首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
ABSTRACT: BACKGROUND: The evolutionary relationships of closely related species have long been of interest to biologists since these species experienced different evolutionary processes in a relatively short period of time. Comparison of phylogenies inferred from DNA sequences with differing inheritance patterns, such as mitochondrial, autosomal, and X and Y chromosomal loci, can provide more comprehensive inferences of the evolutionary histories of species. Gibbons, especially the genus Hylobates, are particularly intriguing as they consist of multiple closely related species which emerged rapidly and live in close geographic proximity. Our current understanding of relationships among Hylobates species is largely based on data from the maternally-inherited mitochondrial DNAs (mtDNAs). RESULTS: To infer the paternal histories of gibbon taxa, we sequenced multiple Y chromosomal loci from 26 gibbons representing 10 species. As expected, we find levels of sequence variation some five times lower than observed for the mitochondrial genome (mtgenome). Although our Y chromosome phylogenetic tree shows relatively low resolution compared to the mtgenome tree, our results are consistent with the monophyly of gibbon genera suggested by the mtgenome tree. In a comparison of the molecular dating of divergences and on the branching patterns of phylogeny trees between mtgenome and Y chromosome data, we found: 1) the inferred divergence estimates were more recent for the Y chromosome than for the mtgenome, 2) the species H. lar and H. pileatus are reciprocally monophyletic in the mtgenome phylogeny but a H. pileatus individual falls into the H. lar Y chromosome clade. CONCLUSIONS: Based on the ~6.4 kb of Y chromosomal DNA sequence data generated for each of the 26 individuals in this study, we provide molecular inferences on gibbon and particularly on Hylobates evolution complementary to those from mtDNA data. Overall, our results illustrate the utility of comparative studies of loci with different inheritance patterns for investigating potential sex specific processes on the evolutionary histories of closely related taxa, and emphasize the need for further sampling of gibbons of known provenance.  相似文献   

2.
Both the Cytb gene of mtDNA and Y chromosome markers were studied in a relatively large sample of brown hares (L. europaeus) from Europe and Anatolia (Turkey and Israel), together with other seven Lepus species, in order to enable comparative analysis of possible sex-specific gene flow. Furthermore, Y chromosome markers were compared with data from biparentally inherited markers in an attempt to understand whether or not their pattern of distribution was congruent with that of allozymes or whether they rather matched mtDNA phylogenies, with which they share uniparental inheritance. Consistent with the general observation, levels of interspecific genetic variability were very low for the Y chromosome markers compared with mtDNA. Moreover, lack of interspecific variation for the Y-DNA studied within Lepus genus rendered these markers improper for any further phylogenetic analysis. With the highest nucleotide diversity in Anatolia compared with Europe, both marker systems confirmed an unbroken species history in Anatolia, corroborated the hypothesis of continuous gene flow from Anatolia's neighbouring regions, and supported the idea of a quick postglacial colonization followed by expansion of the species in large parts of Europe. Phylogenetic analysis under mtDNA revealed the existence of four different haplogroups with a well defined distribution across Europe and Anatolia. Both genetic systems supported the deep separation of Anatolian and European lineages of L. europaeus. Nevertheless, Anatolian Y-DNA lineages extended across a longer geographic distance in south-eastern Europe than Anatolian mtDNA haplotypes, probably as a result of higher female philopatry that makes mtDNA introgression more difficult in brown hares.  相似文献   

3.
Species-level DNA phylogenies frequently suffer from two shortcomings--gene trees usually are constructed from a single locus, and often species are represented by only one individual. To evaluate the effect of these two shortcomings, we tested phylogenetic hypotheses within the wigeons and allies, a clade of Anas ducks (Anatidae) composed of five species. We sequenced two nuclear introns from the Z-chromosome-linked chromo-helicase binding protein gene (CHD1Zb and CHD1Za) and the mitochondrial DNA (mtDNA) control region for multiple individuals sampled from widespread geographic locations. We compared these phylogenies to previously published phylogenies constructed from morphology and protein coding regions of mtDNA. Relative to other nuclear introns, CHD showed remarkable phylogenetic utility. Of the 26 CHD1Zb alleles identified, only one was shared between two species, and the combined CHD datasets revealed that four of the five species were consistent with monophyly. Several species shared mtDNA haplotypes, which probably was a result of interspecific hybridization. Overall, the nuclear CHD tree and the mtDNA tree were more congruent with coding regions of mtDNA than they were with morphology.  相似文献   

