首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A deletion in vitro can be made in the aceEF-lpd operon encoding the pyruvate dehydrogenase multienzyme complex of Escherichia coli, which causes deletion of two of the three homologous lipoyl domains that comprise the N-terminal half of each dihydrolipoamide acetyltransferase (E2p) polypeptide chain. An active complex is still formed and 1H-n.m.r. spectroscopy of this modified complex revealed that many of the unusually sharp resonances previously attributed to conformationally mobile segments in the wild-type E2p polypeptide chains had correspondingly disappeared. A further deletion was engineered in the long (alanine + proline)-rich segment of polypeptide chain that linked the one remaining lipoyl domain to the C-terminal half of the E2p chain. 1H-n.m.r. spectroscopy of the resulting enzyme complex, which was also active, revealed a further corresponding loss in the unusually sharp resonances observed in the spectrum. These experiments strongly support the view that the sharp resonances derive, principally at least, from the three long (alanine + proline)-rich sequences which separate the three lipoyl domains and link them to the C-terminal half of the E2p chain. Closer examination of the 400 MHz 1H-n.m.r. spectra of the wild-type and restructured complexes, and of the products of limited proteolysis, revealed another sharp but smaller resonance. This was tentatively attributed to another, but smaller, (alanine + proline)-rich sequence that separates the dihydrolipoamide dehydrogenase-binding domain from the inner core domain in the C-terminal half of the E2p chain. If this sequence is also conformationally flexible, it may explain previous fluorescence data which suggest that dihydrolipoamide dehydrogenase bound to the enzyme complex is quite mobile. The acetyltransferase active site in the E2p chain was shown to reside in the inner core domain, between residues 370 and 629.  相似文献   

2.
The dihydrolipoamide acetyltransferase component (E2p) of the pyruvate dehydrogenase complex of Escherichia coli contains three highly homologous sequences of about 100 residues that are tandemly repeated to form the N-terminal half of the polypeptide chain. All three sequences include a lysine residue that is a site for lipoylation and they appear to form independently folded functional domains. These lipoyl domains are in turn linked to a much larger (about 300 residues) subunit-binding domain of the E2p chain that aggregates to form the octahedral inner core of the complex and also contains the acetyltransferase active site. In order to investigate whether individual lipoyl domains play different parts in the enzymic mechanism, selective deletions were made in vitro in the dihydrolipoamide acetyltransferase gene (aceF) so as to excise one or two of the repeating sequences. This was facilitated by the high degree of homology in these sequences, which allowed the creation of hybrid lipoyl domains that closely resemble the originals. Pyruvate dehydrogenase complexes incorporating these genetically reconstructed E2p components were purified and their structures were confirmed. It was found that the overall catalytic activity, the system of active site coupling, and the ability to complement pyruvate dehydrogenase complex mutants, were not significantly affected by the loss of one or even two lipoyl domains per E2p chain. No special role can be attached thus far to individual lipoyl domains. On the other hand, certain genetic deletions affecting the acetyltransferase domain caused inactivation of the complex, highlighting particularly sensitive areas of that part of the E2p chain.  相似文献   

3.
In vitro deletion and site-directed mutagenesis of the aceF gene of Escherichia coli was used to generate dihydrolipoamide acetyltransferase (E2p) polypeptide chains containing various permutations and combinations of functional and non-functional lipoyl domains. A lipoyl domain was rendered non-functional by converting the lipoylatable lysine residue to glutamine. Two- and three-lipoyl domain E2p chains, with lipoyl-lysine (Lys244) substituted by glutamine in the innermost lipoyl domains (designated +/- and +/+/-, respectively), and similar chains with lipoyl-lysine (Lys143) substituted by glutamine in the outer lipoyl domains (designated -/+ and -/-/+), were constructed. In all instances, pyruvate dehydrogenase complexes were assembled in vivo around E2p cores composed of the modified peptide chains. All the complexes were essentially fully active in catalysis, although the complex containing the -/-/+ version of the E2p polypeptide chain showed a 50% reduction in specific catalytic activity. Similarly, active-site coupling in the complexes containing the +/-, +/+/- and -/+ constructions of the E2p chains was not significantly different from that achieved by the wild-type complex. However, active-site coupling in the complex containing the -/-/+ version of the E2p chain was slightly impaired, consistent with the reduced overall complex activity. These results indicate that during oxidative decarboxylation there is no mandatory order of reductive acetylation of repeated lipoyl domains within E2p polypeptide chains, and strongly suggest that the three tandemly repeated lipoyl domains in the wild-type E2p chain function independently in the pyruvate dehydrogenase complex.  相似文献   

