首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Loblolly pine (Pinus taeda L.) cell suspension cultures secrete monolignols when placed in 8% sucrose/20 mM KI solution, and these were used to identify phenylpropanoid pathway flux-modulating steps. When cells were provided with increasing amounts of either phenylalanine (Phe) or cinnamic acid, cellular concentrations of immediate downstream products (cinnamic and p-coumaric acids, respectively) increased, whereas caffeic and ferulic acid pool sizes were essentially unaffected. Increasing Phe concentrations resulted in increased amounts of p-coumaryl alcohol relative to coniferyl alcohol. However, exogenously supplied cinnamic, p-coumaric, caffeic, and ferulic acids resulted only in increases in their intercellular concentrations, but not that of downstream cinnamyl aldehydes and monolignols. Supplying p-coumaryl and coniferyl aldehydes up to 40, 000-320,000-fold above the detection limits resulted in rapid, quantitative conversion into the monolignols. Only at nonphysiological concentrations was transient accumulation of intracellular aldehydes observed. These results indicate that cinnamic and p-coumaric acid hydroxylations assume important regulatory positions in phenylpropanoid metabolism, whereas cinnamyl aldehyde reduction does not serve as a control point.  相似文献   

2.
Chitosan-induced elicitation responses of dark-incubated Cocos nucifera (coconut) endosperm cell suspension cultures led to the rapid formation of phenylpropanoid derivatives, which essentially mimics the defense-induced biochemical changes in coconut palm as observed under in vivo conditions. An enhanced accumulation of p-hydroxybenzoic acid as the major wall-bound phenolics was evident. This was followed by p-coumaric acid and ferulic acid. Along with enhanced peroxidases activities in elicited lines, the increase in activities of the early phenylpropanoid pathway enzymes such as, phenylalanine ammonia lyase (PAL), p-coumaroyl-CoA ligase (4CL) and p-hydroxybenzaldehyde dehydrogenase (HBD) in elicited cell cultures were also observed. Furthermore, supplementation of specific inhibitors of PAL, C4H and 4CL in elicited cell cultures led to suppressed accumulation of p-hydroxybenzoic acid, which opens up interesting questions regarding the probable route of the biosynthesis of this phenolic acid in C. nucifera.  相似文献   

3.
Callus cells of Daucus carota L. have different phenylpropanoid pathways depending on the medium composition. Cells propagated on a medium with gibberellic acid do not accumulate cyanidin but incorporate [14C]phenylalanine into chlorogenic acid at a high rate. Cells grown on a medium free of gibberellic acid accumulate cyanidin in very large amounts. We here describe partial purification of hydroxycinnamate: CoA ligase, and its properties in these two cell lines. The enzymes extracted from the two cell populations had different substrate specifities: for that from anthocyanin-containing cells, p-coumaric acid was the best substrate, and caffeic acid and ferulic acid were also activated. With enzyme from anthocyanin-free cells, the lowest Km values were obtained for caffeic acid, while ferulic acid had higher values, and p-coumaric acid was nearly inactive. The enzyme did not separate into isoenzymes during purification. Only on polyacrylamide gels the partially purified enzyme from anthocyanin-containing cells separated into three peaks, and that from anthocyanin-free cells, into only two peaks. This difference is discussed in the context of the lack of activity with p-coumaric acid in anthocyanin-free cells.Abbreviations GA3 gibberellic acid  相似文献   

4.
The effects of three natural phenolic acids (caffeic, ferulic, and p-coumaric) on the rat thyroid gland were examined in a 3-week oral-treatment study. Forty male Wistar albino rats, divided into groups of 10 rats each and fed iodine-rich diet, were administered by gastrointestinal tube saline (control), caffeic acid, ferulic acid, or p-coumaric acid at a dose level of 0.25 micromol/kg/day for 3 weeks. The mean absolute and relative thyroid weights in caffeic, ferulic, or p-coumaric acid groups were significantly increased to 127 and 132%, 146 and 153%, or 189 and 201% compared to control value, respectively. Histological examination of the thyroids of p-coumaric acid group revealed marked hypertrophy and/or hyperplasia of the follicles. Caffeic or ferulic groups showed slight to moderate thyroid gland enlargement. Thyroid lesions in p-coumaric acid group were associated with significant increases in cellular proliferation as indicated by [(3)H]thymidine incorporation. In addition, the goitrogenic effect of p-coumaric acid was further confirmed by significant decreases (50%) in serum tri-iodothyronine (T(3)) and thyroxine (T(4)), and a parallel increase (90%) in serum thyroid stimulating hormone (TSH) compared to control group. These results indicate that administration of p-coumaric acid at relatively high doses induces goiter in rats.  相似文献   

