首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Most insects' assemblages differ with forest type and show vertical stratification. We tested for differences in richness, abundance and composition of hymenopteran families and mymarid genera between sugar maple (Acer saccharum) and white pine (Pinus strobus) stands and between canopy and understory in northeastern temperate forests in Canada. We used flight interception traps (modified malaise traps) suspended in the canopy and the understory in a split-split block design, with forest type as the main factor, forest stratum as the first split factor, and collection bottle location as the second split factor. Hymenopteran families and mymarid genera differed in their diversity depending on forest type and stratum. Both family and genera richness were higher in maple than in pine forests, whereas family richness was higher in the canopy and top bottles and generic richness was higher in the understory and bottom bottles. Multivariate analysis separated samples by forest type, vegetation stratum, and bottle location. Family composition showed 77% similarity between forest types and 73% between the canopy and understory. At the lower taxa level, mymarid genera showed only 47% similarity between forest types and 40% between forest strata, indicating vertical stratification and relatively high beta-diversity. Our study suggests that hymenopteran diversity and composition is strongly dependent on forest type and structure, making flying members of this order particularly vulnerable to forest management practices. It also shows that insect assemblage composition (especially at low-taxon levels), rather than relative abundance and richness, is the community attribute most sensitive to forest type and vertical stratification.  相似文献   

2.
1 Herbicides are commonly applied under grapevines in Australia to remove weeds and thereby to avoid water loss through transpiration. 2 Interest in sustainability promotes a reduction in chemical inputs, including herbicides, leading to trials with surface mulches to suppress weeds. 3 Surface mulches may also influence the abundance of a range of invertebrates. Potentially, an increase in natural enemies will contribute to pest control and encourage a reduction in pesticide application. 4 We used three trapping methods and direct soil sampling to assess invertebrates at ground level, in the canopy and in the soil to determine the influence of mulch on natural enemies, potential pests and soil macroinvertebrates, including earthworms. 5 Collections sorted to family demonstrated that the addition of straw or compost mulches increased natural enemies collected with pitfall traps and soil organisms. However, there was no clear indication of the overall superiority of either mulch. 6 Abundance of ground beetles, parasitoid Hymenoptera and spiders collected with pitfall traps were increased by the addition of mulches. In the canopy, predatory and parasitic Diptera and predatory Hemiptera increased after mulching. 7 Earthworms collected by hand sorting soil increased with straw mulching. 8 No influence on pests was detected. Although Lepidoptera and Sigmurethra, collected in pitfall traps, increased with straw mulching, neither included pest species. 9 The results are discussed with reference to the potential economic impact of mulches.  相似文献   

3.
1. Dispersal ability influences the distribution and abundance of organisms, but empirical investigations of the relationship between dispersal ability and the composition of ecological assemblages are scarce. Here, we compare between-site variation in the species richness and community composition of actively and passively dispersing pond invertebrates.
2. Coleoptera (active dispersers) and microcrustacea (passive dispersers) were sampled over a season from 16 ponds within a 4-km radius in south-west England. Species richness and community composition were related to environmental variables using regression and Canonical Correspondence Analysis (CCA), respectively.
3. Coleopteran species richness was significantly and positively correlated with pond permanence and maximum area, whereas microcrustacean species richness was relatively equal across sites and did not correlate with environmental variables. The frequency of species' occurrence between sites was the same for both groups, which suggests that active and passive dispersers exhibited the same degree of dispersal.
4. Between-site variation in community composition was non-random for both groups, with pond permanence and area, together, explaining similar proportions of between-site variation for Coleoptera. Permanence was correlated most strongly with microcrustacean community composition and a high proportion (25%) of microcrustacean species were more numerous in smaller, more ephemeral ponds.
5. These data suggest that, at small spatial scales, Coleoptera which can undertake multiple dispersal events, are more likely to colonise large, more permanent ponds than passively dispersing microcrustacea. For microcrustacea, other traits (in this case those permitting existence in ephemeral habitats) may over-ride the influences of dispersal in driving between-site variation in species composition.  相似文献   