4.
The pyruvate dehydrogenase complex of Bacillus stearothermophilus was treated with Staphylococcus aureus V8 proteinase, causing cleavage of the dihydrolipoamide acetyltransferase polypeptide chain (apparent Mr 57 000), inhibition of the enzymic activity and disassembly of the complex. Fragments of the dihydrolipoamide acetyltransferase chains with apparent Mr 28 000, which contained the acetyltransferase activity, remained assembled as a particle ascribed the role of an inner core of the complex. The lipoic acid residue of each dihydrolipoamide acetyltransferase chain was found as part of a small but stable domain that, unlike free lipoamide, was able still to function as a substrate for reductive acetylation by pyruvate in the presence of intact enzyme complex or isolated pyruvate dehydrogenase (lipoamide) component. The lipoyl domain was acidic and had an apparent Mr of 6500 (by sedimentation equilibrium), 7800 (by sodium dodecyl sulphate/polyacrylamide-gel electrophoresis) and 10 000 and 20 400 (by gel filtration in the presence and in the absence respectively of 6M-guanidinium chloride). 1H-n.m.r. spectroscopy of the dihydrolipoamide acetyltransferase inner core demonstrated that it did not contain the segments of highly mobile polypeptide chain found in the pyruvate dehydrogenase complex. 1H-n.m.r. spectroscopy of the lipoyl domain demonstrated that it had a stable and defined tertiary structure. From these and other experiments, a model of the dihydrolipoamide acetyltransferase chain is proposed in which the small, folded, lipoyl domain comprises the N-terminal region, and the large, folded, core-forming domain that contains the acetyltransferase active site comprises the C-terminal region. These two regions are separated by a third segment of the chain, which includes a substantial region of polypeptide chain that enjoys high conformational mobility and facilitates movement of the lipoyl domain between the various active sites in the enzyme complex.  相似文献   

5.
Synthetic peptides (32 residues in length) were synthesized with amino acid sequences identical to, or related to, the long (alanine + proline)-rich region of polypeptide chain that links the innermost lipoyl domain to the dihydrolipoamide dehydrogenase-binding domain in the dihydrolipoyl acetyltransferase component of the pyruvate dehydrogenase multienzyme complex of Escherichia coli. The 400-MHz 1H NMR spectra of the peptide (Mr approximately 2800) closely resembled the sharp resonances in the spectrum of the intact complex (Mr approximately 5 x 10(6], and the apparent pKa (6.4) of the side chain of a histidine residue in one of the peptides was found to be identical to that previously observed for a histidine residue inserted by site-directed mutagenesis into the corresponding position in the same (alanine + proline)-rich region of a genetically reconstructed enzyme complex. These results strongly support the view that the three long (alanine + proline)-rich regions of the dihydrolipoyl acetyltransferase chains are exposed to solvent and enjoy substantial conformational flexibility in the enzyme complex. More detailed analysis of the peptides by circular dichroism and by 1H and 13C NMR spectroscopy revealed that they were disordered in structure but were not random coils. In particular, all the Ala-Pro peptide bonds were greater than 95% in the trans configuration, consistent with a stiffening of the peptide structure. Differences in the sequences of the three long (alanine + proline)-rich segments may reflect structural tuning of these segments to optimize lipoyl domain movement in enzyme catalysis.  相似文献   

