首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 39 毫秒
1.
We show here that serum of piaussu, a Neotropical characin fish, has the highest butyrylcholinesterase activity so far described for humans and fish. To clarify whether this cholinesterase could protect piaussu against anticholinesterase pesticides by scavenging organophosphates, we purified it 1700-fold, with a yield of 80%. Augmenting concentrations (from 0.01 to 20 mM) of butyrylthiocholine activated it. The pure enzyme was highly inhibited by chlorpyriphos-oxon (ki=10,434x10(6) M-1 min-1) and by the specific butyrylcholinesterase inhibitor, isoOMPA (ki=45.7x10(6) M-1 min-1). Electrophoresis of total serum and 2-D electrophoresis of the purified cholinesterase showed that some enzyme molecules could circulate in piaussu serum as heterogeneously glycosylated dimers. The enzyme's N-terminal sequence was similar to sequences found for butyrylcholinesterase from sera of other vertebrates. Altogether, our data present a novel butyrylcholinesterase with the potential of protecting a fish from poisoning by organophosphates.  相似文献   

2.
Human serum cleaves two dipeptides from the N-terminus of the neurohormone substance P. It has been suggested that this degrading activity is inherent to serum cholinesterase. We oppose this, because it turned out that highly purified serum cholinesterase contains traces of dipeptidyl peptidase IV, an enzyme known to attack the N-terminus of substance P. The peptidase is incompletely separated from cholinesterase during the procainamide-gel affinity chromatography as the last step of the usual purification procedure. Physostigmine completely inhibits the hydrolysis of butyrylthiocholine by such purified cholinesterase preparations, but not their substance P-degrading activity. Vice versa, epsilon-carbobenzoxy-lysylproline, an inhibitor of dipeptidyl peptidase IV, inhibits the peptidase activity of these preparations more than their esterase activity. After rechromatography on procainamide gel the peptidase is completely separated and the remaining cholinesterase has lost its substance P-degrading activity. We conclude that the N-terminal region of substance P is not degraded by cholinesterase but by the contaminating dipeptidyl peptidase IV, a different serine enzyme.  相似文献   

3.
A Chatonnet  P Masson 《Biochimie》1986,68(5):657-667
The peptidase site of human plasma cholinesterase (butyrylcholinesterase) is distinct from its esteratic site. We found that the number of peptidase sites on an enzyme highly purified from pooled plasma is less than 0.1, as compared with 4 esteratic sites, per tetramer. However, the subunits which carry the peptidase sites are electrophoretically indistinguishable from esteratic subunits. The atypical-silent enzyme (Ea1Es1) had a much higher absolute peptidase activity when substance P was used as the substrate, and we found that the number of peptidase and esteratic sites of this enzyme was roughly the same. This suggests that the mutated esteratic site of the silent possesses a peptidase activity. The esteratic site of the usual allozyme (Eu1Eu1) has no peptidase activity towards substance P. However, a small proportion of peptidase subunits are present in all preparations of enzymes purified from the plasmas of homozygote individuals. The peptidase activity of butyrylcholinesterase might therefore correspond to a specific isoenzyme produced by an epigenetic mechanism or produced by a gene distinct from genes E1 and E2 encoding for cholinesterase subunits. However, the possibility that highly purified cholinesterase contains traces of a dipeptidylaminopeptidase cannot be completely ruled out.  相似文献   

4.
X-Pro dipeptidyl-aminopeptidase (EC 3.4.14.1) purified homogeneously from the human submaxillary gland was proved to hydrolyze N-terminal dipeptide Arg1-Pro2 and subsequent dipeptide Lys3-Pro4 from substance P (Arg-Pro-Lys-Pro-Gln-Gln-Phe-Phe-gly-Leu-Met-NH2). Km and V values of hydrolysis of substance P were 2.0 mM and 3.6 mumol/min per mg protein, respectively. In contrast, the N-terminal Arg-Pro of bradykinin (Arg-Pro-Pro-Gly-Phe-Ser-Pro-Phe-Arg) was not cleaved by the enzyme.  相似文献   

