首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In order to reach a higher accuracy concerning the cytological locations of the rye seed storage protein lociSec2[Gli-R2] andSec3[Glu-R1] located within chromosome arms 2RS and 1RL, respectively, the linkage relationships between the following loci were analyzed: isozyme lociGpi-R1,Mdh-R1, andPgd2, translocationT273W (Wageningen tester set, involving chromosome arms 1RS and 5RL), the telomere C-bands of chromosome arms 1RL (tL1), 2RS (tS2), and 5RS (tS5), and three interstitial C-bands in chromosome arm 1RS (iS1), in the middle of chromosome arm 1RL (iL1), and in the middle of chromosome arm 2RL (iL2), respectively. The data indicated that locusSec3 is located in the distal half of chromosome arm 1RL (between C-bandiL1 and locusPgd2), while locusSec2 is located a short distance (2.9 ± 1.4%) from the telomere C-band of chromosome arm 2RS.  相似文献   

2.
Summary The nucleolus organizer region located on the short arm of chromosome 1R of rye consists of a large cluster of genes that code for ribosomal RNA (designated the Nor-R1 locus). The genes in the cluster are separated by spacer regions which can vary in length in different rye lines. Differences in the spacer regions were scored in two families of F2 progeny. Segregation also occurred, in one or both of the families, at two seed protein loci and at two isozyme loci also located on chromosome 1R. The seed protein loci were identified as the Sec 1 locus controlling -secalins located on the short arm of chromosome 1R and the Sec 3 locus controlling high-molecular-weight secalins located on the long arm of 1R. The two isozyme loci were the Gpi-R1 locus controlling glucose-phosphate isomerase isozymes and the Pgd 2 locus controlling phosphogluconate dehydrogenase isozymes. The data indicated linkage between all five loci and map distances were calculated. The results indicate a gene order: Pgd 2 ... Sec 3 ... [centromere] ... Nor-R1 ... Gpi-R1 ... Sec 1. Evidence was obtained that rye possesses a minor 5S RNA locus (chromosome location unknown) in addition to the major 5S RNA locus previously shown to be located on the short arm of chromosome 1R.  相似文献   

3.
The segregation of the 75K gamma secalin locus (Sec-2) in combination with five interchanges (reciprocal translocations) and two marker genes was analyzed. The translocations involved chromosome arms 1RL, 1RS, 2RL, 2RS, 4RL, 5RL, 5RS, 6RL and 6RS. The gene loci were both on 2R, but the arm was not known. Although the Sec-2 locus was expected to be on chromosome 2RS, no linkage between Sec-2 and any of the markers was found. This is concluded to be the result of exceptionally frequent recombination between Sec-2 and the break point of one of the translocations, which is the only marker in 2RS.  相似文献   

4.
Summary The genes controlling resistance to three wheat rusts, viz., leaf rust (Lr26), stem rust (Sr31) and stripe or yellow rust (Yr9), and -secalins (Sec1), located on the short arm of rye chromosome 1R, were mapped with respect to each other and the centromere. Analysis of 214 seeds (or families derived from them) from testcrosses between a 1BL.1RS/1R heterozygote and Chinese Spring ditelocentric 1BL showed no recombination between the genes for resistance to the three rusts, suggesting very tight linkage or perhaps a single complex locus conferring resistance to the three rusts. The rust resistance genes were located 5.4 ± 1.7 cM from the Sec1 locus, which in turn was located 26.1 ± 4.3 cM from the centromere; the gene order being centromere — Sec1Lr26/Sr31/Yr9 — telomere. In a second test-cross, using a different 1BL.1RS translocation which had only stem rust resistance (SrR), the above gene order was confirmed despite a very large proportion of aneuploids (45.8%) among the progeny. Furthermore, a map distance of 16.0 ± 4.8 cM was estimated for SrR and the telomeric heterochromatin (C-band) on 1RS. These results suggest that a very small segment of 1RS chromatin is required to maintain resistance to all three wheat rusts. It should be possible but difficult to separate the rust resistance genes from the secalin gene(s), which are thought to contribute to dough stickiness of wheat-rye translocation lines carrying 1RS.  相似文献   