6.
A G Allen  R N Perham 《FEBS letters》1991,287(1-2):206-210
A fragment of DNA incorporating the gene, pdhC, that encodes the dihydrolipoamide acetyltransferase (E2) chain of the pyruvate dehydrogenase multienzyme complex of Streptococcus faecalis was cloned and a DNA sequence of 2360 bp was determined. The pdhC gene (1620 bp) corresponds to an E2 chain of 539 amino acid residues, Mr 56,466, comprising two lipoyl domains, a peripheral subunit-binding domain and an acetyltransferase domain, linked together by regions of polypeptide chain rich in alanine, proline and charged amino acids. The S. faecalis E2 chain differs in the number of its lipoyl domains from the E2 chains of all bacterial pyruvate dehydrogenase complexes hitherto described.  相似文献   

7.
Site-directed mutagenesis of the aceF gene of Escherichia coli was used to generate a nested set of deletions in the long (alanine + proline)-rich sequence that separates the lipoyl domain from the dihydrolipoamide dehydrogenase-binding domain in the "one-lipoyl domain" dihydrolipoamide acetyltransferase polypeptide chains of a pyruvate dehydrogenase multienzyme complex. The deletions reduced the number of residues in this sequence successively from 32 to 20, 13, 7 and just 1 residue. In all instances, pyruvate dehydrogenase complexes were still assembled in vivo around cores containing the deleted chains, and those with the two shortest deletions were essentially fully active. However, the two most severe deletions caused falls of 50% or more in specific catalytic activity. Similarly, although shortening the interdomain sequence to 20 residues left the system of active-site coupling unimpaired, cutting it to 13 residues or less caused substantial falls in the reductive acetylation of the lipoyl domains and corresponding losses of active-site coupling. The changes in specific catalytic activity and active-site coupling that accompanied the shortening of the (alanine + proline)-rich segment were reflected in the poorer growth rates of the relevant strains of E. coli on stringent substrates. All these results are consistent with this (alanine + proline)-rich sequence acting as a linker region that facilitates the movements of the lipoyl domains required for full catalytic activity and active-site coupling in the complex. The other two such sequences that separate the additional lipoyl domains in the N-terminal half of the wild-type "three-lipoyl domain" dihydrolipoamide acetyltransferase chain are presumed to function similarly. This role is consistent with the conformational flexibility assigned to these segments from previous studies based on 1H nuclear magnetic resonance spectroscopy and protein engineering.  相似文献   

8.
The aceEF-lpd operon of Escherichia coli encodes the pyruvate dehydrogenase (E1p), dihydrolipoamide acetyltransferase (E2p) and dihydrolipoamide dehydrogenase (E3) components of the pyruvate dehydrogenase multienzyme complex (PDH complex). A thermoinducible expression system was developed to amplify a variety of genetically restructured PDH complexes, including those containing three, two, one and no lipoyl domains per E2p chain. Although large quantities of the corresponding complexes were produced, they had only 20-50% of the predicted specific activities. The activities of the E1p components were diminished to the same extent, and this could account for the shortfall in overall complex activity. Thermoinduction was used to express a mutant PDH complex in which the putative active-site histidine residue of the E2p component (His-602) was replaced by cysteine in the H602C E2p component. This substitution abolished dihydrolipoamide acetyltransferase activity of the complex without affecting other E2p functions. The results support the view that His-602 is an active-site residue. The inactivation could mean that the histidine residue performs an essential role in the acetyltransferase reaction mechanism, or that the reaction is blocked by an irreversible modification of the cysteine substituent. Complementation was observed between the H602C PDH complex and a complex that is totally deficient in lipoyl domains, both in vitro, by the restoration of overall complex activity in mixed extracts, and in vivo, from the nutritional independence of strains that co-express the two complexes from different plasmids.  相似文献   

