首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The carbohydrate metabolism of the needles of Scots pine (Pinus sylvestris) and Norway spruce (Picea abies) has been examined in trees that were exposed to SO2, and O3, in an open-air fumigation experiment located in the Liphook forest in southern England. Two-year-old seedlings were planted in 1985 in seven experimental plots. Five plots received fumigation treatments of SO2, O3 or a combination of these gases to give a 2 × 3 factorial design with one additional ambient plot Fumigation with SO2, occurred from May 1987 to December 1990 and O3, fumigation occurred from March to December 1988, May to December 1989 and February to December 1990. Five samples of needles for investigation of carbohydrate metabolism were taken between February and July 1989. The concentrations of soluble carbohydrates (including sucrose and hexoses) were greatly reduced in the needles taken from Scots pine growing in the treated plots, and were also reduced, but to a lesser extent, in the needles taken from Norway spruce. Little variation in the concentration of starch in the needles of either species was detected. The activities of the two final enzymes of sucrose synthesis, sucrose phosphate synthase and sucrose 6-phos-phate phosphatase, were greatly reduced in the needles of Scots pine and were also reduced, but to a lesser extent, in the needles of Norway spruce in the fumigated plots. These reductions could be correlated with decreases in rates of photosynthetic CO2 assimilation determined by independent groups of researchers working on the Liphook site.  相似文献   

2.
In an open-field experiment, 50-year-old trees of Scots pine (Pinus sylvestris L.) were fumigated with low concentrations of SO2 and NO2 (10–15 nl I?1) during the growing season in four consecutive years (1988 to 1991). Results from the autumn and early winter of 1991 and 1992 are presented. The maximum photochemical efficiency of photosystem II (PSII), as indicated by the ratio of variable to maximum fluorescence (Fv/FM) was assessed in current and one-year-old needles from the top and the bottom of the canopy. Furthermore, simultaneous measurements of photosynthetic O2 evolution and chlorophyll fluorescence were made in current-year needles at 20°C. In general, the Fv/FM ratio as well as the gross rate of O2 evolution in needles of fumigated trees was not significantly different from that in needles of control trees during the fumigation period. However, both current and one-year-old needles sampled in November and December 1991 from the top of the canopy of fumigated trees had significantly lower Fv/FM values than corresponding needles of control trees. Similar differences in Fv/FM correlated with the treatments were observed in needles from the bottom of the canopy, indicating that the depression of Fv/FM in needles of fumigated trees was not due to an increased susceptibility to photoinhibition. In 1992, when no fumigation occurred, differences in Fv/FM between the treatments were not significant during autumn and early winter. The gross rate of O2 evolution at high irradiances was significantly lower in current-year needles of fumigated trees sampled in November and December 1991 than in those of control trees. Furthermore, a nearly identical linear relationship between the quantum yield of PSII electron transport determined from chlorophyll fluorescence and the quantum yield of O2 evolution (gross rate of O2 evolution/PPFD) was found during autumn and early winter. This appeared to be largely a result of changes in the thermal energy dissipation within PSII. The observed differences in photosynthetic characteristics correlated with the different treatments after the fumigation period is suggested to be mainly caused by increased sensitivity of the needles of fumigated trees to low and subfreezing temperatures. However, current-year needles of fumigated trees tended to have a lower N content than those of control trees, which may partly explain the differences in gross photosynthesis between fumigated and control trees.  相似文献   

3.
Scots pine (Pinus sylvestris L.), Norway spruce (Picea abies (L.) Karst.) and Sitka spruce (Picea sitchensis Bong. Carr.) were planted as 2-year-old seedlings in an open-air fumigation facility at Liphook in southern England in March 1985. The soil was a humoferric podzol of pH 4. SO2 fumigation began in May 1987 and continued until December 1990. Long-term mean SO2 concentrations were 4,13 and 22 nmol mo?1. Three plots, one at each SO2 level, were also exposed to O3 at an average of 1–3.times the ambient level. O3 fumigation ran from March to December 1988, May to December 1989 and February to December 1990. Each species reacted differently to treatment. Scots pine showed no growth response to either pollutant, although other work on the site demonstrated a number of deleterious effects of SO2 on this species, including increased leaf loss and foliar injury. Stem basal diameter growth of Norway spruce was depressed in SO2-treated plots. In contrast, extension growth of shoots of Sitka spruce increased in SO2-treated plots, in apparent response to codeposition of NH3-N. However, diameter growth of Sitka spruce main stems did not increase. No effects of O3 on growth were recorded for any species.  相似文献   