5.
This paper describes the effects of 5-azacytidine on the condensation state of rye (Secale cereale L.) chromatin introduced into the wheat genome (Triticum aestivum L. cv. Beaver). The wheat cultivar Beaver carries a translocation between the short arm of rye chromosome 1R (1RS) and the long arm of wheat chromosome 1B (1BL/1RS). 1RS can be detected using genomic in situ hybridisation and carries a ribosomal DNA (rDNA) locus that can be simultaneously detected using multiple labelling strategies. The rDNA locus divides 1RS into a distal region that is gene rich and a proximal region that is gene poor and highly methylated. 1RS also carries a large block of subtelomeric heterochromatin. The drug, which acts to inhibit DNA methylation in plants, has three pronounced effects on interphase nuclei. (1) It induces aberrant condensation of the rye subtelomeric heterochromatin and in many cases induces sister chromatid separation in the subtelomeric heterochromatin of G2 nuclei. (2) Nuclei trisomic for 1RS are observed at low frequency in treated material and are probably a consequence of aberrant sister chromatid separation or condensation. (3) The drug alters normal condensation of 1RS euchromatin. However, contrary to expectation the effect is not simply to induce decondensation. The proximal region of the arm actually condenses at low levels of drug administration while the distal region remains unaltered or increases its decondensation state. Increasing the concentration of 5-azacytidine induces a biphasic response and at the highest concentration used all regions of the arm show signs of decondensation. Thus the influence of the drug on chromatin condensation depends on the genomic structure. Received: 14 July 1997; in revised form: 26 August 1997 / Accepted: 27 August 1997  相似文献   

6.
The wheat and rye spike normally bears one spikelet per rachis node, and the appearance of supernumerary spikelets is rare. The loci responsible for the ‘multirow spike’ or MRS trait in wheat, and the ‘monstrosum spike’ trait in rye were mapped by genotyping F2 populations with microsatellite markers. Both MRS and the ‘monstrosum’ trait are under the control of a recessive allele at a single locus. The Mrs1 locus is located on chromosome 2DS, co-segregating with the microsatellite locus Xwmc453. The placement of flanking microsatellite loci into chromosome deletion bin 2DS-5 (FL 0.47–1.0) delimited the physical location of Mrs1 to the distal half of chromosome arm 2DS, within the gene rich region 2S0.8. The Mo1 locus maps about 10 cM from the centromere on chromosome arm 2RS. The similar effect on phenotype of mo1 and mrs1, together with their presence in regions of conserved synteny, suggest that they may well be members of an orthologous set of Triticeae genes governing spike branching. The practical importance of the MRS spike is that it produces more spikelets per spike, and thereby enhances the sink capacity of wheat, which is believed to limit the yield potential of the crop.  相似文献   

7.
Oligonucleotide primers were developed to detect the presence of four rye sequences using a PCR assay. These assays give a rye-specific signal from wheat DNA template which contains various rye chromosomes or chromosome segments. The sequences identified were associated with the nucleolar organiser region, the 5S-Rrna-R1 locus, the telomere, and a widely dispersed, rye-specific repetitive element Ris-1. The primers amplified from the well-established loci Nor-R1 and 5S-Rrna-R1 on rye chromosome arm 1RS, and also located a 5s-Rrna locus on chromosome 3R. The telomere-associated sequence was present on every rye chromosome, and was also present, at a low copy number, in both wheat and barley. These assays will be particularly useful for introgression programmes aimed at reducing the rye content of the 1BL.1RS wheat-rye translocation. When multiplexed, the primers will enable a rapid, simultaneous assay for a number of distinct rye loci, which can be derived from a small portion of mature endosperm tissue.  相似文献   