5.
Investigations were carried out to clarify sporopollenin biosynthesis. Tracer experiments were focussed on the incorporation of specifically labeled 14C-phenylalanine into sporopollenin. In addition, the incorporation of further 14C-labeled substances, such as glucose, acetate, malonic acid, mevalonate and tyrosine, was investigated. The sporopollenin fraction was isolated and purified by a gentle method including extractions by different solvents, incubations with hydrolyzing enzymes and fractionated saponifications. During the purification procedure the whereabouts of the initially applied radioactivity was followed. After each step the remaining as well as the released radioactivity was determined. Saponification of samples labeled after application of phenylalanine yielded p-coumaric acid and p-coumaric acid methyl ester as labeled products. In comparison with the other substances applied, the highest incorporation rates were obtained with phenylalanine, regardless of the position of labeling. After degradation of the sporopollenin sample labeled with ring-14C-phenylalanine, p-hydroxybenzoic acid was detected as the main labeled product. These results unequivocally show that an integral incorporation of the aromatic ring system occurred. Tracer experiments were carried out at different stages of development. Their results show that, although the incorporation rates of 14C-phenylalanine into sporopollenin differ, the substantial incorporation of this substance is not bound to defined stages of development.  相似文献   

6.
Flavones are plant secondary metabolites that have wide pharmaceutical and nutraceutical applications. We previously constructed a recombinant flavanone pathway by expressing in Saccharomyces cerevisiae a four-step recombinant pathway that consists of cinnamate-4 hydroxylase, 4-coumaroyl:coenzyme A ligase, chalcone synthase, and chalcone isomerase. In the present work, the biosynthesis of flavones by two distinct flavone synthases was evaluated by introducing a soluble flavone synthase I (FSI) and a membrane-bound flavone synthase II (FSII) into the flavanone-producing recombinant yeast strain. The resulting recombinant strains were able to convert various phenylpropanoid acid precursors into the flavone molecules chrysin, apigenin, and luteolin, and the intermediate flavanones pinocembrin, naringenin, and eriodictyol accumulated in the medium. Improvement of flavone biosynthesis was achieved by overexpressing the yeast P450 reductase CPR1 in the FSII-expressing recombinant strain and by using acetate rather than glucose or raffinose as the carbon source. Overall, the FSI-expressing recombinant strain produced 50% more apigenin and six times less naringenin than the FSII-expressing recombinant strain when p-coumaric acid was used as a precursor phenylpropanoid acid. Further experiments indicated that unlike luteolin, the 5,7,4'-trihydroxyflavone apigenin inhibits flavanone biosynthesis in vivo in a nonlinear, dose-dependent manner.  相似文献   

7.
A new, rapid HPLC-PAD-APCI/MS assay has been developed in order to measure accurately the amount of p-coumaric, E- and Z-ferulic acid and the dehydrodimers of ferulic acid in cereal grain. In the positive ionisation mode, MS patterns gave additional information for the identification of the dimers. The time required and the quantities of solvents employed in the developed analytical method are much lower than those involved in previously available assays of these compounds, thus making the method suitable for the screening of cereal genotypes. Application of the method to accessions of maize, wheat and sorghum showed that E-ferulic was the most abundant phenylpropanoid, whilst the major dimer was 8-O-4' dehydrodimer of ferulic acid followed by the 5-5' and then the 8-5' forms. Maize grains, especially of the Mexican landraces, contained the highest levels of these dimers.  相似文献   

8.
L. Nagels  F. Parmentier 《Phytochemistry》1974,13(12):2759-2762
The chlorogenic acid content of Cestrum poeppigii, and its ability to form the acid from labelled t-cinnamic acid, was determined at different stages of growth. In contrast to mature plants, young plants showed great seasonal variation in their chlorogenic acid content. The incorporation of radioactivity from t-cinnamic into chlorogenic acid also differed greatly during the growth period. Trapping experiments with caffeic and p-coumaric acids were performed to study the effect of large pools of these acids on the incorporation of t-cinnamic acid-3-[14C] into chlorogenic acid. The kinetics of incorporation exclude a major role for caffeic acid in the biosynthesis of chlorogenic acid.  相似文献   