4.
Foliar elements were analysed in Scots pine, Sitka spruce and Norway spruce over a 6 year period before and during continuous exposure to SO2 and O3 in an open-air fumigation experiment. Sulphur dioxide treatment elevated foliar sulphur concentration in all species, and there were increases in foliar nitrogen in the two spruce species but not in pine. The concentrations of cations were frequently increased by SO2 treatment, but there was no correlation between the sulphur concentration of needles and their total cation charge. SO2-related elevations of foliar magnesium were correlated with the concentration of this element in soil solution, but the mechanism by which other cations were enhanced remains unclear. The only consistent effects on nutrient ratios were for SO2 treatments to increase sulphur/cation ratios.  相似文献   

5.
Fumigation of leaves with SO2 can reduce the capacity for photosynthetic CO2 uptake even in the absence of visible symptoms of damage. In vitro studies suggest that this invisible injury to intact leaves could be affected by damage to each of the main stages in the photosynthetic process. Reduced stomatal apertures may also reduce photosynthesis following SO2 fumigation. The responses of CO2 uptake by leaves to intercellular CO2 concentration and to absorbed light provide information for quantitative separation of the in vivo contribution of the different stages of photosynthesis to reduction in overall rate. This study uses these techniques to examine the basis of reduction in CO2 uptake in Zea mays cv. LG11 leaves following short-term fumigation with SO2. Fumigation with 33 μmol m–3 SO2 for 30 min reduced light saturated CO2 uptake by about one-third. An even greater reduction in light limited CO2 uptake was observed and with no significant change in light absorptance this was attributed to a reduced quantum yield of photosynthesis. The light saturated CO2 uptake rate and the stomatal conductance decreased in parallel. However, the relationship of CO2 uptake to the intercellular CO2 concentration suggested that the reduced stomatal conductance did not account for the reduced rate of CO2 uptake following fumigation. Both the initial slope and plateau of this relationship were significantly reduced, suggesting that both carboxylation efficiency and capacity for regeneration of CO2 acceptor were diminished by SO2 fumigation. The operating intercellular CO2 concentration indicated that both processes were co-limiting, before and after fumigation. The time required for induction of photosynthetic CO2 uptake on illumination was approximately doubled following SO2 fumigation, showing that fumigation impairs the ability of the photosynthetic apparatus to adapt to fluctuations in light level.  相似文献   

6.
The activities of guaiacol peroxidase (GuPOD), ascorbate peroxidase (ASAp), superoxide dismutase (SOD) and ascorbate/glutathione cycle (AGC) enzymes, together with ascorbate (ASC) and glutathione contents, were determined in apoplastic-fluid and cell-wall fractions of needles of Pinus pinaster Ait. and Pinus radiata D. Don. exposed for up to 6 months to SO2 (0.01 ppm or 0.30 ppm) in fumigation chambers. AGC enzyme activities (monodehydroascorbate reductase, dehydroascorbate reductase and glutathione reductase) were in all cases undetectable, as was glutathione content. In needles of P. pinaster plants exposed to SO2, ascorbate content and all enzyme activities considered (except AGC enzymes) increased. The increases were most marked in response to the higher SO2 concentration. In needles of P. radiata, similar but less marked responses were observed. These findings suggest a) that enzyme activities and ascorbate contents increase in order to deal with the reactive oxygen intermediates produced during long-term contamination with SO2, and b) that P. pinaster has more effective defences against contamination of this type than P. radiata.  相似文献   