8.
Bi-directional selective genotyping (BSG) carried out on two opposite groups of F9(541 × Ot1-3) recombinant inbred lines (RILs) with extremely low and extremely high alpha-amylase activities in mature (dry) grain of rye, followed by molecular mapping, revealed a complex system of selection-responsive loci. Three classes of loci controlling alpha-amylase activity were discerned, including four major AAD loci on chromosomes 3R (three loci) and 6RL (one locus) responding to both directions of the disruptive selection, 20 AAR loci on chromosomes 2RL (three loci), 3R (three loci), 4RS (two loci), 5RL (three loci), 6R (two loci) and 7R (seven loci) responding to selection for low alpha-amylase activity and 17 AAE loci on chromosomes 1RL (seven loci), 2RS (two loci), 3R (two loci), 5R (two loci) and 6RL (four loci) affected by selection for high alpha-amylase activity. The majority of the discerned AA loci also showed responsiveness to selection for preharvest sprouting (PHS). Two AAD loci on chromosome arm 3RL coincided with PHSD loci. The AAD locus on chromosome arm 3RS was independent from PHS, whereas that on chromosome 6RL belonged to the PHSR class. AAR-PHSR loci were found on chromosomes 4RS (one locus) and 5R (two loci) and AAE-PHSE loci were identified on chromosomes 1RL (one locus) and 5RL (one locus). Some PHSD loci represented the AAE (chromosomes 1RL, 3RS and 3RL) or AAR classes (chromosome 5RL). AAR and AAE loci not related to PHS were found on chromosomes 1RL, 2R, 3RS, 4R, 6RL and 7RL. On the other hand, several PHS loci (1RL, 3RS, 5RL, 6RS and 7RS) had no effect on alpha-amylase activity. Allele originating from the parental line 541 mapped in six AA loci on chromosomes 2R (two loci), 5R (three loci) and 7R (one locus) exerted opposite effects on PHS and alpha-amylase activity. Differences between the AA and PHS systems of loci may explain the weak correlation between these two traits observed among recombinant inbred lines. Strategies for the breeding of sprouting-resistant varieties with low alpha-amylase and high PHS resistance are discussed.  相似文献   

9.
Summary The introgression of genetic material from alien species is assuming increased importance in wheat breeding programs. One example is the translocation of the short arm of rye chromosome 1 (1RS) onto homoeologous wheat chromosomes, which confers disease resistance and increased yield on wheat. However, this translocation is also associated with dough quality defects. To break the linkage between the desirable agronomic traits and poor dough quality, recombination has been induced between 1RS and the homoeologous wheat arm IDS. Seven new recombinants were isolated, with five being similar to those reported earlier and two havina new type of structure. All available recombinantsw ere characterized with DNA probes for the loci Nor-R1, 5SDna-R1, and Tel-R1. Also, the amount of rye chromatin present was quantified with a dispersed rye-specific repetitive DNA sequence in quantitative dot blots. Furthermore, the wheat-rye recombinants were used as a mapping tool to assign two RFLP markers to specific regions on chromosome arms 1DS and 1RS of wheat and rye, respectively.  相似文献   

10.
One hundred wheat lines, derived from monosomic additions of chromosome 1R of rye inbred line R12 (Chinese rye), were detected by PCR amplification using rye-specific primer pairs. Only 5 wheat lines, 1R296, 1R330, 1R314, 1R725, and 1R734, were determined to contain rye chromatin. While 1R296 and 1R330 were highly susceptible to stripe rust and powdery mildew, 1R314, 1R725 and 1R734 were highly resistant to both diseases. Acid-polyacrylamide gel electrophoresis showed that the ω-secalin bands were absent in 1R314, but present in the other 4 wheat lines. Genomicin situ hybridization indicated that 1R296, 1R330, and 1R725 contained translocations involving the whole short arm of chromosome 1R. However, 1R314 and 1R734 contained a pair of wheat chromosomes with small, terminal, rye-derived chromosome segments. The results suggest that the translocation breakpoint of 1RS in 1R314 was located between theSec-1 locus and the disease-resistance loci, while in line 1R734, the breakpoint was located between theSec-1 locus and the centromere. Taking account of the improved disease resistance of 1R725, 1R314 and 1R734, the chromosome arm 1RS of R12 may represent new and valuable disease resistance resources for wheat improvement.  相似文献   

11.
 Rye has one of the most efficient group of genes for aluminium (Al) tolerance among cultivated species of Triticeae. This tolerance is controlled by at least two independent and dominant loci (Alt1 and Alt3) located on chromosomes 6RS and 4R. We used two pooled DNA samples, one of Al-tolerant individuals and another of Al-sensitive plants from one F2 that segregated for the Alt1 locus. We also used two pooled DNA samples, one with genotypes 11 and another with genotypes 22 for the Lap1 locus (leucin aminopeptidase) from another F2 progeny that segregated for this locus, located on the 6RS chromosome arm. We identified several RAPD markers associated with the pooled Al-tolerant plants and also with one of the bulks for the Lap1 locus. The RAPD fragments linked to Alt1 and Lap1 genes were transformed into SCAR markers to confirm their chromosomal location and linkage data. Two SCARs (ScR01 600 and ScB15 7900 ) were closely linked to the Alt1 locus, ScR01 600 located 2.1 cM from Alt1 and ScB15 790 located 5.5 cM from Alt1, on the 6RS chromosome arm. These SCAR markers can aid in the transfer of Al tolerance genes into Al-sensitive germplasms. Received: 9 December 1997 / Accepted: 12 May 1998  相似文献   