4.
Many species contain genetic lineages that are phylogenetically intermixed with those of other species. In the Sorex araneus group, previous results based on mtDNA and Y chromosome sequence data showed an incongruent position of Sorex granarius within this group. In this study, we explored the relationship between species within the S. araneus group, aiming to resolve the particular position of S. granarius. In this context, we sequenced a total of 2447 base pairs (bp) of X-linked and nuclear genes from 47 individuals of the S. araneus group. The same taxa were also analyzed within a Bayesian framework with nine autosomal microsatellites. These analyses revealed that all markers apart from mtDNA showed similar patterns, suggesting that the problematic position of S. granarius is best explained by an incongruent behavior by mtDNA. Given their close phylogenetic relationship and their close geographic distribution, the most likely explanation for this pattern is past mtDNA introgression from S. araneus race Carlit to S. granarius.  相似文献   

5.
Introgressive hybridization may cause substantial discordances among phylogenies based on different genetic markers. Such discordances have been found in diverse mammal species including primates. A recent study of mitochondrial DNA (mtDNA) revealed several poly- and paraphyletic relationships in African green monkeys (Chlorocebus), suggesting contemporary and/or ancient introgressive hybridization among almost all parapatric species of the genus. However, mtDNA analyses alone do not allow us to draw conclusions concerning introgression events. In this study we analyzed two Y chromosomal (Y-chr) markers for 30 African green monkey samples and compared the resulting genetic relationships to those based on published mtDNA data. In line with the results for mtDNA, we found no Y-chr evidence of hypothesized hybridization among Chlorocebus sabaeus and C. tantalus in the northern part of the contact zone in West Africa, and we found two distinct and distantly related Y-chr haplotypes within the range of C. tantalus, suggesting possible cryptic genetic diversity rather than ancient introgressive hybridization in this species. In contrast, Y-chr data revealed monophyletic relationships within Chlorocebus pygerythrus from East Africa, suggesting that mtDNA paraphylies found in this species are most likely to be the result of ancient introgressive hybridization and subsequent cytonuclear extinction of an earlier taxon. Our results accentuate the importance of analyzing sex chromosomal data in addition to mtDNA to obtain more information on the potential outcomes of hybridization with respect to genetic and species diversity. Analysis of more diverse nuclear marker sets is needed to obtain a more complete picture of the African green monkey evolution.  相似文献   

6.
Phylogenetic relationships in the Cetacean suborder Mysticeti (baleen whales) have recently been the focus of increased attention. Here, we examine the evolutionary history of this group by comparing genealogies derived from Y chromosome and mitochondrial DNA sequences. We generated topologies based on paternally and maternally inherited characters for males from nine baleen whale species, including representatives of three families (Balaenidae, Eschrichtiidae, and Balaenopteridae) and four genera (Balaena, Eschrichtius, Balaenoptera, and Megaptera). Divergence among species was fifteen times greater for mtDNA than for Y-specific DNA. Both mtDNA and yDNA topologies revealed the family Balaenopteridae to be paraphyletic, but this relationship was neither strongly supported nor consistent across phylogenetic analysis methodologies. Humpback and fin whales, representing different genera, were reciprocally monophyletic sister species according to mtDNA. Although the monophyly of fin whales decayed for yDNA, a close relationship between fin and humpback whales was retained in yDNA trees. The paraphyly of fin whales and the long branch leading to humpback whales for the yDNA marker may suggest life history differences between these species. Specifically, male humpback whales showed higher than average divergence from other baleen whales at yDNA, although not at mtDNA, suggesting a potential for smaller effective population sizes among male humpbacks on an evolutionary timescale. The observation that those species that have been found to hybridize in nature (blue/fin and blue/humpback) do not reveal evidence for paraphyly for either maternal or paternal markers suggests that introgressive hybridization has not historically been extensive and thus may not represent a substantial source of phylogenetic error for Mysticeti.  相似文献   

7.
The parrotbills (Paradoxornithidae, meaning "birds of paradox," Aves) are a group of Old World passerines with perplexing taxonomic histories due to substantial morphological and ecological variation at various levels. In this study, phylogenetic relationships of the parrotbills were reconstructed based on sequences of two mitochondrial segments and three nuclear coding regions. Three major clades with characteristic body size and plumage coloration were found in both mtDNA and nuclear gene trees. However, mtDNA phylogeny suggested that the Paradoxornithidae is paraphyletic and relationships among three major parrotbill clades were poorly resolved. On the contrary, apparent and well-supported monophyletic relationships among the three major clades of Paradoxornithidae were revealed by concatenated nuclear dataset. Since paraphyly based on mtDNA data has commonly been found within avian taxa, the conflicting phylogenetic signal between mtDNA and nuclear loci revealed in this study indicates that results obtained from mtDNA dataset alone need to be evaluated with caution. Taxonomic implications of our phylogenetic findings are discussed. These phylogenies also point out areas for future investigation regarding the rapid diversification, morphological evolution and environmental adaptation of various parrotbill species or species complexes.  相似文献   