9.
Microbial interactions occurring in rhizosphere may play important roles in providing protection against phytopathogens. Induction of phenolic compounds and their modulation in leaf and collar region was investigated upon challenge inoculation with Sclerotinia sclerotiorum in pea plants untreated and treated with beneficial microbes viz. Bacillus subtilis BHHU100, Trichoderma harzianum TNHU27 and Pseudomonas aeruginosa PJHU15 either singly or in the form of consortium. Changes in phenolic compounds in both leaves and collar region indicated that the induced response was systemic in nature altering the physiological status of the host plant. The phenylpropanoid metabolism was strongly involved in providing resistance against S. sclerotiorum challenge; especially in the plants treated with microbes in consortium, where the response was exaggerated in order to cope up with the biotic stress induced by the pathogen. Enhanced accumulation of phenolics viz., shikimic acid, gallic acid, chlorogenic acid, syringic acid, p-coumaric acid, cinnamic acid, salicylic acid, myricitin, quercetin and kaempferol occurred both in leaf and collar tissue.  相似文献   

10.
Flavanones are the common precursors of plant polyphenolic compounds collectively known as flavonoids. Leguminous plants have evolved a distinct class of flavanone molecules, known as 5-deoxyflavanones that play important roles in their symbiotic interactions. A four-step metabolic circuit was constructed in Escherichia coli with plant genes from heterologous origins: 4-coumarate:coenzyme A ligase from Petroselinum crispum, chalcone synthases (CHS) from Medicago sativa and Petunia x hybrida and chalcone reductase and chalcone isomerase from M. sativa. Evaluation of the different recombinant strains in shake flask experiments demonstrated that P. hybrida rather than M. sativa CHS resulted in the highest liquiritigenin production levels in glucose minimal medium, starting from precursor p-coumaric acid. Expression of the same recombinant pathway in Saccharomyces cerevisiae resulted in the accumulation of both 5-hydroxyflavanone and 5-deoxyflavanone, with the yields of the later lower than that achieved in E. coli. Other phenylpropanoid acid precursors, such as cinnamic acid and caffeic acid could also be metabolized through the recombinant pathway, yielding corresponding 5-deoxyflavanone compounds. The construction of such recombinant strains for 5-deoxyflavanone biosynthesis offers an alternative way to biochemically characterize flavonoid biosynthetic enzymes and promising production platforms for the biosynthesis of such high-value natural products.  相似文献   

11.
Flavonoids are valuable natural products derived from the phenylpropanoid pathway. The objective of this study was to create a host for the biosynthesis of naringenin, the central precursor of many flavonoids. This was accomplished by introducing the phenylpropanoid pathway with the genes for phenylalanine ammonia lyase (PAL) from Rhodosporidium toruloides, 4-coumarate:coenzyme A (CoA) ligase (4CL) from Arabidopsis thaliana, and chalcone synthase (CHS) from Hypericum androsaemum into two Saccharomyces cerevisiae strains, namely, AH22 and a pad1 knockout mutant. Each gene was cloned and inserted into an expression vector under the control of a separate individual GAL10 promoter. Besides its PAL activity, the recombinant PAL enzyme showed tyrosine ammonia lyase activity, which enabled the biosynthesis of naringenin without introducing cinnamate 4-hydroxylase (C4H). 4CL catalyzed the conversion of both trans-cinnamic acid and p-coumaric acid to their corresponding CoA products, which were further converted to pinocembrin chalcone and naringenin chalcone by CHS. These chalcones were cyclized to pinocembrin and naringenin. The yeast AH22 strain coexpressing PAL, 4CL, and CHS produced approximately 7 mg liter(-1) of naringenin and 0.8 mg liter(-1) of pinocembrin. Several by-products, such as 2',4',6'-trihydroxydihydrochalcone and phloretin, were also identified. Precursor feeding studies indicated that metabolic flux to the engineered flavonoid pathway was limited by the flux to the precursor l-tyrosine.  相似文献   