7.
Hordeum vulgare L. (cv. Barberousse) seedlings were continuosly exposed to SO2 (40±5 and 117±20 ppb) for 48 days and compared to control plants exposed to charcoal-filtered air. Glyco-and phospolipid amounts were strongly affected by exposure to SO2:, and decreased with increasing SO2, fumigation. The chloroplast membranes of fumigated leaves were characterized by lower quantities of rnonogalacto-syldiacylglycerol (MGDG) as well as of sulphoquinovosyldiacylglycerol (SQDG). Among the phospholipids a decrease in the phosphatidylglycerol (PG) content was observed, indicating that the chloroplast membranes are affected even by such low concentrations of SO2 as used here. As for the other phospholipids, phosphatidylcholine (PC) and phosphatidylinositol (PI) suffered a reduction and phosphatidylethano-lairrine (PE) almost disappeared at the highest SO2, concentration, whereas phosphatidic acid (PA) followed the opposite trend. The fatty acids of both glyco- and phospholipids fell sharply upon fumigation without any decline in the degree of unsataration. In particuSar, neither linoleic nor linolenic acid showed any evident change in level, suggesting that no lipid peroxidation of polytmsaturated fatty acid tails occurred. Furthermore, the electron spin resonance (ESR) showed no differences in the free radical levels between control and fumigated leaves. The level of malondialdehyde (MDA) decreased, while lipid-soluble antioxidants, as well as superoxide dismutase (SOD; EC 1.15.1.1) and catalase (EC 1.11.1.6) activities increased with the increase in SO2 concentration, providing evidence that defence mechanisms against oxy-radical action are activated by the plants at low levels of SO2,. Even if SO2, at low concentrations may not directly oxidize polyunsaturated fatty acids, it may act as a deesterifying factor on each component of both glyco- and phospholipids.  相似文献   

8.
Two clones of 5-year-old Norway spruce [Picea abies (L.) Karst.] were exposed to two atmospheric concentrations of CO2 (350 and 750 μmol mol?1) and O3 (20 and 75nmolmol?1) in a phytotron at the GSF-Forschung-szentrum (Munich) over the course of a single season (April to October). The phytotron was programmed to recreate an artificial climate similar to that at a high elevation site in the Inner Bavarian Forest, and trees were grown in large containers of forest soil fertilized to achieve contrasting levels of potassium nutrition, designated well-fertilized or K-deficient. Measurements of the rate of net CO2 assimilation were made on individual needle year age classes over the course of the season, chlorophyll fluorescence kinetics were recorded after approximately 23 weeks, and seasonal changes in non-structural carbohydrate composition of the current year's foliage were monitored. Ozone was found to have contrasting effects on the rate of net CO2 assimilation in different needle age classes. After c. 5 months of fumigation, elevated O3 increased (by 33%) the rate of photosynthesis in the current year's needles. However, O3 depressed (by 30%) the photo-synthetic rate of the previous year's needles throughout the period of exposure. Chlorophyll fluorescence measurements indicated that changes in photosystem II electron transport played no significant role in the effects of O3 on photosynthesis. The reasons for the contrasting effects of O3 on needles of different ages are discussed in the light of other recent findings. Although O3 enhanced the rate at which CO2 was fixed in the current year's foliage, this was not reflected in increases in the non-structural carbohydrate content of the needles. The transfer of ambient CO2-grown trees to a CO2-enriched atmosphere resulted in marked stimulation in the photosynthetic rate of current and previous year's foliage. However, following expansion of the current year's growth, the photosynthetic rate of the previous year's foliage declined. The extent of photosynthetic adjustment in response to prolonged exposure to elevated CO2 depended upon the clone, providing evidence of intraspecific variation in the long-term response of photosynthesis to elevated CO2. The increase in photosynthesis induced by CO2 enrichment was associated with increased foliar concentrations of glucose, fructose and starch (but no change in sucrose) in the new growth. CO2 enrichment significantly enhanced the photosynthetic rate of K-deficient needles, but there was a strong CO2soil interaction in the current year's needles, indicating that the long-term response of trees to a high CO2 environment may depend on soil fertility. Although the rate of photosynthesis and non-structural carbohydrate content of the new needles were increased in O3-treated plants grown at higher levels of CO2, there was no evidence that elevated CO2 provided additional protection against O3 damage. Simultaneous exposure to elevated O3 modified the effects of elevated CO2 on needle photosynthesis and non-structural carbohydrate content, emphasizing the need to take into account not only soil nutrient status but also the impact of concurrent increases in photochemical oxidant pollution in any serious consideration of the effects of climate change on plant production.  相似文献   