12.
The progeny of two crosses between a structural heterozygote for a reciprocal translocation (4RL/5RL) and a homozygote for the standard chromosome arrangement and of four crosses between standard chromosome homozygotes were analysed in rye (Secale cereale L. cv Ailés) for the electrophoretic patterns of five different leaf and endosperm isozymes (LAP, PGM, NDH, ADH and EPER). The presence or absence of the quadrivalents at metaphase I (MI) was also tested. Loci Adh-1, Pgm-1 and Ndh-1 were located on chromosome arm 4RS, and locus Eper-1 on chromosome arm 4RL. Locus Lap-2 was located on the 4RS chromosome arm. The estimated distances among the different linked loci support the following gene order: Eper1¨ (breakpoint-centromere)¨Lap-2¨ ¨Adh-1 ¨Pgm-1¨Ndh-1. These results provide evidence for the chromosomal location of Lap-2 locus on chromosome arm 4RS in cv Ailés. A high negative interference was detected between the zones delimited by centromere and Lap-2, and Lap-2 and Pgm-1 in plants with the 4RL/5RL translocation.Abbreviations LAP leucine aminopeptidase - PGM phosphoglucomutase - NDH NADH dehydrogenase - ADH alchohol dehydrogenase - EPER endosperm peroxidase  相似文献   

13.
The short arm of rye (Secale cereale) chromosome 1 has been widely used in breeding programs to incorporate new disease resistance genes into wheat. Using wheat-rye translocation and recombinant lines, molecular markers were isolated and mapped within chromosomal regions of 1RS carrying rust resistance genes Lr26, Sr31, Yr9 from 'Petkus' and SrR from 'Imperial' rye. RFLP markers previously mapped to chromosome 1HS of barley - flanking the complex Mla powdery mildew resistance gene locus - and chromosome 1DS of Aegilops tauschii - flanking the Sr33 stem rust resistance gene - were shown to map on either side of rust resistance genes on 1RS. Three non cross-hybridising Resistance Gene Analog markers, one of them being derived from the Mla gene family, were mapped within same region of 1RS. PCR-based markers were developed which were tightly linked to the rust resistance genes in 'Imperial' and 'Petkus' rye and which have potential for use in marker-assisted breeding.  相似文献   

14.
In F2 hybrids between self-sterile plants of the Volkhova cultivar and self-fertile lines with established self-fertility mutations (sf mutations) at the major incompatibility loci S (1R), Z (2R), and T (5R), the effect of sf mutations on the inheritance of secalin-encoding, isozyme, and morphological markers located on the same chromosomes was investigated. Linkage between loci Prx7 and Sand locus Sec3 coding for high-molecular-weight secalins on chromosome 1R was shown for the first time. The frequency of recombination between Prx7andSec3and between S and Sec3was 29.1 ± 4.8% and 30.9 ± 7.0%, respectively. Independent inheritance of locus Z and isozyme markers of chromosome 2R, Est3/5 and -Glu, from locus Sec2 encoding 75-kDa -secalins was shown; in hybrids, the recombination frequency between Est3/5 and locus Z varied from 19.2 ± 8.1 to 50%. Independent inheritance of morphological (Ddw and Hs) and isozyme markers (Est4, Est6/9,and Aco2) of chromosome 5R from locus Tlocated on the same chromosome was demonstrated.  相似文献   

15.
The 1BL.1RS translocations between wheat (Triticum aestivum L.) and rye (Secale cereale L.) are widely used in bread wheat breeding programs, but all modern wheat cultivars with the 1BL.1RS have shown genetic vulnerability due to one rye source – a German cultivar, Petkus. We have developed, a new 1BL.1RS wheat-rye translocation line from the backcross of the F1 hybrid of wheat cv. Olmil and rye cv. Paldanghomil, both cultivars from Korea. The GISH technique was applied to identify the presence of rye chromatin in 467 BC1F6 lines selected from 77 BC1F5 lines. Only one line, Yw62–11, showed wheat-rye translocated chromosomes, with a somatic chromosome number of 2n=42. C-banding patterns revealed that the translocated chromosome was 1BL.1RS, showing prominent bands in the terminal and sub-terminal regions of the short arm as well as in the centromeric region and terminal region of the long arm. This new 1BL.1RS translocation line formed 21 bivalents like common wheat at meiotic metaphase I, thereby showing complete homology. Received: 28 February 2001 / Accepted: 17 April 2001  相似文献   