8.
基于线粒体控制区序列的猕猴属系统发育研究   总被引:7,自引:1,他引:6  
通过线粒体部分控制区DNA序列数据探讨7种猕猴属物种的分子系统发育关系。结果表明熊猴的核苷酸多样度最高,而藏酋猴核苷酸多样度较低。基于控制区序列数据所构建的最大似然树,不考虑食蟹猴的位置,7种猕猴物种可粗略地分为3个种组,即狮尾猴组(包括北平顶猴)、头巾猴组(包括红面猴、熊猴和藏酋猴)和食蟹猴组(包括恒河猴和台湾猴)。与前人(Fooden&Lanyon,1989;Tosi et al,2003a;Deinard&Smith,2001;Evans et al,1999;Hayasaka et al,1996;Morales&Melnick,1998)的结果不同,我们的结果支持食蟹猴比北平顶猴分化早的假设;东部恒河猴(相对于台湾猴)和东部熊猴(相对于藏酋猴)出现并系。与Y染色体、等位酶、核基因以及部分形态学数据推测的结果(Delson,1980;Fooden&Lanyon。1989;Fooden,1990;Tosi et al,2000,2003a,b;Deinard&Smith,2001)一致,红面猴应归于头巾猴组,但此结论与前人(Hayasaka et al,1996;Morales&Melnick,1998;Tosi et al,2003a)依据线粒体得到的结果有较大分歧。  相似文献   

9.
We investigate the evolutionary history of the greater white-toothed shrew across its distribution in northern Africa and mainland Europe using sex-specific (mtDNA and Y chromosome) and biparental (X chromosome) markers. All three loci confirm a large divergence between eastern (Tunisia and Sardinia) and western (Morocco and mainland Europe) lineages, and application of a molecular clock to mtDNA divergence estimates indicates a more ancient separation (2.25 M yr ago) than described by some previous studies, supporting claims for taxonomic revision. Moroccan ancestry for the mainland European population is inconclusive from phylogenetic trees, but is supported by greater nucleotide diversity and a more ancient population expansion in Morocco than in Europe. Signatures of rapid population expansion in mtDNA, combined with low X and Y chromosome diversity, suggest a single colonization of mainland Europe by a small number of Moroccan shrews >38 K yr ago. This study illustrates that multilocus genetic analyses can facilitate the interpretation of species' evolutionary history but that phylogeographic inference using X and Y chromosomes is restricted by low levels of observed polymorphism.  相似文献   

10.
Historically, fungal multigene phylogenies have been reconstructed based on a small number of commonly used genes. The availability of complete fungal genomes has given rise to a new wave of model organisms that provide large number of genes potentially useful for building robust gene genealogies. Unfortunately, cross-utilization of these resources to study phylogenetic relationships in the vast majority of non-model fungi (i.e. "orphan" species) remains an unexamined question. To address this problem, we developed a method coupled with a program named "PHYLORPH" (PHYLogenetic markers for ORPHans). The method screens fungal genomic databases (107 fungal genomes fully sequenced) for single copy genes that might be easily transferable and well suited for studies at low taxonomic levels (for example, in species complexes) in non-model fungal species. To maximize the chance to target genes with informative regions, PHYLORPH displays a graphical evaluation system based on the estimation of nucleotide divergence relative to substitution type. The usefulness of this approach was tested by developing markers in four non-model groups of fungal pathogens. For each pathogen considered, 7 to 40% of the 10-15 best candidate genes proposed by PHYLORPH yielded sequencing success. Levels of polymorphism of these genes were compared with those obtained for some genes traditionally used to build fungal phylogenies (e.g. nuclear rDNA, β-tubulin, γ-actin, Elongation factor EF-1α). These genes were ranked among the best-performing ones and resolved accurately taxa relationships in each of the four non-model groups of fungi considered. We envision that PHYLORPH will constitute a useful tool for obtaining new and accurate phylogenetic markers to resolve relationships between closely related non-model fungal species.  相似文献   