12.
Pycnoporus cinnabarinus MUCL39533 was shown to be able to convert p-coumaric acid into p-hydroxybenzaldehyde, a component of high organoleptic note present in natural vanilla aroma. Use of phospholipid-enriched medium led to high-density cultures of P. cinnabarinus, since dry mycelial biomass was increased three-fold as compared to glucose medium. In the presence of phospholipids, 155 mg l(-1) p-hydroxybenzaldehyde was produced as the major compound on culture day 13 with a molar yield of 26%. The degradation pathways of p-coumaric acid were investigated. Based on the different metabolites identified, an oxidative side-chain degradation pathway of p-coumaric acid conversion to p-hydroxybenzoic acid was suggested. This acid was further reduced to p-hydroxybenzaldehyde and p-hydroxybenzyl alcohol, or hydroxylated and reduced to protocatechyl derivatives. Additionally, a reductive pathway of p-coumaric acid with 3-(4-hydroxyphenyl)-propanol as the terminal product occurred.  相似文献   

13.
Two isoenzymes of p-coumarate: CoA ligase were isolated from cell suspension cultures of soybean (Glycine max L., var. Mandarin). Separation and partial purification of the enzymes were achieved by precipitation with MnCl2 and (NH4)2SO4, and column chromatography on DEAE-cellulose, Sephadex G-100 and hydroxyapatite. The isoenzymes had approximately the same molecular weight, but differed significantly with respect to their substrate specificity, their inhibition constants for AMP, their dependence on pH and ionic strength for optimum activity, and their fractionation pattern during the purification procedure or upon analytical disc-gel electrophoresis. Both coumarate: CoA ligases were specific for the activation of various substituted cinnamic acids. Of the cinnamic acids tested, ferulic, sinapic, 5-hydroxyferulic, p-coumaric, and caffeic acids were the substrates with the lowest apparent Km values (on all the order of 1 to 4 x 10(-5) M) for isoenzyme 1. The lowest apparent Km values (from about 1 to 9 x 10(-5) M) for isoenzyme 2 were obtained for caffeic, p-coumaric, m-coumaric, and o-coumaric acids. Sinapic acid and several methoxycinnamic acids were efficient substrates of isoenzyme 1 but were not activated at all by isoenzyme 2. The possible roles of the two p-coumarate: CoA ligase isoenzymes in the phenylpropanoid metabolism of the cell cultures are discussed.  相似文献   

14.
To investigate the production of useful phenols from plant resources, we examined the metabolism of cinnamic acid derivatives by a wood-rotting fungus, Schizophyllum commune. Four cinnamic acid derivatives (cinnamic, p-coumaric, ferulic, and sinapic acids) were tested as substrates. Two main reactions, reduction and cleavage of the side chain, were observed. Reduction of the side chain was confirmed in cinnamic acid and p-coumaric acid metabolism. The side chain cleavage occurred in p-coumaric acid and ferulic acid metabolism but the initial reactions of these acids differed. Sinapic acid was not metabolized by S. commune. p-Hydroxybenzaldehyde accumulation was observed in the culture to which p-coumaric acid was added. This suggests that S. commune is a useful agent for transforming p-coumaric acid into p-hydroxybenzaldehyde.  相似文献   

15.
Lactobacillus plantarum NC8 contains a pdc gene coding for p-coumaric acid decarboxylase activity (PDC). A food grade mutant, designated LPD1, in which the chromosomal pdc gene was replaced with the deleted pdc gene copy, was obtained by a two-step homologous recombination process using an unstable replicative vector. The LPD1 mutant strain remained able to weakly metabolize p-coumaric and ferulic acids into vinyl derivatives or into substituted phenyl propionic acids. We have shown that L. plantarum has a second acid phenol decarboxylase enzyme, better induced with ferulic acid than with p-coumaric acid, which also displays inducible acid phenol reductase activity that is mostly active when glucose is added. Those two enzymatic activities are in competition for p-coumaric and ferulic acid degradation, and the ratio of the corresponding derivatives depends on induction conditions. Moreover, PDC appeared to decarboxylate ferulic acid in vitro with a specific activity of about 10 nmol. min(-1). mg(-1) in the presence of ammonium sulfate. Finally, PDC activity was shown to confer a selective advantage on LPNC8 grown in acidic media supplemented with p-coumaric acid, compared to the LPD1 mutant devoid of PDC activity.  相似文献   