9.
Avidin can form intermolecular cross-links between particles of the pyruvate dehydrogenase multienzyme complex from various sources. Avidin does this by binding to lipoic acid-containing regions of the dihydrolipoamide acetyltransferase polypeptide chains that comprise the structural core of the complex. It is inferred that the lipoyl domains of the acetyltransferase chain extend outwards from the interior of the enzyme particle, interdigitating between the subunits of the other two enzymes bound peripherally in the assembled structure, with the lipoyl-lysine residues capable of reaching to within at least 1-2 nm of the outer surface of the enzyme complex (diameter ca. 37 nm). The distribution of enzymic activities between different domains of the dihydrolipoamide acetyltransferase chain implies that considerable movement of the lipoyl domains is a feature of the catalytic activity of the enzyme complex. There is evidence that the lipoyl domain of the 2-oxo acid dehydrogenase complexes is similar in structure to a domain that binds the cofactor biotin, also in amide linkage with a specific lysine residue, in the biotin-dependent class of carboxylases.  相似文献   

10.
The pyruvate dehydrogenase multienzyme complex from Bacillus stearothermophilus comprises a structural core, composed of 60 dihydrolipoamide acetyltransferase (E2p) subunits, which binds multiple copies of pyruvate decarboxylase (E1p) and dihydrolipoamide dehydrogenase (E3) subunits. After limited proteolysis with chymotrypsin, the N-terminal lipoyl domain of E2p was excised, purified and sequenced. The residual complex, which remained assembled, was then digested with trypsin under mild conditions. This treatment promoted complete disassembly of the complex and the various components were separated by gel filtration and h.p.l.c. A folded fragment of E2p containing about 50 amino acid residues was identified as being responsible for binding the E3 subunits, although, unlike the corresponding region of the E2p or E2o chains of the pyruvate dehydrogenase or 2-oxoglutarate dehydrogenase complexes from Escherichia coli, the fragment also bound E1p molecules. Further peptide purification and sequence analysis allowed the determination of the first 211 amino acid residues of the B. stearothermophilus E2p chain, thus providing the complete primary structure of the lipoyl domain, the E1p/E3-binding domain and the regions of polypeptide chain, probably highly flexible in nature, that link the domains to each other and to the inner-core (E2p-binding) domain. Several of the proteolytically sensitive sites were also identified. The sequence of the B. stearothermophilus E2p chain shows close homology with the sequences of the E2p and E2o chains from E. coli, although significant differences in structure are apparent. Detailed evidence for the sequence of the peptides obtained by limited proteolysis and further chemical and enzymic cleavages have been deposited as Supplementary Publication SUP 50142 (11 pages) at the British Library Lending Division, Boston Spa, Wetherby, West Yorkshire LS23 6BQ, U.K., from whom copies may be obtained as indicated in Biochem. J. (1988) 249, 5.  相似文献   

11.
The structures of the dihydrolipoamide acyltransferase (E2) components of the 2-oxo acid dehydrogenase complexes from Escherichia coli were investigated by limited proteolysis. Trypsin and Staphylococcus aureus V8 proteinase were used to excise the three lipoyl domains from the E2p component of the pyruvate dehydrogenase complex and the single lipoyl domain from the E2o component of the 2-oxoglutarate dehydrogenase complex. The principal sites of action of these enzymes on each E2 chain were determined by sequence analysis of the isolated lipoyl fragments and of the truncated E2p and E2o chains. Each of the numerous cleavage sites (12 in E2p, six in E2o) fell within similar segments of the E2 chains, namely stretches of polypeptide rich in alanine, proline and/or charged amino acids. These regions are clearly accessible to proteinases of Mr 24,000-28,000 and, on the basis of n.m.r. spectroscopy, some of them have previously been implicated in facilitating domain movements by virtue of their conformational flexibility. The limited proteolysis data suggest that E2p and E2o possess closer architectural similarities than would be predicted from inspection of their amino acid sequences. As a result of this work, an error was detected in the sequence of E2o inferred from the previously published sequence of the encoding gene, sucB. The relevant peptides from E2o were purified and sequenced by direct means; an amended sequence is presented.  相似文献   