5.
In terminally differentiated epidermal cells dipeptidyl peptidase IV (EC 3.4.14.5) (DPP IV) is present mainly in a soluble form. We purified the enzyme from 2-day-old rat cornified cells to homogeneity by Sephadex G-200 and Mono-Q column chromatography and finally HPLC gel filtration on G3000SW. The enzyme was estimated to be Mr 190,000 by HPLC gel filtration and Mr 90,000 by sodium dodecyl sulfate-electrophoresis. The enzyme showed general properties reported for detergent-solubilized DPP IV from other tissues. It was Con A binding and almost completely inhibited by 1 mM diisopropyl fluorophosphate and Diprotin A. The pI was 5.6 and the pH optimum was 7.5. The specific activity for Gly-Pro-p-nitroanilide was 31.9 units/mg. HPLC analysis demonstrated the release of dipeptides of the N-terminal of substance P, beta-casomorphin, and their related peptides. A stoichiometric reaction of the enzyme on substance P was observed. The epidermal DPP IV had a Km of 0.3 mM and a kcat of 50.3 s-1 for substance P and the Km value decreased by shortening the peptide from the carboxyl-terminal amino acids. The enzyme hydrolyzed human and bovine beta-casomorphin with Km values of 0.025 and 0.05 mM, respectively. Shortening the bovine beta-casomorphin peptide chain did not affect enzyme affinity.  相似文献   

6.
We determined changes in prolyl endopeptidase activity in developing rat brain. A new and highly sensitive fluorogenic substrate, 7-(succinyl-Gly-Pro)-4-methylcoumarinamide, was used for determination of the enzyme activity. The enzyme activity per brain increased until 2 weeks of age, and then decreased during maturation. The enzyme was purified about 7800-fold from the brain of the rat at 2 or 3 weeks of age. The enzyme has a pH optimum of 5.8 to 6.5, and an approximate molecular weight of 70,000. The enzyme activity was completely inhibited by low concentrations of diisopropylfluorophosphate and partially inhibited by high concentrations of phenylmethanesulphonylfluoride, which are potent serine protease inhibitors. Moreover, thiolblocking agents and some heavy metals also have a strong effect on the activity. Bacitracin was found to be a potent inhibitor, with an IC50 value of 2.5 x 10(-6) M at 0.5 mM of the substrate. The enzyme was proved to hydrolyze the NH2-terminal tetrapeptide. Arg1-Pro2-Lys3-Pro4, from substance P to produce the heptapeptide, Gln5-Gln6-Phe7-Phe8-Gly9-Leu10-Met11-CONH2. The Km value of the hydrolysis of substance P was 1.0 mM. This enzyme may be related to the regulation of substance P in the brain, and to the development of neurones by forming the tetrapeptide because the tetrapeptide has almost the same effect as substance P on the neurite extension of neuroblastoma.  相似文献   

7.
The catabolism of two gastric neuropeptides, the C-terminal decapeptide of gastrin releasing peptide-27 (GRP10) and substance P (SP), by membrane-bound peptidases of the porcine gastric corpus and by porcine endopeptidase-24.11 ("enkephalinase") has been investigated. GRP10 was catabolized by gastric muscle peptidases (specific activity 1.8 nmol min-1 mg-1 protein) by hydrolysis of the His8-Leu9 bond and catabolism was inhibited by phosphoramidon (I50 approx. 10(-8) M), a specific inhibitor of endopeptidase-24.11. The same bond in GRP10 was cleaved by purified endopeptidase-24.11, and hydrolysis was equally sensitive to inhibition by phosphoramidon. SP was catabolized by gastric muscle peptidases (specific activity 1.7 nmol min-1 mg-1 protein) by hydrolysis of the Gln6-Phe7, Phe7-Phe8 and Gly9-Leu10 bonds, which is identical to the cleavage of SP by purified endopeptidase-24.11. The C-terminal cleavage of GRP10 and SP would inactivate the peptides. It is concluded that a membrane-bound peptidase in the stomach wall catabolizes and inactivates GRP10 and SP and that, in its specificity and sensitivity to phosphoramidon, this peptidase resembles endopeptidase-24.11.  相似文献   