16.
The genusPimpinella contains rare phenylpropanoids. The 1-(E)-propenyl-2-hydroxy-5-methoxy benzene skeleton of these compounds is called pseudoisoeugenol. To study the biosynthesis of these compounds, we set up a tissue culture ofPimpinella anisum (PAD) that selectively promoted the production of epoxy-pseudoisoeugenol-(2-methylbutyrate), termed EPB. This compound served as the final molecule of the biosynthetic pathway in all labelling experiments conducted.The putative precursors were labelled with13C or14C. The incorporation of the label was followed by13C-NMR-spectroscopy and liquid scintillation, respectively. Based on our labelling experiments as well as on enzymic reactions in a cell homogenate we proposed a genaral biosynthetic pathway for EPB. The biosynthetic sequence found wasl-phenylalanine, trans-cinnamic acid, p-coumaric acid, p-coumaric aldehyde, p-coumaric alcohol, anol and trans-anethol. The biosynthetic step leading from trans-anethol to pseudo-isoeugenol involves migration of the side chain during the introduction of the second OH-group in the molecule (NIH-shift). The final biosynthetic steps to form EPB must be acylation and epoxidation of the propenyl double bond of pseudoisoeugenol.Abbreviations NMR Nuclear Magnetic Resonance - NOE Nuclear Overhauser Effect  相似文献   

17.
18.
The p-coumaric acid, a phenolic acid, occurs in several plant species and, consequently, in many foods and beverages of vegetable origin. Its antioxidant activity is well documented, but there is also a single report about an inhibitory action on the monocarboxylate carrier, which operates in the plasma and mitochondrial membranes. The latter observation suggests that p-coumaric acid could be able to inhibit gluconeogenesis and related parameters. The present investigation was planned to test this hypothesis in the isolated and hemoglobin-free perfused rat liver. Transformation of lactate and alanine into glucose (gluconeogenesis) in the liver was inhibited by p-coumaric acid (IC50 values of 92.5 and 75.6 microM, respectively). Transformation of fructose into glucose was inhibited to a considerably lower degree (maximally 28%). The oxygen uptake increase accompanying gluconeogenesis from lactate was also inhibited. Pyruvate carboxylation in isolated intact mitochondria was inhibited (IC50 = 160.1 microM); no such effect was observed in freeze-thawing disrupted mitochondria. Glucose 6-phosphatase and fructose 1,6-bisphosphatase were not inhibited. In isolated intact mitochondria, p-coumaric acid inhibited respiration dependent on pyruvate oxidation but was ineffective on respiration driven by succinate and beta-hydroxybutyrate. It can be concluded that inhibition of pyruvate transport into the mitochondria is the most prominent primary effect of p-coumaric acid and also the main cause for gluconeogenesis inhibition. The existence of additional actions of p-coumaric acid, such as enzyme inhibitions and interference with regulatory mechanisms, cannot be excluded.  相似文献   

19.
AIMS: To investigate the biotransformation of p-coumaric acid into p-hydroxybenzoic acid (p-HBA) by Paecilomyces variotii Bainier MTCC 6581. METHODS AND RESULTS: As a result of p-coumaric acid degradation by P. variotii, three phenolic metabolites, p-hydroxybenzaldehyde (p-HBAld), p-HBA and protocatechuic acid were formed. These phenolics were detected using TLC and HPLC. The identity of p-HBA and p-HBAld was further confirmed by mass spectrometry. Various analyses showed that 10.0 mmol l(-1) concentration of p-coumaric acid produced a maximum amount of p-hydroxybenzoic acid, 200 mg l(-1), into the medium at 37 degrees C with high-density cultures. CONCLUSIONS: A catabolic pathway of p-coumaric acid by the fungus P. variotii is suggested for the first time. During the process of p-coumaric acid degradation, p-HBA accumulated in the medium as the major degradation product. SIGNIFICANCE AND IMPACT OF THE STUDY: Microbial degradation of cinnamic acid and hydroxycinnamic acid has continued to be the focus of intensive study. The main goal was to identify the microbial species capable of converting these substances into commercially value-added products such as benzoic acid derivatives or aromatic aldehydes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号