首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The concept of peripheral presynaptic regulation of neuronal norepinephrine (NE) release via alpha 2 adrenoreceptors has received extensive support from in vitro evidence. Despite this, the importance of such a system under physiological and pathophysiological conditions remains to be defined in humans. This largely reflects the limitations of using plasma NE as an index of neuronal amine release in vivo and the difficulties of interpreting the hemodynamic responses to adrenoreceptor agonists or antagonists administered in vivo. Efficient probes and sensitive indices of neuronal NE release are required to clarify the importance of peripheral presynaptic mechanisms in humans.  相似文献   

3.
The review describes the role of positive and negative feedback released through end-products of erythroid cells in the regulation of erythropoiesis.  相似文献   

4.
We examined modulation by nitric oxide (NO) of sympathetic neurotransmitter release and vasoconstriction in the isolated pump-perfused rat kidney. Electrical renal nerve stimulation (RNS; 1 and 2 Hz) increased renal perfusion pressure and renal norepinephrine (NE) efflux. Nonselective NO synthase (NOS) inhibitors [N(omega)-nitro-L-arginine methyl ester (L-NAME) or N(omega)-nitro-L-arginine], but not a selective neuronal NO synthase inhibitor (7-nitroindazole sodium salt), suppressed the NE efflux response and enhanced the perfusion pressure response. Pretreatment with L-arginine prevented the effects of L-NAME on the RNS-induced responses. 2-(4-Carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (carboxy-PTIO), which eliminates NO by oxidizing it to NO(2), suppressed the NE efflux response, whereas the perfusion pressure response was less susceptible to carboxy-PTIO. 8-Bromoguanosine cGMP suppressed and a guanylate cyclase inhibitor [4H-8-bromo-1,2,4-oxadiazolo(3,4-d)benz(b)(1,4)oxazin-1-one] enhanced the RNS-induced perfusion pressure response, but neither of these drugs affected the NE efflux response. These results suggest that endogenous NO facilitates the NE release through cGMP-independent mechanisms, NO metabolites formed after NO(2) rather than NO itself counteract the vasoconstriction, and neuronal NOS does not contribute to these modulatory mechanisms in the sympathetic nervous system of the rat kidney.  相似文献   

5.
To survive in rapidly changing environmental conditions, bacteria have evolved a diverse set of regulatory pathways that govern various adaptive responses. Recent research has reinforced the notion that bacteria use feedback-based circuitry to generate population heterogeneity in natural situations. Using artificial gene networks, it has been shown that a relatively simple 'wiring' of a bacterial genetic system can generate two or more stable subpopulations within an overall genetically homogeneous population. This review discusses the ubiquity of these processes throughout nature, as well as the presumed molecular mechanisms responsible for the heterogeneity observed in a selection of bacterial species.  相似文献   

6.
These studies examined the receptors involved in angiotensin II (Ang II) stimulated secretion of systemic oxytocin (OT) and the role of this peptide in release of OT during suckling. Plasma OT concentrations were measured following intracerebroventricular (icv) injection of vehicle, Ang II, or Ang II following pretreatment with a selective AT1 (Losartan) or AT2 (PD 123319) receptor antagonist. Furthermore, we measured Ang II-induced OT release during central alpha-adrenergic receptor blockade (phentolamine). Finally, plasma OT concentrations before and during suckling were evaluated following central administration of Ang II receptor antagonists. The increase in systemic OT following central Ang II was abolished by AT1 receptor blockade and inhibited by the AT2 receptor antagonist. Furthermore, pretreatment with phentolamine significantly diminished systemic OT release in response to icv Ang II. Finally, central Ang II receptor blockade did not alter the increase in circulating OT during suckling. These data demonstrate that Ang II evoked OT release is mediated through activation of both AT1 and AT2 receptors and suggest that a component of Ang II-induced OT stimulation is due to norepinephrine release. Furthermore, central angiotensin systems do not have a direct role in stimulating OT release during suckling.  相似文献   

7.
Presynaptic modulation of synaptic transmission is the primary function of central nicotinic acetylcholine receptors (nAChRs) in developing and adult brain. nAChR activation regulates release of various neurotransmitters, including norepinephrine (NA). Given evidence that NA may serve a critical functional role in cerebellar development, we have undertaken studies to determine whether nAChRs modulate NA release in developing cerebellum. In vitro experiments using cerebellar slices examined the effects of nAChR stimulation on release of radiolabeled NA ([3H]NA). Our data indicate the presence of functional nAChRs on NA terminals in immature cerebellum and subsequent developmental regulation of receptor properties. During postnatal week one, the maximally effective dose of nicotine released 35.0 +/- 1.2% of cerebellar [3H]NA stores. There was a subsequent decline in maximal nicotine-stimulated NA release until postnatal day 30, when Emax values were statistically indistinguishable from adult. Although the efficacy of nicotine changed substantially throughout development, EC50 values did not differ significantly (EC50 = 4.4-12.0 micro m). Pharmacological analysis indicated that this developmental shift in maximum nicotine effect reflects a change in the properties of the nAChRs. These data support recent findings of a possible functional role of nAChRs in regulating cerebellar ontogeny, and provides further support for the role of NA as a neurotrophic factor during development.  相似文献   

