a statistically significant reduction of cell proliferation in the lymph node-derived prostate cancer cells (LNCaPs) and a human embryonic kidney (HEK293) cell line overexpressing TMEFF2. The TMEFF2-ECD was able to induce ERK1/2 phosphorylation in an epidermal growth factor receptor (or ErbB1)-dependent manner in HEK293 cells. Our data suggest that TMEFF2 contributes to cell proliferation in an ADAM17-dependent autocrine fashion in cells expressing this protein.  相似文献   

16.
The ectodomain of certain transmembrane molecules can be released by proteolysis, and the solubilized antigens often exert important biological functions. We demonstrated before that the L1 adhesion molecule is shed from the cell surface. Here we show that L1 release in AR breast carcinoma cells is mediated by a member of the disintegrin metalloproteinase (ADAM) family of proteinases. Up-regulation of L1 shedding by phorbol ester or pervanadate involved distinct mechanisms. Pervanadate induced shedding and rounding-up of cells from the substrate, which was blocked by the Src kinase inhibitor PP2. Tyr phosphorylation of the L1 cytoplasmic tail and the Src kinase Fyn was observed following pervanadate treatment. Up-regulation of L1 release and activation of Fyn occurred also when cells were detached by EDTA suggesting that the regulation of L1 shedding by this pathway was linked to cell morphology and adhesion. The phorbol 12-myristate 13-acetate-induced shedding was inhibited by the protein kinase C inhibitor bisindolylmaleimide I and by PD98059, a specific inhibitor of the mitogen-activated protein kinase pathway. Soluble L1 binds to the proteoglycan neurocan and in bound form could support integrin-mediated cell adhesion and migration. We propose that the release of cell-associated adhesion molecules such as L1 may be relevant to promote cell migration.  相似文献   

17.
Zhang L  Kuang X  Zhang J 《遗传学报》2011,38(11):515-523
Nogo-A is a major myelin associated inhibitor that blocks regeneration of injured axons in the central nervous system (CNS).Nogo-66 (a 66-residue domain of Nogo-A) expressed on the surface of oligodendrocytes has been shown to directly interact with Nogo-66 receptor 1 (NgR1).A number of additional components of NgR1 receptor complex essential for its signaling have been uncovered.However,detailed composition of the complex and its signaling mechanisms remain to be fully elucidated.In this study,we show that Nogo receptor 3 (NgR3),a paralog of NgR1,is a binding protein for NgR1.The interaction is highly specific because other members of the reticulin family,to which Nogo-A belongs,do not bind to NgR3.Neither does NgR3 show any binding activity with Nogo receptor 2 (NgR2),another NgR1 paralog.Majority of NgR3 domains are required for its binding to NgR1.Moreover,a truncated NgR3 with the membrane anchoring domain deleted can function as a decoy receptor to reverse neurite outgrowth inhibition caused by Nogo-66 in culture.These in vitro results,together with previously reported overlapping expression profile between NgR1 and NgR3,suggest that NgR3 may be associated with NgR1 in vivo and that their binding interface may be targeted for treating neuronal injuries.  相似文献   

18.
Ectodomain shedding of cell surface membrane-anchoring proteins is an important process in a wide variety of physiological events(1, 2). Tumor necrosis factor alpha (TNF-alpha) converting enzyme (TACE) is the first discovered mammalian sheddase responsible for cleavage of several important surface proteins, including TNF-alpha, TNF p75 receptor, L-selectin, and transforming growth factor-a. Phorbol myristate acetate (PMA) has long been known as a potent agent to enhance ectodomain shedding. However, it is not fully understood how PMA activates TACE and induces ectodomain shedding. Here, we demonstrate that PMA induces both reactive oxygen species (ROS) generation and TNF p75 receptor shedding in Mono Mac 6 cells, a human monocytic cell line, and l-selectin shedding in Jurkat T-cells. ROS scavengers significantly attenuated PMA-induced TNF p75 receptor shedding. Exogenous H2O2 mimicked PMA-induced enhancement of ectodomain shedding, and H2O2-induced shedding was blocked by TAPI, a TACE inhibitor. Furthermore, both PMA and H2O2 failed to cause ectodomain shedding in a cell line that lacks TACE activity. By use of an in vitro TACE cleavage assay, H2O2 activated TACE that had been rendered inactive by the addition of the TACE inhibitory pro-domain sequence. We presume that the mechanism of TACE activation by H2O2 is due to an oxidative attack of the pro-domain thiol group and disruption of its inhibitory coordination with the Zn++ in the catalytic domain of TACE. These results demonstrate that ROS production is involved in PMA-induced ectodomain shedding and implicate a role for ROS in other shedding processes.  相似文献   