4.
《Biological Control》2010,55(3):248-254
Undisturbed vegetation within agricultural areas, especially woody vegetation, has been documented to enhance natural invertebrate enemies within adjacent crops, particularly in northern Europe. To test this idea within the context of Australian vineyards, we considered 44 landscapes from two regions, and sampled invertebrates in vineyards central to each landscape five times at monthly intervals using canopy sticky traps. Landscape composition was characterized at 11 spatial scales from 95 m to 3 km radius. We found only weak relationships between woody vegetation and the abundance of invertebrate groups including coccinellids at any spatial scale, regardless of whether the contribution of each scale was considered independently or together using a multiple regression approach. The only consistent pattern was that several families of parasitoids were influenced by woody vegetation at the landscape scale; the abundance of Eulophidae increased with woody vegetation in the landscape, while two families of smaller parasitoids, Trichogrammatidae and Mymaridae, were negatively affected by woody vegetation. We discuss possible reasons for these apparent contrasting patterns between Australian and European studies.  相似文献   

5.
1. The effects of substratum stability on the diversity of stream invertebrates were assessed at two spatial scales in a Japanese stream during baseflow, from May to June 1998. Deposition and erosion were examined separately as distinct elements of substratum stability by a newly developed method using small steel pins. Stream invertebrates were sampled after 28 days of measurement of substratum stability. We also measured physical environmental variables, current velocity and depth, and food resource parameters including periphyton and particulate organic matter (POM) standing crops.
2. At the scale of the habitat patch, the effects of substratum stability on invertebrates were overwhelmed by those of POM standing crop. Moreover, higher taxon richness at high abundance may simply result from a higher likelihood of more taxa being included in samples. Therefore, this small scale revealed no role for substratum stability in explaining spatial pattern of community diversity.
3. At the reach scale ( n =10), taxon richness and evenness peaked at an intermediate level of deposition, whereas invertebrate abundance did not show any significant relationship. This result, and the pattern of relative abundance of common taxa, implies that the diversity of stream invertebrates was determined by subtle substratum movements and by the habitat preference of each taxon.
4. The difference in the determinant of community parameters between the habitat patch and the reach affirm the importance of a cross-scale analysis to choose an appropriate spatial scale for investigating the community structure of stream invertebrates. Prominent effects of substratum stability, particularly the deposition of substratum particles, during baseflow suggest that subtle and constant movement of small substratum particles can contribute to determine the diversity of stream invertebrates.  相似文献   

6.
1. Taxonomic composition and abundance of heterotrophic flagellates (HF) were studied in 55 lakes with different trophy in northern Germany using a live-counting technique.
2. Mean abundances and biomasses of HF ranged from 169 cells L−1 and 22 μg L−1 in mesotrophic lakes to 2439 cells mL–1 and 475 μg L−1 in hypertrophic lakes, respectively. Highest values were generally observed in spring, but mesotrophic lakes showed maximum values in early summer.
3. The taxonomic composition of HF was not significantly influenced by lake trophy and season. The major fraction of HF consisted of chrysomonads and Protista incertae sedis; other important groups were choanoflagellates and bicosoecids. The size distribution of HF changed with lake trophy and season, with a higher proportion of large HF (> 10 μm) in hypertrophic lakes and in spring, respectively.
4. Correlation analyses revealed a strong negative impact of cladocerans on total HF biomass and especially on large HF. Ciliates and large bacteria (> 10 μm) were strongly positively correlated with HF biomass; small bacteria (< 2 μm) showed a weak positive correlation.
5. Analyses at the level of species and genera revealed distinct distribution patterns of some taxa. Paraphysomonas , Aulacomonas and Quadricilia as large-bodied HF showed highest abundance in hypertrophic lakes and in spring. Attached taxa (e.g. Monosiga , Salpingoeca amphoridium ) were highly abundant in late summer and autumn, whereas Spumella and Kathablepharis occurred frequently in most samples.  相似文献   