11.
To investigate the molecular phylogeny and evolution of the family Canidae, nucleotide sequences of the zinc-finger-protein gene on the Y chromosome (ZFY, 924-1146 bp) and its homologous gene on the X chromosome (ZFX, 834-839 bp) for twelve canid species were determined. The phylogenetic relationships among species reconstructed by the paternal ZFY sequences closely agreed with those by mtDNA and autosomal DNA trees in previous reports, and strongly supported the phylogenetic affinity between the wolf-like canids clade and the South American canids clade. However, the branching order of some species differed between phylogenies of ZFY and ZFX genes: Cuon alpinus and Canis mesomelas were included in the wolf-like canid clades in the ZFY tree, whereas both species were clustered in a group of Chrysocyon brachyurus and Speothos venaticus in the ZFX tree. The topology difference between ZFY and ZFX trees may have resulted from the two-times higher substitution rate of the former than the latter, which was clarified in the present study. In addition, two types of transposable element sequence (SINE-I and SINE-II) were found to occur in the ZFY final intron of the twelve canid species examined. Because the SINE-I sequences were shared by all the species, they may have been inserted into the ZFY of the common ancestor before species radiation in Canidae. By contract, SINE-II found in only Canis aureus could have been inserted into ZFY independently after the speciation. The molecular diversity of SINE sequences of Canidae reflects evolutionary history of the species radiation.  相似文献   

12.
The evolutionary relationships among members of the cetacean family Delphinidae, the dolphins, pilot whales and killer whales, are still not well understood. The genus Sotalia (coastal and riverine South American dolphins) is currently considered a member of the Stenoninae subfamily, along with the genera Steno (rough toothed dolphin) and Sousa (humpbacked dolphin). In recent years, a revision of this classification was proposed based on phylogenetic analysis of the mitochondrial gene cytochrome b, wherein Sousa was included in the Delphininae subfamily, keeping only Steno and Sotalia as members of the Stenoninae subfamily. Here we investigate the phylogenetic placement of Sotalia using two mitochondrial genes, six autosomal introns and four Y chromosome introns, providing a total of 5,196 base pairs (bp) for each taxon in the combined dataset. Sequences from these genomic regions were obtained for 17 delphinid species, including at least one species from each of five or six currently recognized subfamilies plus five odontocete outgroup species. Maximum Parsimony, Maximum Likelihood and Bayesian phylogenetic analysis of independent (each fragment) and combined datasets (mtDNA, nuDNA or mtDNA+nuDNA) showed that Sotalia and Sousa fall within a clade containing other members of Delphininae, exclusive of Steno. Sousa was resolved as the sister taxon to Sotalia according to analysis of the nuDNA dataset but not analysis of the mtDNA or combined mtDNA+nuDNA datasets. Based on the results from our multi-locus analysis, we offer several novel changes to the classification of Delphinidae, some of which are supported by previous morphological and molecular studies.  相似文献   

13.
Mitochondrial phylogeny of hedgehogs and monophyly of Eulipotyphla   总被引:4,自引:0,他引:4  
We sequenced the complete mitochondrial (mt) genomes of three insectivores: the long-eared hedgehog Hemiechinus auritus, the Japanese mole Mogera wogura, and the greater Japanese shrew-mole Urotrichus talpoides. These mtDNA data together with other previously sequenced mtDNAs were analyzed using a maximum likelihood method to infer their phylogenetic relationships among eutherians. Previous mitochondrial protein analyses used a simple model that did not consider site-heterogeneity, and Erinaceoidea (hedgehogs and moonrats) was placed at the basal eutherian position that is separated from Soricoidea (shrews) and Talpoidea (moles), suggesting the exclusion of the Erinaceoidea-Eulipotyphla tree. By including the new mtDNA sequences and introducing site-heterogeneity into the model, the Erinaceoidea-Eulipotyphla tree emerges as the best tree or as a tree with a log-likelihood score indistinguishable from that of the best tree. However, this conclusion depends on species sampling in Erinaceoidea, demonstrating the importance of both species sampling and use of an appropriate substitution model when inferring phylogenetic relationships.  相似文献   