9.
RuBPCO kinetics and the mechanism of CO2 entry in C3 plants   总被引:2,自引:1,他引:1  
Abstract. The CO2 partial pressure in the chloroplasts of intact photosynthetic C3 leaves is thought to be less than the intercellular CO2 partial pressure. The intercellular CO2 partial pressure can be calculated from CO2 and H2O gas exchange measurements, whereas the CO2 partial pressure in the chloroplasts is unknown. The conductance of CO2 from the intercellular space to the chloroplast stroma and the CO2 partial pressure in the chloroplast stroma can be calculated if the properties of photosynthetic gas exchange are compared with the kinetics of the enzyme ribulose 1,5-bisphosphate carboxylase/oxygenase (RuBPCO). A discrepancy between gas exchange and RuBPCO kinetics can be attributed to a deviation of CO2 partial pressure in the chloroplast stroma from that calculated in the intercellular space. This paper is concerned with the following: estimation of the kinetic constants of RuBPCO and their comparison with the CO2 compensation concentration; their comparison with differential uptake of 14CO2 and 12CO2; and their comparison with O2 dependence of net CO2 uptake of photosynthetic leaves. Discrepancy between RuBPCO kinetics and gas exchange was found at a temperature of 12.5 °C, a photosynthetic photon flux density (PPFD) of 550 μmol quanta m?2 s?1, and an ambient CO2 partial pressure of 40 Pa. Consistency between RuBPCO kinetics and gas exchange was found if CO2 partial pressure was decreased, temperature incresed and PPFD decreased. The results suggest that a discrepancy between RuBPCO kinetics and gas exchange is due to a diffusion resistance for CO2 across the chloroplast envelope which decreases with increasing temperature. At low CO2 partial pressure, the diffusion resistance appears to be counterbalanced by active CO2 (or HCO3) transport with high affinity and low maximum velocity. At low PPFD, CO2 partial pressure in the chloroplast stroma appears to be in equilibrium with that in the intercellular space due to low CO2 flux.  相似文献   

10.
The above-ground parts of two years old seedlings of Douglas fir (Pseudotsuga menziesii) were exposed to filtered air, NH3, NO2+, SO2 (66, 96 and 95 μg m?3, respectively), to a mixture of NO2+NH3 (55 + 82 μg m?3) or SO2+NO2 (128 + 129 μg m?3), for 8 months in fumigation chambers. Both chlorophyll fluorescence and gas exchange measurements were carried out on shoots which had sprouted at the beginning of the exposure period. The chlorophyll fluorescence measurements were performed after 3 and 5 months of exposure (average shoot age 70 and 140 days, respectively). Light response curves of electron transport rate (J) were determined, in which J was deduced from chlorophyll fluorescence. In addition, light response curves of net CO2 assimilation were determined after 5 months of exposure. After 3 months of exposure (average shoot age 70 days) all exposure treatments showed a lower maximum electron transport rate (Jmax) as compared to the control shoots (filtered air). A large reduction (45%) was observed for shoots exposed to SO2+NO2. During the exposure period between 3 and 5 months (average shoot age 70 and 140 days, respectively) a decrease of Jmax was observed for all treatments. Jmax had further declined some time after termination of the exposure, when average shoot age was 310 days. Shoots exposed to SO2 and SO2+NO2 also showed a reduction in maximum net CO2 assimilation (Pmax) as compared to the control shoots. However, shoots exposed to NO2 showed no reduction and even a higher Pmax was observed for shoots exposed to NH3 or NO2+NH3. Needles of these treatments also showed a higher chlorophyll content which might explain the contradictory results obtained for these treatments: the increased amount of photosynthetic units counteracts the reduction in Jmax and consequently no reduction in Pmax is measured. Shoots exposed to SO2 and SO2+NO2 also showed a reduction in maximum stomatal conductance (gs). However, the stomatal opening was larger than could be expected on basis of their (maximum) CO2 assimilation rate. Consequently, water use efficiency of these shoots was lower than that of the control shoots. Also shoots exposed to NO2 had a lower water use efficiency due to a significantly higher maximum gs. Shoots exposed to NH3 showed a high transpiration rate in the dark, indicating imperfect stomatal closure.  相似文献   