7.
Abstract.  1. The effects of prescribed fire on ant community structure were examined in a regenerating longleaf pine savanna in Florida, U.S.A. The presence of ants on 20, 10 × 10 m plots was determined by baiting every 1–3 months from 18 months before a fire until 6 months afterwards.
2. Expected species richness (based on rarefaction) and species density 6 months post-fire were significantly lower than for the same month (September) 6 months before the fire.
3. Cluster analysis revealed that the effects of fire were far less important predictors of ant community structure than seasonality and unexplained inter-annual variation. Thus, overall, the impacts of fire were relatively minor and short term at the community level.
4. Different functional groups of ants (as defined by Andersen, 1997) responded to fire in strikingly different ways. Generalised Myrmicinae (e.g. Pheidole spp., Monomorium viride ) were affected more severely by fire than were the other functional groups. In contrast, the dominant Dolichoderinae ( Forelius pruinosus ) exhibited a large increase after the fire and seemed to be responsible for the decline in abundance of several species.
5. A strong negative correlation between F. pruinosus and other groups of ants immediately after the fire suggested more intense competition among ants at that time. Six months post-fire, the abundance of F. pruinosus decreased markedly and the abundance of other species rebounded.
6. The rapid post-fire recovery of the ant community probably reflects adaptations of ants to a chronic fire regime.  相似文献   

8.
1.  There is still considerable debate about the most effective methods of sampling invertebrates in monitoring and assessment programmes.
2.  The above-ground invertebrates of a limestone grassland in north-east England were compared between samples from pitfall traps and from a D-vac suction trap combined with a lightweight swish net (SW/DV).
3.  Over 14 000 individuals were captured, with similar numbers in the pitfall and SW/DV samples. A total of 480 species of Hemiptera, Coleoptera, Diptera and Araneae was identified and placed into 14 taxa for further analysis.
4.  The pitfall sample produced species/specimen curves from which it was possible to estimate species richness for all the Coleoptera and Araneae taxa and the calypterate Schizophora. The SW/DV sample was adequate to estimate the species richness of Hemiptera, most Diptera taxa, herbivorous Coleoptera and Linyphiidae.
5.  The proportion of Coleoptera and Araneae taxa that were method-unique was higher in the pitfall sample than the SW/DV sample and vice versa for the Hemiptera and Diptera taxa. Nevertheless, a relatively high proportion of method-unique species of most taxa was found in both sample types, indicating that they can each contribute to assessing species assemblages in grasslands.
6.  Both pitfall traps and SW/DV samples are needed to estimate species richness in grasslands for all taxa except Heteroptera, Homoptera and Lycosidae. Herbivorous Coleoptera and Linyphiidae were collected in numbers adequate for assessing richness in both sample types, but more specimens were required in one or other sample for the remaining taxa.  相似文献   

9.
1 Relationships between microhabitat variables (altitude, inclination, topographic position, drainage, canopy height) and the distribution and abundance of palms and palm-like plants in 50 ha of old-growth terra firme rain forest in the Yasuní National Park, lowland Amazonian Ecuador, were examined using 118 20 × 20 m plots laid out in a stratified random design.
2 If microhabitat niche differentiation is important for maintaining the species richness of the community, then (i) the distribution of the palms will be strongly influenced by microhabitat heterogeneity and (ii) palms of similar growth form will show antagonistic microhabitat relationships.
3 Mantel and cluster analyses showed that palm species distributions were strongly structured by topography. The main difference in species composition was between plots in the bottomland and plots on the upper slopes and hill tops.
4 Logistic and logit analyses showed that 20 of the 31 palm and palm-like taxa analysed had distributions that were significantly related to the microhabitat variables measured, mainly to topography but also to drainage and canopy height.
5 Spatial autocorrelation in the overall community structure was not explained by the microhabitat variables. Analyses of distributions or abundances of single species showed neighbourhood effects for seven taxa.
6 Antagonistic patterns of microhabitat preferences were recognizable among some species pairs of small palms, medium-sized palms and palm-like plants, but not among canopy palms.
7 It is concluded that microhabitat specialization is an important factor in maintaining the diversity of this palm community, while mass effects might also be important.  相似文献   

10.
Abstract.  1. Colonisation of ephemeral aquatic habitats via oviposition by invertebrates may be influenced by a variety of factors, such as the quality of aquatic habitat and the characteristics of the surrounding terrestrial environment. The water-holding bracts of Heliconia caribaea , a subtropical herb that produces ephemeral aquatic habitats, are colonised by a variety of aquatic invertebrates. To date, no experiments have been conducted to identify the cues that affect colonisation patterns via oviposition selection in Heliconia .
2. Artificial bracts were used to assess the influence of two types of resources found in bracts (plant produced carbohydrates and terrestrial snail faeces) on oviposition site-selection by invertebrate taxa via a replicated factorial design at four locations in the Luquillo Experimental Forest of Puerto Rico, U.S.A. Eleven microsite characteristics thought to affect oviposition were measured for each experimental container.
3. Most taxa responded in a minor way to microsite characteristics, whereas site selection by the most numerically dominant groups (e.g. Syrphidae) were influenced principally by resources within artificial bracts. Overall, the greatest response by particular taxa was to the presence of snail faeces. At the community level, total abundance, richness, and evenness of invertebrates increased with increasing biomass of faeces. Variation in sugar produced a more complex response.
4. In general, the terrestrial matrix surrounding these aquatic habitats was only a secondary determinant of population and community attributes; the principal factor affecting site selection was the quality of the aquatic habitat.  相似文献   