8.
Purified human serum butyrylcholinesterase, which exhibits cholinesterase, aryl acylamidase, and peptidase activities, was cross-reacted with two different monoclonal antibodies raised against human serum butyrylcholinesterase. All three activities were immunoprecipitable at different dilutions of the two monoclonal antibodies. At the highest concentration of the antibodies used, nearly 100% of all three activities were precipitated, and could be recovered to 90–95% in the immunoprecipitate. The peptidase activity exhibited by the purified butyryl-cholinesterase was further characterized using both Phe-Leu and Leu-enkephalin as substrates. ThepH optimum of the peptidase was in the range of 7.5–9.5 and the divalent cations Co2+, Mn2+, and Zn2+ stimulated its activity. EDTA and other metal complexing agents inhibited its activity. Thiol agents and -SH group modifiers had no effect. The serine protease inhibitors, diisopropylfluorophosphate and phenyl methyl sulfonyl fluoride, did not inhibit. When histidine residues in the enzyme were modified by diethylpyrocarbonate, the peptidase activity was not affected, but the stimulatory effect of Co2+, Mn2+, and Zn2+ disappeared, suggesting the involvement of histidine residues in metal ion binding. These general characteristics of the peptidase activity were also exhibited by a 50 kD fragment obtained by limited -chymotrypsin digestion of purified butyrylcholinesterase. Under all assay conditions, the peptidase released the two amino acids, leucine and phenylalanine, from the carboxy terminus of Leu-enkephalin as verified by paper chromatography and HPLC analysis. The results suggested that the peptidase behaved like a serine, cysteine, thiol-independent metallopeptidase.  相似文献   

9.
Purified human serum butyrylcholinesterase (approximately 90-kDa subunit) is known to exhibit aryl acylamidase and peptidase activity. Limited alpha-chymotrypsin digestion of the purified butyrylcholinesterase gave three major protein fragments of approximately 50 kDa, approximately 21 kDa and approximately 20 kDa. In our earlier studies [Rao and Balasubramanian (1989) Eur. J. Biochem. 179, 639-644] we characterized the approximately 20-kDa fragment and showed that it exhibited both butyrylcholinesterase and aryl acylamidase activities. In the present studies the approximately 50-kDa fragment is characterized. This fragment, after isolation by Sephadex G-75 chromatography from a chymotryptic digest of purified butyrylcholinesterase, exhibited only peptidase activity and was devoid of cholinesterase and aryl acylamidase activities. It could bind to a column of Ricinus communis agglutinin bound to Sepharose, indicating its glycosylated nature and the presence of galactose. The peptidase activity in the approximately 50-kDa fragment could be immuno-precipitated by a polyclonal antibody raised against purified butyrylcholinesterase. SDS-gel electrophoresis of this fragment isolated by R. communis agglutinin-Sepharose and Sephadex G-75 chromatography showed a protein band of approximately 50 kDa by silver staining. Amino-terminal sequence analysis of the approximately 50-kDa fragment gave the sequence of Gly-Pro-Thr-Val-Asp which corresponded to amino acid residues 291-295 in the butyrylcholinesterase sequence [Lockridge et al. (1987) J. Biol. Chem. 262, 549-557]. The combined results suggested that alpha-chymotrypsin digestion of human serum butyrylcholinesterase resulted in the formation of a approximately 20-kDa fragment exhibiting both cholinesterase and aryl acylamidase activities and a approximately 50-kDa fragment exhibiting only peptidase activity.  相似文献   