12.
The nucleotide sequence of the sucB gene, which encodes the dihydrolipoamide succinyltransferase component (E2o) of the 2-oxoglutarate dehydrogenase complex of Escherichia coli K12, has been determined by the dideoxy chain-termination method. The results extend by 1440 base pairs the previously reported sequence of 3180 base pairs, containing the sucA gene. The sucB structural gene comprises 1209 base pairs (403 codons excluding the initiating AUG), and it is preceded by a 14-base-pair intercistronic region containing a good ribosomal binding site. The absence of a typical terminator sequence and the presence of an IS-like sequence downstream of sucB suggest that there may be further gene(s) in the suc operon. The IS-like sequence is homologous with other intercistronic sequences including that between the sdhB and sucA genes, the overall gene organisation being: sdhB-IS-sucAsucB-IS-. The patterns of codon usage indicate that sucB may be more strongly expressed than sucA, consistent with the disproportionate contents of their products in the oxoglutarate dehydrogenase complex. The predicted amino acid composition and Mr (43 607) of the succinyltransferase component agree with previous studies on the purified protein. Comparison with the corresponding acetyltransferase component of the pyruvate dehydrogenase complex (E2p, aceF gene product) indicates that each contains two analogous domains, an amino-terminal lipoyl domain linked to a carboxy-terminal catalytic and subunit binding domain. The lipoyl domain of the acetyltransferase (E2p) comprises three tandemly repeated approximately 100-residue lipoyl binding regions containing two short (approximately 19 residues) internal repeats, whereas the lipoyl domain of the succinyltransferase (E2o) contains just one approximately 100-residue lipoyl binding region, with approximately 27% homology to each of the three comparable regions in E2p, and no detectable internal repeats. The catalytic and subunit binding domains, each approximately 300 residues, have an overall homology of 34% and, consistent with their combination of analogous and specific functions, some regions are more homologous than others. Both sequences feature segments rich in proline and alanine. In E2p these occur at the carboxy-terminal ends of each of the three lipoyl binding regions, there being a particularly extended sequence at the end of the third repeat, whereas in E2o the main proline-alanine segment is found approximately 50 residues into the subunit binding domain.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

13.
600 MHz 1H-NMR spectroscopy demonstrates that the pyruvate dehydrogenase complex of Azotobacter vinelandii contains regions of the polypeptide chain with intramolecular mobility. This mobility is located in the E2 component and can probably be ascribed to alanine-proline-rich regions that link the lipoyl subdomains to each other as well as to the E1 and E3 binding domain. In the catalytic domain of E2, which is thought to form a compact, rigid core, also conformational flexibility is observed. It is conceivable that the N-terminal region of the catalytic domain, which contains many alanine residues, is responsible for the observed mobility. In the low-field region of the 1H-NMR spectrum of E2 specific resonances are found, which can be ascribed to mobile phenylalanine, histidine and/or tyrosine residues which are located in the E1 and E3 binding domain that links the lipoyl domain to the catalytic domain. In the 1H-NMR spectrum of the intact complex, these resonances cannot be observed, indicating a decreased mobility of the E1 and E3 binding domain.  相似文献   

14.
The dihydrolipoamide acetyltransferase subunit (E2p) of the pyruvate dehydrogenase complex of Escherichia coli has three highly conserved and tandemly repeated lipoyl domains, each containing approx. 80 amino acid residues. These domains are covalently modified with lipoyl groups bound in amide linkage to the N6-amino groups of specific lysine residues, and the cofactors perform essential roles in the formation and transfer of acetyl groups by the dehydrogenase (E1p) and acetyltransferase (E2p) subunits. A subgene encoding a hybrid lipoyl domain was previously shown to generate two products when overexpressed, whereas a mutant subgene, in which the lipoyl-lysine codon is replaced by a glutamine codon, expresses only one product. A method has been devised for purifying the three types of independently folded domain from crude extracts of E. coli, based on their pH-(and heat-)stabilities. The domains were characterized by: amino acid and N-terminal sequence analysis, lipoic acid content, acetylation by E1p, tryptic peptide analysis and immunochemical activity. This has shown that the two forms of domain expressed from the parental subgene are lipoylated (L203) and unlipoylated (U203) derivatives of the hybrid lipoyl domain, whereas the mutant subgene produces a single unlipoylatable domain (204) containing the Lys-244----Gln substitution.  相似文献   