11.
1. The Chinese brake fern (Pteris vittata L.; Pteridaceae) can accumulate up to 27 000 mg kg?1 dry wt. of arsenic (As) from the soil into its above‐ground biomass. They may use this As to deter invertebrate threats. 2. This study explored how As concentrations [As] in the fern, and in soil associated with the fern, influenced the abundance and composition of various invertebrates. 3. Populations of P. vittata were identified in the field. Soils from the base of the fern and from 3 m away of each plant were collected and pitfall traps were installed. Soil and fern arsenic concentrations ([As]) were measured via inductively coupled plasma mass spectrometry and invertebrates were identified to order and classified by feeding guild. 4. Increased [As] did not affect all feeding guilds and orders equally. For example, individual herbivore abundance did not decrease as [As] increased, but predator abundance did. In many cases, the impact of soil [As] on invertebrates depended on the distance from the fern. Fern [As] also influenced components of the community, but only at 3 m away from the fern. Furthermore, the abundances of many invertebrate groups were higher beneath the fern, where [As] was higher. 5. These results suggest that hyperaccumulated As can impact the invertebrate community, but the defensive benefits of hyperaccumulation are more complex than have been previously described. The authors advocate that future studies examining the potential defensive benefits of hyperaccumulation should do so in a natural setting that incorporates this complexity and invertebrate richness.  相似文献   

12.
Abstract.  1. Forest entomofauna retain high diversity, and examining beta diversity, or species turnover, among assemblages in a forest community is vital to elucidate the source of this diversity.
2. Under the DIVERSITAS in Western Pacific and Asia–International Biodiversity Observation Year (DIWPA–IBOY) project for simultaneously documenting biodiversity throughout the Western Pacific and Asian Region, 892 lepidopteran species (51 742 specimens) and 355 coleopteran species (11 633 specimens) were collected in 2001 by light traps in a cool–temperate forest in northern Japan.
3. This study evaluated the beta diversity of lepidopteran and coleopteran communities by ecological categories (i.e. trap location, forest strata, sampling days, and months), and assessed the habitat preferences of lepidopteran and coleopteran species.
4.  anova -like additive apportioning models were used to quantify the beta diversity among the categories. The models simultaneously provide assessments of whether species distributions are biased in favour of particular habitats.
5. Significantly high beta diversity was observed among months for both Lepidoptera and Coleoptera. The category of months corresponded fairly well to the number of specialist species detected in the category, although a remarkably large number of significant specialists in Coleoptera were observed on strata.
6. The high beta diversity and number of specialist species among strata in both communities indicate that stratification between canopy and ground, and seasonal variation, played major roles in species composition and the rich entomofauna in the forest. Highly mobile adults were influenced by the vertical spatial scale, as previously suggested for larvae.  相似文献   

13.
1 We characterized and compared diversity patterns of canopy and understorey spiders (Arachnida: Araneae) on sugar maple ( Acer saccharum Marsh.) and American beech ( Fagus grandifolia Ehrh.) in hardwood forests of southern Québec, Canada.
2 We sampled canopies of 45 sugar maple and 45 American beech trees and associated understorey saplings in mature protected forests near Montréal. Samples were obtained by beating the crown foliage at various heights and by beating saplings around each tree.
3 Eighty-two species were identified from 13 669 individuals. Forty-eight species and 3860 individuals and 72 species and 9809 individuals were collected from the canopy and the understorey, respectively.
4 Multivariate analyses (NMDS ordination and NPMANOVA) showed the composition of canopy and understorey assemblages differed significantly, and canopy assemblages differed between tree species. Rank-abundance distribution models fitted to the canopy and understorey data indicated that different mechanisms structure the assemblages in both habitats. Three abundant spider species were significantly more common in the canopy; ten species were collected significantly more often in the understorey.
5 The forest canopy was shown to be an important reservoir for spider diversity in north-temperate forests.  相似文献   