10.
ACE (angiotensin-converting enzyme; peptidyl dipeptidase A; EC 3.4.15.1), cleaves C-terminal dipeptides from active peptides containing a free C-terminus. We investigated the hydrolysis of cholecystokinin-8 [CCK-8; Asp-Tyr(SO3H)-Met-Gly-Trp-Met-Asp-Phe-NH2] and of various gastrin analogues by purified rabbit lung ACE. Although these peptides are amidated at their C-terminal end, they were metabolized by ACE to several peptide fragments. These fragments were analysed by h.p.l.c., isolated and identified by comparison with synthetic fragments, and by amino acid analysis. The initial and major site of hydrolysis was the penultimate peptide bond, which generated a major product, the C-terminal amidated dipeptide Asp-Phe-NH2. As a secondary cleavage, ACE subsequently released di- or tri-peptides from the C-terminal end of the remaining N-terminal fragments. The cleavage of CCK-8 and gastrin analogues was inhibited by ACE inhibitors (Captopril and EDTA), but not by other enzyme inhibitors (phosphoramidon, thiorphan, bestatin etc.). Hydrolysis of [Leu15]gastrin-(14-17)-peptide [Boc (t-butoxycarbonyl)-Trp-Leu-Asp-Phe-NH2] in the presence of ACE was found to be dependent on the chloride-ion concentration. Km values for the hydrolysis of CCK-8, [Leu15]gastrin-(11-17)-peptide and Boc-[Leu15]gastrin-(14-17)-peptide at an NaCl concentration of 300 mM were respectively 115, 420 and 3280 microM, and the catalytic constants were about 33, 115 and 885 min-1. The kcat/Km for the reactions at 37 degrees C was approx. 0.28 microM-1.min-1, which is approx. 35 times less than that reported for the cleavage of angiotensin I. These results suggest that ACE might be involved in the metabolism in vivo of CCK and gastrin short fragments.  相似文献   

11.
Amino acids liberated by peptidase hydrolysis of di- and oligopeptides by Pseudomonas putida were measured by trinitrobenzenesulphonate assay and high voltage electrophoresis or paper chromatography followed by ninhydrin spray. Intact bacteria or periplasmic contents released by lysozyme treatment did not hydrolyse peptides. Subcellular fractionation showed that glycylmethionine peptidase activity was cytoplasmic. This enzyme had a Km of 2 mM, and was stimulated fivefold by I mM-Co2+. Crude peptidase extract did not cleave peptides with D-residues, acylated N-terminal amino groups or N-methylated peptide bonds but otherwise showed a wide specificity. Di- or tripeptides with blocked C-terminus were hydrolysed. Leucylleucine (12 mM) and leucylglycylglycine (10 mM) did not compete with glycylmethionine (1-2 mM) and glycylmethionylglycine (1-0 mM), respectively, for hydrolysis. Pseudomonas maltophilia also contained peptidase activity (0-84 mumol amino acid released from glycylmethionylglycine/min/mg protein). Peptidases of both P. putida and P. maltophilia were constitutive.  相似文献   

12.
From the soluble and membrane fractions of rat brain homogenate, two enzymes that liberate dipeptides of the type Xaa-Pro from chromogenic substrates were purified to homogeneity. The two isolated dipeptidyl peptidases had similar molecular and catalytic properties: For the native proteins, molecular weights of 110,000 were estimated; for the denatured proteins, the estimate was 52,500. Whereas the soluble peptidase yielded one band of pI 4.2 after analytical isoelectric focusing, two additional enzymatic active bands were detected between pI 4.2 and 4.3 for the membrane-associated form. As judged from identical patterns after neuraminidase treatment, both peptidases contained no sialic acid. A pH optimum of 5.5 was estimated for the hydrolysis of Gly-Pro- and Arg-Pro-nitroanilide. Substrates with alanine instead of proline in the penultimate position were hydrolyzed at comparable rates. Acidic amino acids in the ultimate N-terminal position of the substrates reduced the activities of the peptidases 100-fold as compared with corresponding substrates with unblocked neutral or, especially, basic termini. The action of the dipeptidyl peptidase on several peptides with N-terminal Xaa-Pro sequences was investigated. Tripeptides were rapidly hydrolyzed, but the activities considerably decreased with increasing chain length of the peptides. Although the tetrapeptide substance P 1-4 was still a good substrate, the activities detected for the sequential liberation of Xaa-Pro dipeptides from substance P itself or casomorphin were considerably lower. Longer peptides were not cleaved. The peptidases hydrolyzed Pro-Pro bonds, e.g., in bradykinin 1-3 or 1-5 fragments, but bradykinin itself was resistant. The enzymes were inhibited by serine protease inhibitors, like diisopropyl fluorophosphate or phenylmethylsulfonyl fluoride, and by high salt concentrations but not by the aminopeptidase inhibitors bacitracin and bestatin. Based on the molecular and catalytic properties, both enzymes can be classified as species of dipeptidyl peptidase II (EC 3.4.14.2) rather than IV (EC 3.4.14.5). However, some catalytic properties differentiate the brain enzyme from forms of dipeptidyl peptidase II of other sources.  相似文献   