14.
The three extant potoroo species of the marsupial genus Potorous -Potorous tridactylus, P. longipes and P. gilbertii - are all of conservation concern due to introduced predators and habitat loss associated with the European settlement of Australia. Robust phylogenies can be useful to inform conservation management, but past phylogenetic studies on potoroos have been unable to fully resolve relationships within the genus. Here, a multi-locus approach was employed, using three mitochondrial DNA (mtDNA): NADH dehydrogenase subunit 2, cytochrome c oxidase subunit 1 and 12S rRNA and four nuclear DNA (nuDNA) gene regions: breast and ovarian cancer susceptibility gene, recombination activating gene-1, apolipoprotein B and omega globin. This was coupled with widespread geographic sampling of the broadly distributed P. tridactylus, to investigate the phylogenetic relationships within this genus. Analyses of the mtDNA identified five distinct and highly divergent lineages including, P. longipes, P. gilbertii and three distinct lineages within P. tridactylus (northern mainland, southern mainland and Tasmanian). P. tridactylus was paraphyletic with the P. gilbertii lineage, suggesting that cryptic taxa may exist within P. tridactylus. NuDNA sequences lacked the resolution of mtDNA. Although they resolved the three currently recognised species, they were unable to differentiate lineages within P. tridactylus. Current management of P. tridactylus as two sub-species (mainland and Tasmania) does not recognise the full scope of genetic diversity within this species, especially that of the mainland populations. Until data from more informative nuDNA markers are available, we recommend this species be managed as the following three subspecies: Potorous tridactylus tridactylus (southern Queensland and northern New South Wales); Potorous tridactylus trisulcatus (southern New South Wales and Victoria) Potorous tridactylus apicalis (Tasmania). Molecular dating estimated that divergences within Potorous occurred in the late Miocene through to the early Pliocene.  相似文献   

15.
Iwasa MA  Suzuki H 《Zoological science》2003,20(10):1305-1313
Differences in the nuclear ribosomal DNA (rDNA), mitochondrial DNA (mtDNA), cytochrome b (Cytb), and Y chromosomal Sry genes were used to assess intra- and interspecific relationships in two Japanese red-backed voles, Eothenomys andersoni and E. smithii, focusing on areas where the two species might come into contact. In the Kii Peninsula, southwestern Honshu, which contains an allopatric population of E. andersoni isolated from its main range, the rDNA-RFLP data provide robust evidence of past mutual interspecific gene introgression, while the Cytb and Sry sequences were specific to this population. In central Honshu, where E. andersoni and E. smithii inhabit higher and lower altitudes, respectively, with a narrow sympatric zone, the rDNA-RFLP and Sry variation was specific for each species, while introgression of the mtDNA from E. smithii to E. andersoni was seen. These complex patterns in the gene markers are consistent with our previous notions derived from sex chromosome variation. Our previous and present data strongly suggest that the evolution of these vole species, which are morphologically and cytogenetically distinct, involves complex genetic interactions and the resultant combinations of genes are sometimes peculiar, mainly due to the Cytb haplotypes. However, phylogenetic analysis using a combination of maternal, paternal, and biparental markers has proven useful for understanding the evolutionary history given the complex phylogenetic background.  相似文献   

16.
Current knowledge of the evolutionary relationships amongst the wolf spiders (Araneae: Lycosidae) is based on assessment of morphological similarity or phylogenetic analysis of a small number of taxa. In order to enhance the current understanding of lycosid relationships, phylogenies of 70 lycosid species were reconstructed by parsimony and Bayesian methods using three molecular markers; the mitochondrial genes 12S rRNA, NADH1, and the nuclear gene 28S rRNA. The resultant trees from the mitochondrial markers were used to assess the current taxonomic status of the Lycosidae and to assess the evolutionary history of sheet-web construction in the group. The results suggest that a number of genera are not monophyletic, including Lycosa, Arctosa, Alopecosa, and Artoria. At the subfamilial level, the status of Pardosinae needs to be re-assessed, and the position of a number of genera within their respective subfamilies is in doubt (e.g., Hippasa and Arctosa in Lycosinae and Xerolycosa, Aulonia and Hygrolycosa in Venoniinae). In addition, a major clade of strictly Australasian taxa may require the creation of a new subfamily. The analysis of sheet-web building in Lycosidae revealed that the interpretation of this trait as an ancestral state relies on two factors: (1) an asymmetrical model favoring the loss of sheet-webs and (2) that the suspended silken tube of Pirata is directly descended from sheet-web building. Paralogous copies of the nuclear 28S rRNA gene were sequenced, confounding the interpretation of the phylogenetic analysis and suggesting that a cautionary approach should be taken to the further use of this gene for lycosid phylogenetic analysis.  相似文献   