15.
J E Lawson  X D Niu  L J Reed 《Biochemistry》1991,30(47):11249-11254
The LAT1 gene encoding the dihydrolipoamide acetyltransferase component (E2) of the pyruvate dehydrogenase (PDH) complex from Saccharomyces cerevisiae was disrupted, and the lat1 null mutant was used to analyze the structure and function of the domains of E2. Disruption of LAT1 did not affect the viability of the cells. Apparently, flux through the PDH complex is not required for growth of S. cerevisiae under the conditions tested. The wild-type and mutant PDH complexes were purified to near-homogeneity and were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, immunoblotting, and enzyme assays. Mutant cells transformed with LAT1 on a unit-copy plasmid produced a PDH complex very similar to that of the wild-type PDH complex. Deletion of most of the putative lipoyl domain (residues 8-84) resulted in loss of about 85% of the overall activity, but did not affect the acetyltransferase activity of E2 or the binding of pyruvate dehydrogenase (E1), dihydrolipoamide dehydrogenase (E3), and protein X to the truncated E2. Similar results were obtained by deleting the lipoyl domain plus the first hinge region (residues 8-145) and by replacing lysine-47, the putative site of covalent attachment of the lipoyl moiety, by arginine. Although the lipoyl domain of E2 and/or its covalently bound lipoyl moiety were removed, the mutant complexes retained 12-15% of the overall activity of the wild-type PDH complex. Replacement of both lysine-47 in E2 and the equivalent lysine-43 in protein X by arginine resulted in complete loss of overall activity of the mutant PDH complex.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
L C Packman  G Hale    R N Perham 《The EMBO journal》1984,3(6):1315-1319
Each polypeptide chain in the lipoate acetyltransferase (E2) core of the pyruvate dehydrogenase complex from Escherichia coli contains three repeating sequences in the N-terminal half of the molecule. The repeats are highly homologous in primary structure and each includes a lysine residue that is a potential site for lipoylation. We have shown that all three sites are lipoylated, at least in part, and that the three lipoylated segments of the E2 chain can be isolated as distinct functional domains after limited proteolysis. Each domain becomes partly acetylated in the intact complex in the presence of substrate. In the primary structure, the domains are separated by regions of polypeptide chain oddly rich in alanine and proline residues. These regions are probably the conformationally mobile segments observed in the 1H-n.m.r. spectrum of the complex and which are removed by tryptic cleavage at Lys-316. The C-terminal half of the molecule contains the acetyltransferase active site and the binding sites for E1, E3 and other E2 subunits. The pyruvate dehydrogenase complex of E. coli, which has a heterogeneous quaternary structure, is thus far unique among the 2-oxo acid dehydrogenase complexes in possessing more than one lipoyl domain per E2 chain, but this may be a general feature of the enzyme from Gram-negative organisms.  相似文献   