13.
Fibroblast activation protein (FAP) is a transmembrane serine peptidase that belongs to the prolyl peptidase family. FAP has been implicated in cancer; however, its specific role remains elusive because inhibitors that distinguish FAP from other prolyl peptidases like dipeptidyl peptidase-4 (DPP-4) have not been developed. To identify peptide motifs for FAP-selective inhibitor design, we used P(2)-Pro(1) and acetyl (Ac)-P(2)-Pro(1) dipeptide substrate libraries, where P(2) was varied and substrate hydrolysis occurs between Pro(1) and a fluorescent leaving group. With the P(2)-Pro(1) library, FAP preferred Ile, Pro, or Arg at the P(2) residue; however, DPP-4 showed broad reactivity against this library, precluding selectivity. By contrast, with the Ac-P(2)-Pro(1) library, FAP cleaved only Ac-Gly-Pro, whereas DPP-4 showed little reactivity with all substrates. FAP also cleaved formyl-, benzyloxycarbonyl-, biotinyl-, and peptidyl-Gly-Pro substrates, which DPP-4 cleaved poorly, suggesting an N-acyl-Gly-Pro motif for inhibitor design. Therefore, we synthesized and tested the compound Ac-Gly-prolineboronic acid, which inhibited FAP with a K(i) of 23 +/- 3 nm. This was approximately 9- to approximately 5400-fold lower than the K(i) values for other prolyl peptidases, including DPP-4, DPP-7, DPP-8, DPP-9, prolyl oligopeptidase, and acylpeptide hydrolase. These results identify Ac-Gly-BoroPro as a FAP-selective inhibitor and suggest that N-acyl-Gly-Pro-based inhibitors will allow testing of FAP as a therapeutic target.  相似文献   

14.
A novel metallo-endopeptidase from human neuroblastoma NB-OK-1 cells was partially purified and characterized. This enzyme activity was detected in the culture medium and could be detached from intact cells by gentle washing, suggesting a peripheral localization of the enzyme. This endopeptidase inactivated Atrial Natriuretic Peptide (ANP) by a unique and selective cleavage of the Ser123-Phe124 bond. It also produced hydrolysis at the Xaa-Phe, Xaa-Leu, or Xaa-Ile bonds of other peptide hormones such as bradykinin, somatostatin 14, litorin, substance P, neuromedin C and angiotensin II. The substrate selectivity and inhibition profile of the enzyme showed obvious similarities with the peptide hormone inactivating endopeptidase (PHIE) recently purified from Xenopus laevis skin secretions and indicated a thermolysin-like activity distinct from neutral endopeptidase (EC 3.4.24.11) and from angiotensin converting enzyme (EC 3.4.15.1).  相似文献   