17.
The molecular evolution of mammalian Y-linked DNA sequences is of special interest because of their unique mode of inheritance: most Y- linked sequences are clonally inherited from father to son. Here we investigate the use of Y-linked sequences for phylogenetic inference. We describe a comparative analysis of a 515-bp region from the male sex- determining locus, Sry, in 22 murine rodents (subfamily Murinae, family Muridae), including representatives from nine species of Mus, and from two additional murine genera--Mastomys and Hylomyscus. Percent sequence divergence was < 0.01% for comparisons between populations within a species and was 0.19%-8.16% for comparisons between species. Our phylogenetic analysis of 12 murine taxa resulted in a single most- parsimonius tree that is highly concordant with phylogenies based on mitochondrial DNA and allozymes. A total evidence tree based on the combined data from Sry, mitochondrial DNA, and allozymes supports (1) the monophyly of the subgenus Mus, (2) its division into a Palearctic group (M. musculus, M. domesticus, M. spicilegus, M. Macedonicus, and M. spretus) and an Oriental group (M. cookii++, M. cervicolor, and M. caroli), and (3) sister-group relationships between M. spicilegus and M. macedonicus and between M. cookii and M. cervicolor. We argue that Y- chromosome DNA sequences represent a valuable new source of characters for phylogenetic inference.   相似文献   

18.
Reconstructions of the human-African great ape phylogeny by using mitochondrial DNA (mtDNA) have been subject to considerable debate. One confounding factor may be the lack of data on intraspecific variation. To test this hypothesis, we examined the effect of intraspecific mtDNA diversity on the phylogenetic reconstruction of another Plio- Pleistocene radiation of higher primates, the fascicularis group of macaque (Macaca) monkey species. Fifteen endonucleases were used to identify 10 haplotypes of 40-47 restriction sites in M. mulatta, which were compared with similar data for the other members of this species group. Interpopulational, intraspecific mtDNA diversity was large (0.5%- 4.5%), and estimates of divergence time and branching order incorporating this variation were substantially different from those based on single representatives of each species. We conclude that intraspecific mtDNA diversity is substantial in at least some primate species. Consequently, without prior information on the extent of genetic diversity within a particular species, intraspecific variation must be assessed and accounted for when reconstructing primate phylogenies. Further, we question the reliability of hominoid mtDNA phylogenies, based as they are on one or a few representatives of each species, in an already depauperate superfamily of primates.   相似文献   

19.
Joint phylogenetic analysis of ancient DNA (aDNA) with modern phylogenies is hampered by low sequence coverage and post-mortem deamination, often resulting in overconservative or incorrect assignment. We provide a new efficient likelihood-based workflow, pathPhynder, that takes advantage of all the polymorphic sites in the target sequence. This effectively evaluates the number of ancestral and derived alleles present on each branch and reports the most likely placement of an ancient sample in the phylogeny and a haplogroup assignment, together with alternatives and supporting evidence. To illustrate the application of pathPhynder, we show improved Y chromosome assignments for published aDNA sequences, using a newly compiled Y variation data set (120,908 markers from 2,014 samples) that significantly enhances Y haplogroup assignment for low coverage samples. We apply the method to all published male aDNA samples from Africa, giving new insights into ancient migrations and the relationships between ancient and modern populations. The same software can be used to place samples with large amounts of missing data into other large non-recombining phylogenies such as the mitochondrial tree.  相似文献   

20.
Phylogenetic relationships among the nine spiral-horn antelope species of the African bovid tribe Tragelaphini are controversial. In particular, mitochondrial DNA sequencing studies are not congruent with previous morphological investigations. To test the utility of nuclear DNA intron markers at lower taxonomic levels and to provide additional data pertinent to tragelaphid evolution, we sequenced four nuclear DNA segments (MGF, PRKCI, SPTBN, and THY) and combined these data with mitochondrial DNA sequences from three genes (cytochrome b, 12S rRNA, and 16S rRNA). Our molecular supermatrix comprised 4682 characters which were analyzed independently and in combination. Parsimony and model based phylogenetic analyses of the combined nuclear DNA data are congruent with those derived from the analysis of mitochondrial gene sequences. The corroboration between nuclear and mtDNA gene trees reject the possibility that genetic processes such as lineage sorting, gene duplication/deletion and hybrid speciation account for the conflict evident in the previously published phylogenies. It suggests rather that the morphological characters used to delimit the Tragelaphid species are subject to convergent evolution. Divergence times among species, calculated using a relaxed Bayesian molecular clock, are consistent with hypotheses proposing that climatic oscillations and their impact on habitats were the major forces driving speciation in the tribe Tragelaphini.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号