8.
G Meissner 《Biochemistry》1986,25(1):244-251
The effect of calmodulin and calmodulin inhibitors on the "Ca2+ release channel" of "heavy" skeletal muscle sarcoplasmic reticulum (SR) vesicles was investigated. SR vesicles were passively loaded with 45Ca2+ in the presence of calmodulin and its inhibitors, followed by measurement of 45Ca2+ release rates by means of a rapid-quench-Millipore filtration method. Calmodulin at a concentration of 2-10 microM reduced 45Ca2+ efflux rates from passively loaded vesicles by a factor of 2-3 in media containing 10(-6)-10(-3) M Ca2+. At 10(-9) M Ca2+, calmodulin was without effect. 45Ca2+ release rates were varied 1000-fold (k1 approximately equal to 0.1-100 s-1) by using 10(-5) M Ca2+ with either Mg2+ or the ATP analogue adenosine 5'-(beta,gamma-methylenetriphosphate) in the release medium. In all instances, a similar 2-3-fold reduction in release rates was observed. At 10(-5) M Ca2+, 45Ca2+ release was half-maximally inhibited by about 2 X 10(-7) M calmodulin, and this inhibition was reversible. Heavy SR vesicle fractions contained 0.1-02 micrograms of endogenous calmodulin/mg of vesicle protein. However, the calmodulin inhibitors trifluoperazine, calmidazolium, and compound 48/80 were without significant effect on 45Ca2+ release at concentrations which inhibit calmodulin-mediated reactions in other systems. Studies with actively loaded vesicles also suggested that heavy SR vesicles contain a Ca2+ permeation system that is inhibited by calmodulin.  相似文献   

9.
10.
11.
Efforts have been directed toward an evaluation of the influence of skin temperature changes on the regulation of sweating. Two possible negative feedback loops have been considered. The first of these is of a local nature appearing to be a direct effect of temperature upon either the sweat gland or the neuroglandular junction. This influence was demonstrated by continuously monitoring the sweating rate of small skin areas being artificially heated or cooled. The second negative feedback loop involves peripheral thermal receptors and the central nervous system. This influence was demonstrated by heating or cooling skin surfaces below an arterial occlusion and monitoring sweating rates from areas above the occlusion.Although both negative feedback loops exert a powerful influence, their contribution to overall thermal regulation has not been assessed.
Zusammenfassung Es wurde versucht, den Einfluss der Änderungen der Hauttemperatur auf die Regulation des Schwitzens zu prüfen. Zwei mögliche negative Rückkoppelungen sind betrachtet worden.Die erste ist lokaler Natur und scheint eine direkte Wirkung der Temperatur entweder auf die Schweissdrüse selbst oder auf ihre nervalen Verbindungen darzustellen. Dieser Einfluss wurde nachgewiesen durch die fortgesetzte Überwachung des Ausmasses des Schwitzens kleiner Hautgebiete, die künstlich erhitzt oder abgekühlt wurden. Die zweite negative Rückkoppelung schliesst die peripheren Temperaturrezeptoren und das Zentrale Nervensystem ein. Dieser Einfluss wurde durch Erhitzung oder Abkühlung von Hautoberflächen unterhalb eines arteriellen Verschlusses nachgewiesen, wobei das Ausmass des Schwitzens an Hautstellen oberhalb des Verschlusses überwacht wurde.Obwohl beide negativen Rückkoppelungswege von wesentlicher Bedeutung sind, lässt sich ihr Beitrag zur gesamten Thermoregulation noch nicht abschätzen.

Resume On cherche à évaluer l'influence des modifications de la température de la peau sur la régulation de la sécrétion de sueur. On considère deux possibilités de relation. La première est de nature locale et semble représenter un effet direct de la température soit sur les glandes sudoripares elles-mêmes,soit sur leurs liaisons nerveuses. On a pu prouver cette influence en surveillant continuellement la quantité de sueur sécrétée sur de petites surfaces de peau chauffées ou refroidies artificiellement. Le second rapport englobe les récepteurs thermiques et le système nerveux central. On a pu prouver cette influence en réchauffant ou refroidissant la peau au-dessous d'un garrot artériel tout en observant la sueur sécrétée au-dessus du dit garrot. Bien que chacune de ces deux relation soit primordiale, on ne peut encore se prononcer sur leur importance pour la régularisation thermique dans son ensemble.