15.
Endopeptidase-24.11 (EC 3.4.24.11), purified to homogeneity from pig kidney, was shown to hydrolyse a wide range of neuropeptides, including enkephalins, tachykinins, bradykinin, neurotensin, luliberin and cholecystokinin. The sites of hydrolysis of peptides were identified, indicating that the primary specificity is consistent with hydrolysis occurring at bonds involving the amino group of hydrophobic amino acid residues. Of the substrates tested, the amidated peptide substance P is hydrolysed the most efficiently (Km = 31.9 microM; kcat. = 5062 min-1). A free alpha-carboxy group at the C-terminus of a peptide substrate is therefore not essential for efficient hydrolysis by the endopeptidase. A large variation in kcat./Km values was observed among the peptide substrates studied, a finding that reflects a significant influence of amino acid residues, remote from the scissile bond, on the efficiency of hydrolysis. These subsite interactions between peptide substrate and enzyme thus confer some degree of functional specificity on the endopeptidase. The inhibition of endopeptidase-24.11 by several compounds was compared with that of pig kidney peptidyldipeptidase A (EC 3.4.15.1). Of the inhibitors examined, only N-[1(R,S)-carboxy-2-phenylethyl]-Phe-p-aminobenzoate inhibited endopeptidase-24.11 but not peptidyldipeptidase. Captopril (D-3-mercapto-2-methylpropanoyl-L-proline), Teprotide (pGlu-Trp-Pro-Arg-Pro-Gln-Ile-Pro-Pro) and MK422 [N-[(S)-1-carboxy-3-phenylpropyl]-L-Ala-L-Pro] were highly selective as inhibitors of peptidyldipeptidase. Although not wholly specific, phosphoramidon was a more potent inhibitor of endopeptidase-24.11 than were any of the synthetic compounds tested.  相似文献   

16.
To elucidate the mechanisms of inactivation of the ecdysiostatic peptide trypsin-modulating oostatic factor (Neb-TMOF) in the blue blowfly Calliphora vicina, we investigated its proteolytic degradation. In homogenates and membrane and soluble fractions, this hexapeptide (sequence: NPTNLH) was hydrolyzed into two fragments, NP and TNLH, suggesting the involvement of a proline-specific dipeptidyl peptidase. The dipeptidyl peptidase activity was highest in the late larval stage. It was purified 240-fold from soluble fractions of pupae of mixed age and classified on the basis of several catalytic properties as an invertebrate homologue of mammalian dipeptidyl peptidase IV (EC 3.4.14.5). Fly dipeptidyl peptidase IV has a molecular mass of 200 kDa, showed a pH optimum of 7.5–8.0 with the chromogenic substrate Gly-Pro-4-nitroanilide, and cleaved other chromogenic substrates with penultimate Pro or, with lower activity, Ala. It liberated Xaa-Pro dipeptides from the N-terminus of several bioactive peptides including substance P, neuropeptide Y, and peptide YY but not from bradykinin, indicating that the peptide bond between the two proline residues was resistant to cleavage. Fly dipeptidyl peptidase belongs to the serine class of proteases as the mammalian enzyme does; the fly enzyme, however, is not inhibited by several selective or nonselective inhibitors of its mammalian counterpart. It is suggested that dipeptidyl peptidases exert a regulatory role for the clearance not only of TMOF in flies but for other bioactive peptides in various invertebrates. Arch. Insect Biochem. Physiol. 37:146–157, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

17.
Mesentery vascular metabolism of substance P   总被引:2,自引:0,他引:2  
Dipeptidylpeptidase IV (EC 3.4.14.5), an enzyme which metabolizes substance P, is present in crude homogenates of hog mesenteric artery and aorta. Its subcellular localization is closely correlated with the plasma membrane marker enzyme 5'-nucleotidase (EC 3.1.3.5) in addition to the kinin and angiotensin metabolizing enzymes angiotensin I converting enzyme (EC 3.4.15.1) and aminopeptidase M (EC 3.4.11.2). The highest level of dipeptidylpeptidase IV is found on the surface membrane-enriched fraction and is immunologically identical to the kidney brush border-bound enzyme. Vascular dipeptidylpeptidase IV sequentially removes the N-terminal Arg1-Pro2 and Lys3-Pro4 dipeptides of substance P and exposes the biologically active C-terminal heptapeptide product to rapid degradation by vascular aminopeptidases.  相似文献   