11.
The ambient pollution climate at the Liphook forest fumigation site, where coniferous trees were fumigated with SO2 and O3, for 4 years under field conditions, was characteristic of the fringes of the areas where pollutant effects are a problem. Experimental treatments increased SO2 concentrations to levels more characteristic of Eastern Europe, and summer O3 concentrations by 30%. Deposition of SO2 to the soil between the trees (inferred from shallow lysimeters) was significant, the deposition velocity being 2–1 mms?1. Deposition to Scots pine and Sitka spruce canopies was greater, deposition velocities being 8.5 and 9.4 mm s?1, respectively. These high values may perhaps be explained by co-deposition with NH3. Calculations assume that dry deposition was the sole source of SO42? gain in throughfall, and that there was no significant retention by the trees. There was a trend for O3 to enhance SO2 deposition to both soil and trees. Fumigation with SO2 led to a significant increase in leaching of cations from foliage. Each species neutralized about 63% of the dry-deposited SO2, predominantly by ion exchange for Ca and K. Equations are provided which allow calculation of foliar leaching given SO2 concentrations or SO42? deposition. Fumigation increased the rate of nutrient cycling considerably, without affecting foliar concentrations or damaging the trees. Ozone treatments did not enhance foliar leaching, calling into question some suggested mechanisms for the causes of forest decline.  相似文献   

12.
This paper describes the construction and performance of branch bags and a CO2 control system used to fumigate branches of mature Sitka spruce trees with air enriched in CO2 (700 μmolmol-1). It contains some examples of results obtained using the system over the course of the first two growing seasons. The branch bags have run continuously for 2 years with very few problems. CO2 concentrations were within 20 μmol mol-1 of the target concentration for more than 90% of the time. Temperatures within the bags were slightly higher than ambient (1–2 °C) and this had some effect on phenology. Attenuation of quantum flux density (photosynthetically active radiation) was 10–15%. The branch bag system has enabled investigation into the effects of elevated CO2 on mature tissue without the problems and expense of fumigating whole trees. Growth in elevated CO2 resulted in an increase in starch and a decrease in soluble protein content of needles. Stomatal conductance was higher in elevated CO2 grown needles, and there was some evidence of an increase in photosynthetic capacity.  相似文献   

13.
Summary Spruce (Picea abies) damage in the Fichtelgebirge (FRG) occurs as needle bleaching and a depression of CO2 assimilation. Such injury may primarily result from the direct, above-ground effects of air pollution or indirect, below-ground changes in mineral uptake.Typically, the new flush of spruce needles is green and exhibits high photosynthetic capacity. Mies and Zöttl concluded that the older foliage is damaged when nutrients are withdrawn to supply the current year's needles. By removing the terminal buds of single branches in the spring, we produced an experimental set of the previous year's needles with greater mineral reserves than the control needles. During the course of the growing period, the performance of the experimental needles, which lacked competition from the new flush, was compared to that of the control needles of the same age-class on intact branches with the new flush.Throughout the experiment, chloroplast pigments of a healthy control tree were not affected by the elimination of the new flush. However, the chlorophyll and carotenoid content as well as the photosynthetic capacity of the previous year's needles on those branches of a heavily damaged tree where the new flush had been eliminated increased substantially. This increase was associated with an increase in minerals, which seemed to be deficient in the control needles with the new flush. Thus, in contrast to needles of the same age-class on intact branches with undisturbed new growth in the same atmospheric environment, the experimental needles escaped bleaching and a decrease in photosynthesis. It would seem that the bleaching and the loss in photosynthetic capacity typical of trees damaged by forest decline indirectly result from nutrient deficiencies through soil environment changes and/or root damage than directly from atmospheric pollutants.  相似文献   