Work done during tenure as a trainee of U.S. Public Health Service Training Program Grant GM1233-02.A major portion of this paper was presented during the Fourth International Biometeorological Congress, New Brunswick, N.J., USA, 26 August–2 September 1966. This work was sponsored by the U.S. Army Medical Corps Contract D.A. 49-007-MD-947.  相似文献   

12.
In many tissues, norepinephrine appears to inhibit its own release through an interaction at alpha adrenergic receptors. We have developed an assay for measuring the release of endogenous norepinephrine based on HPLC and have studied the regulation of release in the rat submandibular gland by alpha adrenergic antagonists. The method uses electrochemical detection to quantitate norepinephrine released from tissue slices and does not require preloading of the tissue with [3H]norepinephrine. Yohimbine, an alpha-2 adrenergic antagonist, potentiates by 50% the release caused by potassium induced depolarization with an EC50 of 0.14 microM. Prazosin, an alpha-1 antagonist, has a similar effect, but is less potent with an EC50 of 0.77 microM. Thus, the alpha adrenergic receptor mediating the regulation of norepinephrine release is of the alpha-2 subtype. The observed equal efficacies and lack of additivity of release potentiation by yohimbine and prazosin at maximal doses suggest that both drugs act at the same receptor. The five-fold difference in potency between prazosin and yohimbine is consistent with the recent observations indicating species differences between rodent and non-rodent alpha-2 adrenergic receptors.  相似文献   

13.
Kinetics of release of norepinephrine by tyramine   总被引:3,自引:0,他引:3  
  相似文献   

14.
In photosynthesis Rubisco catalyses the assimilation of CO(2) by the carboxylation of ribulose-1,5-bisphosphate. However, the catalytic properties of Rubisco are not optimal for current or projected environments and limit the efficiency of photosynthesis. Rubisco activity is highly regulated in response to short-term fluctuations in the environment, although such regulation may not be optimally poised for crop productivity. The regulation of Rubisco activity in higher plants is reviewed here, including the role of Rubisco activase, tight binding inhibitors, and the impact of abiotic stress upon them.  相似文献   

15.
16.
Oscillatory gene expression plays an important role in somite segmentation during the early developmental stages of vertebrates. Recent experimental studies have shown that microRNA can regulate gene expression by stimulating degradation of mRNA and/or repression of translation. In this communication, we incorporate miRNA into a previous mathematical model of gene expression with delayed negative feedback and demonstrate how this modified model can elucidate the possible effect of miRNA on the oscillatory gene expression. Our finding suggests that miRNA maybe a destabilizing or stabilizing factor in the dynamics of gene expression depending on the severity of its effect on mRNA degradation. Our finding provides testable hypothesis for experimental biologists to further investigate miRNA's increasing functional roles in regulating cellular processes and development.  相似文献   

17.
For many years, the norepinephrine transporter (NET) was considered a 'static' protein that contributed to the termination of the action of norepinephrine in the synapse of noradrenergic neurons. The concept that the NET is dynamically regulated, adjusting noradrenergic transmission by changing its function and/or expression, was considered initially in the mid 1980s. Since that time, a plethora of studies demonstrate that the NET is regulated by several intracellular and extracellular signaling molecules, and that phosphorylation of the NET is a major pathway regulating its cell surface expression and thereby its function. The NET is a target of action of a number of drugs that are used long-term therapeutically or abused chronically. This has driven numerous investigations of how the NET and its function are regulated by long-term exposure to drugs. While repeated exposure to many drugs has been shown to affect NET function and expression, the intracellular mechanisms for these effects remains elusive.  相似文献   

18.
A distinct role for norepinephrine in memory retrieval   总被引:9,自引:0,他引:9  
Murchison CF  Zhang XY  Zhang WP  Ouyang M  Lee A  Thomas SA 《Cell》2004,117(1):131-143
A role for norepinephrine in learning and memory has been elusive and controversial. A longstanding hypothesis states that the adrenergic nervous system mediates enhanced memory consolidation of emotional events. We tested this hypothesis in several learning tasks using mutant mice conditionally lacking norepinephrine and epinephrine, as well as control mice and rats treated with adrenergic receptor agonists and antagonists. We find that adrenergic signaling is critical for the retrieval of intermediate-term contextual and spatial memories, but is not necessary for the retrieval or consolidation of emotional memories in general. The role of norepinephrine in retrieval requires signaling through the beta(1)-adrenergic receptor in the hippocampus. The results demonstrate that mechanisms of memory retrieval can vary over time and can be different from those required for acquisition or consolidation. These findings may be relevant to symptoms in several neuropsychiatric disorders as well as the treatment of cardiac failure with beta blockers.  相似文献   

19.
20.
We show that difficulties in regulating cellular behavior with synthetic biological circuits may be circumvented using in silico feedback control. By tracking a circuit's output in Saccharomyces cerevisiae in real time, we precisely control its behavior using an in silico feedback algorithm to compute regulatory inputs implemented through a genetically encoded light-responsive module. Moving control functions outside the cell should enable more sophisticated manipulation of cellular processes whenever real-time measurements of cellular variables are possible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号