19.
Heparin-binding epidermal-like growth factor (HB-EGF) is synthesized as a transmembrane precursor (HB-EGF(TM)). The addition of phorbol ester (PMA, phorbol 12-myristate 13-acetate) to cells expressing HB-EGF(TM) results in the metalloproteinase-dependent release (shedding) of soluble HB-EGF. To analyze mechanisms that regulate HB-EGF shedding, a stable cell line was established expressing HB-EGF(TM) in which the ectodomain and the cytoplasmic tail were tagged with hemagglutinin (HA) and Myc epitopes, respectively (HB-EGF(TM)HA/Myc). HB-EGF(TM)HA/Myc cleavage was followed by the appearance of soluble HB-EGFHA in conditioned medium, the loss of biotinylated cell-surface HB-EGF(TM)HA/Myc, and the appearance of a Myc-tagged cytoplasmic tail fragment in cell lysates. By using this approach, several novel metalloproteinase-dependent regulators of HB-EGF(TM) shedding were identified as follows. (i) HB-EGF(TM)HA/Myc shedding induced by PMA was blocked by the mitogen-activated protein (MAP) kinase kinase inhibitor, PD98059. PMA activated MAP kinase within 5 min, but HB-EGF(TM)HA/Myc shedding did not occur until 20 min, suggesting that MAP kinase activation was a necessary step in the pathway of PMA-induced HB-EGF(TM) cleavage. (ii) Activation of an inducible Raf-1 kinase, DeltaRaf-1:estrogen receptor, resulted in a rapid MAP kinase activation within 10 min and shedding of HB-EGF(TM)HA/Myc within 20-40 min. (iii) Serum induced MAP kinase activation and HB-EGF(TM)HA/Myc shedding that were inhibited by PD98059. (iv) Whereas PMA induced HB-EGF(TM)HA/Myc shedding in attached cells, no shedding occurred when the cells were placed in suspension. Shedding was fully restored shortly after cells were allowed to spread on fibronectin, and the extent of PMA-induced shedding increased with the extent of cell spreading. PMA induced the same level of MAP kinase activation whether the cells were attached or in suspension suggesting that although MAP kinase activation might be necessary for shedding, it was not sufficient. Taken together, these results suggest that there are two components of cell regulation that contribute to the shedding process, not previously recognized, the Raf-1/MAP kinase signal transduction pathway and cell adhesion and spreading.  相似文献   

20.
Protein ectodomain shedding, the proteolytic release of the extracellullar domain of membrane-tethered proteins, can dramatically affect the function of cell surface receptors, growth factors, cytokines, and other proteins. In this study, we evaluated the activities involved in ectodomain shedding of p75NTR, a neurotrophin receptor with critical roles in neuronal differentiation and survival. p75NTR is shed in a variety of cell types, including dorsal root ganglia cells and PC12 cells. In Chinese hamster ovary cells, inhibitors of the MEK/ERK and p38 MAP kinase pathways uncovered distinct signaling pathways required for the constitutive and stimulated shedding of p75NTR. Stimulated p75NTR shedding is abrogated in M2 mutant Chinese hamster ovary cells that lack functional tumor necrosis factor-alpha converting enzyme (TACE, also referred to as ADAM17) and in cells isolated from adam17-/- mice, but not in cells from adam9/12/15-/- or adam10-/- mice. Stimulated p75(NTR) shedding is strongly reduced by deletion of 15 amino acid residues in its extracellular membrane-proximal stalk domain. However, similar to other shed proteins, point mutations and overlapping shorter deletions within this region have little or no effect on shedding. Because ectodomain shedding of p75NTR releases a soluble ectodomain and could also be a prerequisite for its regulated intramembrane proteolysis, these findings may have important implications for the functional regulation of p75NTR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号