17.
Lipoamide and a peptide, Thr-Val-Glu-Gly-Asp-Lys-Ala-Ser-Met-Glu lipoylated on the N6-amino group of the lysine residue, were tested as substrates for reductive acetylation by the pyruvate decarboxylase (E1p) component of the pyruvate dehydrogenase multienzyme complex of Escherichia coli. The peptide has the same amino acid sequence as that surrounding the three lipoyllysine residues in the lipoate acetyltransferase (E2p) component of the native enzyme complex. Lipoamide was shown to be a very poor substrate, with a Km much higher than 4 mM and a value of kcat/Km of 1.5 M-1.s-1. Under similar conditions, the three E2p lipoyl domains, excised from the pyruvate dehydrogenase complex by treatment with Staphylococcus aureus V8 proteinase, could be reductively acetylated by E1p much more readily, with a typical Km of approximately 26 microM and a typical kcat of approximately 0.8 s-1. The value of kcat/Km for the lipoyl domains, approximately 3.0 x 10(4) M-1.s-1, is about 20,000 times higher than that for lipoamide as a substrate. This indicates the great improvement in the effectiveness of lipoic acid as a substrate for E1p that accompanies the attachment of the lipoyl group to a protein domain. The free E2o lipoyl domain was similarly found to be capable of being reductively succinylated by the 2-oxoglutarate decarboxylase (E1o) component of the 2-oxoglutarate dehydrogenase complex of E. coli. The 2-oxo acid dehydrogenase complexes are specific for their particular 2-oxo acid substrates. The specificity of the E1 components was found to extend also to the lipoyl domains.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Genetically altered transacylase (E2b) proteins of the bovine branched-chain alpha-keto acid dehydrogenase complex were overexpressed in Escherichia coli and characterized. Deletion by PstI or Bal31 digestion of the amino-terminal region of the inner-core domain (residues 175-421) beyond residue 209 resulted in a complete loss of transacylase activity. The enzyme assay was carried out using [1-14C]isovaleryl-CoA and exogenous dihydrolipoamide as substrates. The removal of 4 residues (Thr-Ile-Pro-Ile) (residues 175-178) from the amino terminus of the inner-core domain significantly reduced the level of transacylase activity. The results establish that the segment between residues 175 and 209 is an integral part of the active site of E2b. The residue His-391 in the recombinant inner-core domain (E2b delta 167) was changed to Asn or Gln by site-directed mutagenesis. The wild-type and the two mutant inner-core domains were assembled into 24-mers as determined by gel filtration. However, both Asn and Gln mutations were accompanied by a complete loss of the enzymatic activity. Titration of the natural branched-chain alpha-keto dehydrogenase complex from pH 8 to 6 sharply reduced transacylase activity. The above data support the hypothesis that a conserved histidine residue in E2 acts as a general base for the transacylation reaction by analogy with E. coli chloramphenicol acetyltransferases.  相似文献   

19.
The acetyltransferase chains of the pyruvate dehydrogenase complex of Escherichia coli contain conformationally mobile (alanine + proline)-rich segments that link the lipoyl domains to each other and to the subunit-binding and catalytic domain, and facilitate the intramolecular coupling of active sites in the complex. A deletion of 12 of the 32 residues of the (Ala + Pro)-rich segment of an acetyltransferase containing only one lipoyl domain was made by deleting the corresponding segment of the aceF gene. A pyruvate dehydrogenase complex was still produced and the catalytic activity of the restructured complex, including active-site coupling, was not detectably impaired.  相似文献   

20.
Plasmids were constructed for overexpression of the Escherichia coli dihydrolipoamide acetyltransferase (1-lip E2, with a single hybrid lipoyl domain per subunit) and dihydrolipoamide dehydrogenase (E3). A purification protocol is presented that yields homogeneous recombinant 1-lip E2 and E3 proteins. The hybrid lipoyl domain was also expressed independently. Masses of 45,953+/-73Da (1-lip E2), 50,528+/-5.5Da (apo-E3), 51,266+/-48Da (E3 including FAD), and 8982+/-4.0 (lipoyl domain) were determined by MALDI-TOF mass spectrometry. The purified 1-lip E2 and E3 proteins were functionally active according to the overall PDHc activity measurement. The lipoyl domain was fully acetylated after just 30 s of incubation with E1 and pyruvate. The mass of the acetylated lipoyl domain is 9019+/-2Da according to MALDI-TOF mass spectrometry. Treatment of the 1-lip E2 subunit with trypsin resulted in the appearance of the lipoyl domain with a mass of 10,112+/-3Da. When preincubated with E1 and pyruvate, this tryptic fragment was acetylated according to the mass increase. MALDI-TOF mass spectrometry was thus demonstrated to be a fast and precise method for studying the reductive acetylation of the recombinant 1-lip E2 subunit by E1 and pyruvate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号