14.
Ion contents in needles from Norway spruce trees [Picea abies (L.) Karst.] growing in Würzburg and in the SO2-polluted Erzgebirge mountains were analysed to quantify cations which accumulate together with sulphate. In Würzburg there was a positive correlation of potassium (0.680 ± 0.300 Eq Eq?1 SO4?2), magnesium (0.415 ± 0.111 Eq Eq?1 SO4?2) and zinc (0.059 ± 0.006 Eq Eq?1 SO42?). In the Erzgebirge, potassium was also the stoichiometrically most important cation (0–887 ± 0–180 Eq K+ Eq?1 SO42?). All other correlations examined were weak or statistically non-significant. At both sites the calcium content of spruce needles did not depend on the sulphate content. The lack of a role for Ca2+ in neutralizing sulphate is a consequence of the presence of free oxalic acid in needles. Soluble oxalic acid precipitates Ca2+, which thereby becomes unavailable as a counterion for SO42?. The activity coefficients of Ca2+ and oxalate2?, and the solubility product of Ca-oxalate, were determined from in vivo data. It is concluded that the chronic accumulation of atmospheric sulphate in spruce needle vacuoles depletes available potassium and thereby strongly interferes with spruce growth and canopy turnover. This leads to impaired spruce vitality, even at sites where acute SO2 disease symptoms are absent.  相似文献   

15.
Exposure of spinach (Spinacia oleracea L. cv. Monosa) to 0.25 μl l?1 H2S reduced the relative growth rate by 26, 47 and 60% at 15, 18 and 25°C, respectively. Shoot to root ratio decreased in plants fumigated at 18 and 25°C. Growth of spinach was not affected by a 2-week exposure to 0.10 or 0.25 μl l?1 SO2. Both H2S and SO2 fumigation increased the content of sulfhydryl compounds and sulfate. A 2-week exposure to 0.25 μl l?1 H2S resulted in an increase in sulfhydryl and sulfate content of 250 to 450% and 63 to 248% in the shoots, respectively, depending on growth temperature. Exposure to 0.15 and 0.30 μl l?1 H2S at 20°C for 2 weeks resulted in a 46% increase in sulfate content of the shoots at 0.30 μl l?1 and no detectable increase at 0.15 μl l?1 H2S; the sulfate content of the roots increased by 195 and 145% at 0.15 and 0.30 μl l?1 H2S, respectively. Fumigation with 0.25 μl l?1 SO2 at 20°C for 2 weeks resulted in an increase in sulfhydryl content and sulfate content in the shoots of 285% and 300 to 1100%. H2S fumigation during the 12 h light period or only during the dark period resulted in identical growth reduction and accumulation of sulfhydryl compounds; they were about 50 and 67% of those observed in continuously exposed plants. H2S- and SO2-exposed plants showed an increased transpiration rate, which was mainly caused by an increased dark-period transpiration. No effect of H2S and SO2 on the water uptake of the plants and the osmotic potential of the leaves was detected. Plants fumigated with 0.25 μl l?1 H2S for 2 weeks were smaller and differed morphologically from the control plants by slightly more abaxially curved leaf margins. Cross sections of the leaves showed smaller cells at the margins and smaller and fewer air spaces. The increased transpiration in the H2S-exposed plants is discussed in relation to the observed morphological changes.  相似文献   