14.
Abstract.  1. Vegetation structural complexity is an important factor influencing ecological interactions between different trophic levels. In order to investigate relationships between the architecture of trees, the presence of arthropod predators, and survival and parasitism of the autumnal moth Epirrita autumnata Borkhausen, two sets of experiments were conducted.
2. In one experiment, the architectural complexity of mountain birch was manipulated to separate the effects of plant structure and age. In the other experiment the trees were left intact, but chosen to represent varying degrees of natural complexity. Young autumnal moth larvae were placed on the trees and their survival was monitored during the larval period.
3. The larvae survived longer in more complex trees if predation by ants was prevented with a glue ring, whereas in control trees smaller canopy size improved survival times in one experiment. The density of ants observed in the trees was not affected by canopy size but spider density was higher on smaller trees. The effect of canopy structure on larval parasitism was weak; larger canopy size decreased parasitism only in one year. Until the fourth instar the larvae travelled shorter distances in trees with reduced branchiness than in trees with reduced foliage or control treatments. Canopy structure manipulation by pruning did not alter the quality of leaves as food for larvae.
4. The effect of canopy structure on herbivore survival may depend on natural enemy abundance and foraging strategy. In complex canopies herbivores are probably better able to escape predation by ambushing spiders but not by actively searching ants.  相似文献   

15.
Abstract.  1. Aquatic macro-invertebrates have frequently been used as biological indicators in lotic environments but much less commonly so in lentic habitats. Dragonflies and damselflies (Order Odonata) satisfy most selection criteria for lentic bioindicators of grazing impacts.
2. Intensive cattle grazing affects most of the Canadian prairie pothole region but the effects of grazing on wetlands are poorly understood.
3. Here the vegetation structure and invertebrate community composition of 27 prairie potholes in Alberta, Canada were studied and compared. Wetlands were evenly divided into three treatments of different grazing regimes.
4. Removal of emergent vegetation by cattle grazing decreased odonate abundance and reproductive effort. Shorter Scirpus acutus stems resulted in significantly fewer damselflies (Suborder Zygoptera) and lower reproductive efforts.
5. Overall odonate diversity was affected by the height of key plant species, highlighting the importance of the vegetation structure of both emergent vegetation for breeding and adjacent upland vegetation for nocturnal roosts. Wetland vegetation structure was more important than vegetation composition to the life history of odonates.
6. Wetland water quality parameters of nitrogen, phosphorus, total dissolved solids (TDS), and chlorophyll-a concentration did not change due to the presence of grazing cattle at wetlands so water quality influences were rejected as mechanisms of change.
7. Larval odonate diversity and abundance was positively correlated with overall aquatic macro-invertebrate diversity and abundance, hence it was concluded that the larval odonate community can be an accurate bioindicator of intactness and diversity of overall aquatic macro-invertebrate communities in Canadian prairie wetlands.  相似文献   

16.
17.
1 Subsequent to the diversity of saproxylic beetles being proposed as a management tool in forestry, more explicit knowledge about the efficiency and selective properties of beetle sampling methods is needed.
2 We compared saproxylic beetle assemblages caught by alcohol-baited or unbaited window traps in different forest contexts. Considering that trap attractiveness depends on kairomone concentrations, we appraised whether the trap efficiency was influenced by trap environment (openness and local supply of fresh dead wood).
3 Saproxylic beetles were sampled using 48 cross-vane window flight traps, arranged in paired designs (alcohol-baited/unbaited), in eight ancient and eight recent gaps (open stands), and eight closed-canopy control stands in an upland beech forest in the French Pyrenees.
4 Baited traps were more efficient than unbaited traps in terms of abundance and richness in our deciduous forests. The ethanol lure did not have any repellent effect on the individual response of saproxylic taxa.
5 The influence of local environmental conditions on trap attractiveness was observed. Openness had a significant moderate effect on species richness. Trap attractiveness was slightly reduced in the alcohol-saturated environment of recent gaps probably due to a disruption by local fresh dead-wood concentrations of the kairomonal response of saproxylic beetles to baited traps ('alcohol disruption').
6 Because the ethanol lure enhanced the probability of species detection, it may be useful in early-warning surveillance, monitoring and control of wood borers, despite slight influences of local conditions on baited trap efficiency.  相似文献   