18.
Bambuterol, a dimethylcarbamate, carbamoylates butyrylcholinesterase (BChE; EC 3.1.1.8). The carbamoylated enzyme is not very stable and the final product of the two-step hydrolysis is a bronchodilator drug, terbutaline (1-(3,5-dihydroxyphenyl)-2-t-butylaminoethanol sulphate). Both bambuterol and terbutaline inhibit BChE, but their affinities differ in human serum BChE variants (U, A, F, K and S) due to their positive charge. Bambuterol inhibition rate constants for the homozygous usual (UU), Kalow (KK), fluoride-resistant (FF) or atypical (AA) variant ranged from 4.4 to 0.085?min-1?μM-1. Terbutaline showed competitive reversible inhibition for all BChE variants. The dissociation constants for UU, FF and AA homozygotes were 0.18, 0.31 and 3.3?mM, respectively. The inhibition rate or dissociation constants for heterozygotes were distributed between the respective constants for the corresponding homozygotes. A 50-fold difference in inhibition between the UU and AA enzyme might affect terbutaline release in humans. The affinity of all studied BChE variants for terbutaline was low, which suggests that terbutaline originating from bambuterol hydrolysis should not affect the hydrolysis of bambuterol by BChE.  相似文献   

19.
Escherichia coli Lon, also known as protease La, is an oligomeric ATP-dependent protease, which functions to degrade damaged and certain short-lived regulatory proteins in the cell. To investigate the kinetic mechanism of E. coli Lon protease, we performed the first pre-steady-state kinetic characterization of the ATPase and peptidase activities of this enzyme. Using rapid quench-flow and fluorescence stopped-flow spectroscopy techniques, we demonstrated that ATP hydrolysis occurs before peptide cleavage, with the former reaction displaying a burst and the latter displaying a lag in product production. The detection of burst kinetics in ATP hydrolysis is indicative of a step after nucleotide hydrolysis being rate-limiting in ATPase turnover. At saturating substrate concentrations, the lag rate constant for peptide cleavage is comparable to the kcat of ATPase, indicating that two hydrolytic processes are coordinated during the first enzyme turnover. The involvement of subunit interaction during enzyme catalysis was detected as positive cooperativity in the binding and hydrolysis of substrates, as well as apparent asymmetry in the ATPase activity in Lon. When our data are taken together, they are consistent with a reaction model in which ATP hydrolysis is used to generate an active enzyme form that hydrolyzes peptide.  相似文献   

20.
A T Orawski  W H Simmons 《Peptides》1989,10(5):1063-1073
Bradykinin (BK) (Arg1-Pro2-Pro3-Gly4-Phe5-Ser6-Pro7-Phe8-Arg9) was degraded by rat brain synaptic membranes at a rate comparable to that found for Met-enkephalin, but approximately 40 times the rate for vasopressin and oxytocin. The catabolic pathway for BK and its metabolites was elucidated through the use of high performance liquid chromatography for metabolite identification and peptidase inhibitors for blocking specific cleavage sites. BK was hydrolyzed at three sites: at the -Phe5-Ser6- bond by metalloendopeptidase 24.15, at the -Pro7-Phe8- bond by an apparently novel peptidyl dipeptidase, and at the -Phe8-Arg9 bond by a carboxypeptidase B-like enzyme. Each enzyme contributed about equally to BK degradation under the assay conditions used. Some of the resulting metabolites were further hydrolyzed: BK(1-8) to BK(1-7) + Phe by a DFP inhibitable prolyl carboxypeptidase-like enzyme, BK(1-8) to BK(1-5) + BK(6-8) by metalloendopeptidase 24.15, BK(1-7) slowly to BK(1-5) by a second peptidyl dipeptidase which was captopril inhibited, and Phe-Arg to Phe + Arg by a bestatin-inhibited dipeptidase. A number of properties of the individual enzymes were determined including sensitivity to a variety of peptidase inhibitors. These results provide a starting point for investigating the potential physiological role of each enzyme in BK function in the brain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号