16.
Shoots of poplar (Populus euramericana L. cv. Flevo) were exposed to filtered air, SO2, NH3 or a mixture of SO2 and NH3 for 7 weeks in fumigation chambers. After this exposure gas exchange measurements were carried out using a leaf chamber. As compared to leaves exposed to filtered air, leaves pretreated with 112 μg m?3 SO2 showed a small reduction in maximum CO2 assimilation rate (Pmax) and stomatal conductance (gs). They also showed a slightly higher quantum yield and dark respiration. In addition, the fluorescence measurements indicated that the Calvin cycle of the leaves pretreated with 112 μg m?3 SO2 was more rapidly activated after transition from dark to light. An exposure to 64 μg m?3 NH3 had a positive effect on Pmax, stomatal conductance and NH3 uptake of the leaves. This positive effect was counteracted by an SO2 concentration of 45 μg m?3. The exposure treatments appeared to have no effect on the relationship between net CO2-assimilation and gs. Also, no injury of the leaf cuticle or of epidermal cells was observed. Resistance analysis showed that NH3 transfer into the leaf can be estimated from data on the boundary layer and stomatal resistance for H2O transfer and NH3 concentration at the leaf surface, irrespective of whether the leaves are exposed for a short or long time to NH3 or to a mixture of NH3 and SO2. In contrast SO2 uptake into the leaves was only partly correlated to the stomatal resistance. The results suggest a large additional uptake of this gas by the leaves. The possibility of a difference in path length between SO2 and H2O molecules is proposed.  相似文献   

17.
The effects of simulated SO2 treatment on the photosynthetic apparatus were investigated in five subtropical forest plants, namely Plnus massonlana Lamb., Schlma superba Gardn. et Champ., Castanopsls flssa (Champ. ex Benth.) Rehd. et Wils., Acmena acuminatissima (BI.) Merr et Perry, and Cryptocarya concinna Hance. After leaf sections had been immersed in 0, 20, 50, and 100 mmol/L NaHSO3 for 20 h, total chlorophyll (Chl) content, Chl a/b, maximal photochemical efficiency, and the photochemical quantum yields of photosystem Ⅱ of all five woody plants were reduced to different degrees, whereas lutein content (Chl base) was increased. Two protective mechanisms, namely the xanthophyll cycle (de-epoxidation) and an anti-oxidant system (1,1-diphenyl-2-picrylhydrazyl radical-scavenging capacity), showed differences in the degree of modulation under simulated SO2 treatment. Compared with control (distilled water treatment), the revised normalized difference vegetation index, a leaf reflectance index, was lowered with Increasing concentrations of NaHSO3. Cryptocarya conclnna, a dominant species in the late succession stage of subtropical forests in South China, exhibited less sensitivity to NaHSO3. Conversely, Pinus massonlana, the pioneer hellophyte species, was most susceptible to NaHSO3 treatment. It Is suggested that SO2 pollution may accelerate the succession of subtropical forest.  相似文献   

18.
Samples of current-year and 1-year-old foliage were taken from Norway spruce (Picea abies (L.) Karst.) trees in April 1991, 4 months after a 3–4 year controlled fumigation with O3 and SO2 in the open at Liphook, south-east England. Trees were grown in seven plots, and treated in a factorial design with three levels of SO2 and two levels of O3 (ambient and c. 1.3 × ambient), with an extra ambient air plot. All statistical analyses were made on plot means. Leaf wettability, as measured by the contact angle of water droplets, was significantly affected by needle age and by SO2 treatment (P≤0–05. in older needles, decreasing with increasing SO2 concentration. There was no effect of O3 on wettability, and no effect of any treatment on amounts of surface wax extracted by immersion of needles in chloroform. Electrolyte leakage rates from detached current-year needles were not affected by prior exposure to O3, but decreased significantly (P= 0.034) with increasing exposure to SO2. There was no detectable effect of fumigation on the rate of water loss from detached needles. Similarly, there was no effect of fumigation on the dry weight/fresh weight ratio of needles. The total sulphur content of needles increased significantly (P≤0.0001) with exposure to SO2 and with needle age. Amounts of water-extractable sulphate, however, varied greatly among plots, but with no pattern with respect to fumigation treatment. It is concluded that leaf wettability and electrolyte leakage rates may be good indicators of the persistent effects of SO2 on Norway spruce growing in the open air, and that the observed changes in leaf surface properties in response to SO2 fumigation have implications for the processes, both biotic and abiotic, that occur on leaf surfaces.  相似文献   