18.
1. We studied the effect of mesh size (6 and 3 mm) on interactions between brown trout ( Salmo trutta ) and benthic invertebrates in enclosures placed in a stream in southern Sweden. We also compared how different prey exchange rates affected interactions between trout and invertebrates.
2. Trout had strong impacts on some benthic taxa, and different mesh sizes produced different patterns. Trout affected the abundance of 10 of the 21 taxa examined, six in enclosures with 3 mm mesh and six in enclosures with 6 mm mesh. The abundance of nine of the prey taxa was lower in the presence of trout, only leptocerids were more numerous in the presence of trout.
3. Our measurements of prey immigration/emigration, together with trout diet data, suggest that direct consumption by trout, rather than avoidance behaviour by prey, explains most decreases in prey abundance. There was avoidance behaviour by only two of the twenty-one prey taxa, with trout inducing emigration of the mayflies Baetis rhodani and Paraleptophlebia sp.
4. Trout indirectly increased periphyton biomass in both 3 and 6 mm enclosures. The effect of trout on periphyton was probably due to strong effects of trout on the grazer, Baetis rhodani , Heptagenia sp. and Paralepthoplebia sp.
5. Our results suggest that mesh size, through its effects on exchange rates of prey, may affect interactions between predators and prey in running waters, but that the effects of dispersal and predation on invertebrates are taxon specific.  相似文献   

19.
Domestic gardens, typically consisting of a mixture of native and non-native plants, support biodiversity. The relative value of these native and non-native plants for invertebrates is largely unknown. To address this a replicated field experiment with plots planted with one of three assemblages of non-invasive perennial and shrubby garden plants (treatments), based on plant origin [UK native, near-native (Northern Hemisphere) and Exotic (Southern Hemisphere)] was established. Over 4 years the invertebrates were recorded by Vortis suction sampler and amount of plant material measured. The abundance of above ground plant-inhabiting invertebrates increased with canopy cover and was higher on the native treatment. For several functional groups including herbivores and some predatory groups the near-native plants supported only marginally fewer individuals compared to native plots, with exotic plants being less favoured. The experiment demonstrated that gardens and other cultivated ornamental plantings support a wide range of plant-inhabiting invertebrates from primary functional groups regardless of the plants’ origin and the more plant matter (canopy cover) available the greater the abundance. Greater abundance of invertebrates will be supported by gardens and cultivated planting schemes with plantings biased towards native and near-native plants and that provide dense vegetation cover. However, exotic plants should not be dismissed as these are inhabited by some invertebrates.  相似文献   

20.
1. We examined the effects of nutrients, turbulent mixing, mosquitofish, Gambusia affinis Baird and Girard and sediments on algal composition, algal biomass and autotrophic picoplankton (APP) abundance in a 6-week experiment of factorial design in twenty-four 5-m3 outdoor mesocosms during late autumn 1995.
2. Turbulent mixing decreased surface temperature and increased turbidity, which also was increased by the addition of sediments. Total algal biomass was significantly enhanced by nutrients and mixing, and decreased by the sediment treatment. In the mixing × nutrient treatment, algal biomass increased more than expected from the individual effects, while the fish × mixing and mixing × sediment treatments increased algal biomass less than expected.
3.  Cryptomonas (cryptomonad) blooms were observed in the unmixed, high nutrient treatment; Synedra (diatom) blooms were observed in the high nutrient, high sediment treatment; Ulothrix (green algae) blooms were observed in the mixed, high nutrient, low sediment treatment.
4. Eukaryotic APP abundances were increased by sediment addition and by turbulent mixing, and increased synergistically by mixing × sediment and mixing × nutrient interactions. Prokaryotic APP abundances were decreased by nutrient enhancement and by a mixing × nutrient interaction. There were no main effects of fish on APP abundance, but fish were involved in some of the two–way interactions.
5. The large number of significant interaction effects indicates that APP and other phytoplankton are regulated by a complex set of interdependent factors which should be considered simultaneously in studies of phytoplankton population dynamics and community composition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号