19.
Chloroplasts isolated from pine needles were found to be inactive with respect to CO2 fixation. Since it was suspected that pine needles may contain substances inhibitory to photosynthesis, studies were carried out using photosynthetically active isolated spinach chloroplasts and chloroplasts isolated from pine needles. When isolated pine chloroplasts were suspended in buffer and were added to isolated spinach chloroplasts they inhibited photosynthetic CO2 fixation. When the pine chloroplasts were separated from the medium by centrifugation, the separated pine chloroplasts severely inhibited CO2 fixation by isolated spinach chloroplasts, but the supernatant solution from the pine chloroplasts was not inhibitory. As little as 5% pine chloroplasts (based on chlorophyll content) produced 50% inhibition of CO2 fixation by the spinach chloroplasts. Studies of fixation of 14C-labelled CO2 by spinach chloroplasts were carried out in which after 5 min photosynthesis the pine chloroplasts were added. It was found that the subsequent inhibition of spinach CO2 fixation was neither due to any effect on the rate of export of photosynthetic metabolites from the chloroplasts to the medium, nor to a direct effect on the RUBP carboxylase reaction. The principal effect was found to be an inhibition of the conversion of fructose-1,6-bisphosphate and sedoheptulose-1,7-bisphosphate to the respective monophosphates and inorganic phosphate. From this finding it was concluded that a principal effect of the inhibition by pine chloroplasts is probably an inhibition either directly or indirectly of the bisphosphatase enzymes in the spinach chloroplasts. Based on its distribution between organic and aqueous acidic or neutral solutions, the inhibitory factor of the pine chloroplasts must be lipophilic. Most of the factor could be transferred to an aqueous phase in a strongly alkaline solution. Following subsequent acidification of the aqueous phase the activity could be completely transferred back into the organic phase. This procedure allowed for separation of the inhibitory factor from most of the pigments and other lipophilic substances present in the pine chloroplasts and yielded a preparation which could be subsequently fractionated by thin layer chromatography. UV absorption was found in two fast moving spots and at the origin. The fastest running spot from the thin layer chromatography plate was found to be the one containing most of the inhibitory activity.  相似文献   

20.
Naturally regenerated Scots pines (Pinus sylvestris L.), aged 28–30 years old, were grown in open-top chambers and subjected in situ to three ozone (O3) regimes, two concentrations of CO2, and a combination of O3 and CO2 treatments From 15 April to 15 September for two growing seasons (1994 and 1995). The gas exchanges of current-year and 1-year-old shoots were measured, along with the nitrogen content of needles. In order to investigate the factors underlying modifications in photosynthesis, five parameters linked to photosynthetic performance and three to stomatal conductance were determined. Elevated O3 concentrations led to a significant decline in the CO2 compensation point (Г*), maximum RuP2-saturated rate of carboxylation (Vcmax), maximum rate of electron transport (Jmax), maximum stomatal conductance (gsmax), and sensitivity of stomatal conductance to changes in leaf-to-air vapour pressure difference (?gs/?Dv) in both shoot-age classes. However, the effect of elevated O3 concentrations on the respiration rate in light (Rd) was dependent on shoot age. Elevated CO2(700 μmol mol?1) significantly decreased Jmax and gsmax but increased Rd in 1-year-old shoots and the ?gs/?Dv in both shoot-age classes. The interactive effects of O3 and CO2 on some key parameters (e.g. Vcmax and Jmax) were significant. This may be closely related to regulation of the maximum stomatal conductance and stomatal sensitivity induced by elevated CO2. As a consequence, the injury induced by O3 was reduced through decreased ozone uptake in 1-year-old shoots, but not in the current-year shoots. Compared to ambient O3 concentration, reduced O3 concentrations (charcoal-filtered air) did not lead to significant changes in any of the measured parameters. Compared to the control treatment, calculations showed that elevated O3 concentrations decreased the apparent quantum yield by 15% and by 18%, and the maximum rate of photosynthesis by 21% and by 29% in the current-year and 1-year-old shoots, respectively. Changes in the nitrogen content of needles resulting from the various treatments were associated with modifications in photosynthetic components.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号