16.
Summary Genetic analyses were conducted on alkaline phosphatases of the endosperm of dry kernels and leaf acid phosphatases in four open pollinated and one inbred line of cultivated rye (Secale cereale L.). A total of seven alkaline phosphatase isozymes were observed occurring at variable frequencies in the different cultivars analyzed. We propose that at least five loci control the alkaline phosphatases of rye endosperm — Alph-1, Alph-2, Alph-3, Alph-4 and Alph-5 — all of which have monomeric behaviour. The leaf acid phosphatases are controlled by one locus and have a dimeric quaternary structure. All loci coding for alkaline phosphatase isozymes showed one active, dominant allele and one null, recessive allele, except for the locus Alph-3 which showed two active, dominant alleles and one null, recessive one. The linkage analyses suggest the existence of two linkage groups for alkaline phosphatases: one of them would contain Alph-2, Alph-4, Alph-5 and the locus/loci coding isozymes 6 and 7. This linkage group is located in the 7RS chromosome arm. The other group would include Alph-1 and Alph-3 loci, being located in the 1RL chromosome arm. Leaf acid phosphatases have been previously located in the 7RL chromosome arm. Our data also support an independent relationship between loci controlling the endosperm alkaline phosphatases and leaf acid phosphatases.  相似文献   

17.
We developed 74 microsatellite marker primer pairs yielding 76 polymorphic loci, specific for the short arm of rye chromosome 1R (1RS) in wheat background. Four libraries enriched for microsatellite motifs AG, AAG, AC and AAC were constructed from DNA of flow-sorted 1RS chromosomes and 1,290 clones were sequenced. Additionally, 2,778 BAC-end-sequences from a 1RS specific BAC library were used for microsatellite screening and marker development. From 724 designed primer pairs, 119 produced 1RS specific bands and 74 of them showed polymorphism in a set of ten rye genotypes. We show that this high attrition rate was due to the highly repetitive nature of the rye genome consisting of a large number of transposable elements. We mapped the 76 polymorphic loci physically into three regions (bins) on 1RS; 29, 30 and 17 loci were assigned to the distal, intercalary and proximal regions of the 1RS arm, respectively. The average polymorphism information content increases with distance from the centromere, which could be due to an increased recombination rate along the chromosome arm toward’s the telomere. Additionally, we demonstrate, using the data of the whole rice genome, that the intra-genomic length variation of microsatellites correlates (r = 0.87) with microsatellite polymorphism. Based on these results we suggest that an analysis of the microsatellite length variation is conducted for each species prior to microsatellite development, provided that sufficient sequence information is available. This will allow to selectively design microsatellite markers for motifs likely to yield a high level of polymorphism. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

18.
Summary Linkage relationships were established between the secalin loci, Sec 1 (40-K gamma and omega secalins, homologous to the wheat gliadins) and Sec 3 (HMW = high-molecular-weight secalins, homologous to the wheat HMW glutenin subunits), and five chromosomal rearrangements involving chromosome 1R of rye (Secale cereale L.). These were: interchanges T273W (1RL/5RS), T306W (1RS/5RL), and T850W (1RS/ 4RL), Robertsonian centromere split Rb1RW and the interchanged Robertsonian split Rb2R/248W. The analysis established the linkage relationships between the secalin loci and the breakpoints of the rearrangements, in addition to the quantitative effects of the rearrangements on the linkage. Sec-1 is located in the satellite at a position at least 2.5 cMorgan from the proximal border of the terminal C-band, and about 30 cMorgan from the nucleolar organizing region (NOR). The locus is also physically closer to the terminal C-band than to the NOR, but not as much as corresponds with the map distances. Similarly, the physical distance between Sec-3 and the centromere is greater than corresponds with the recombination frequency (0%–9%). Although overall recombination in 1RL remains the same, recombination between the centromere and Sec-3 is greatly reduced in the Robertsonian split combined with the interchange. This is not the case with the single Robertsonian split.  相似文献   

19.
Summary The structural gene, PHO13, for the specific p-nitrophenyl phosphatase of Saccharomyces cerevisiae was cloned and its nucleotide sequence determined. The deduced PHO13 protein consists of 312 amino acids and its molecular weight is 34635. The disruption of the PHO13 gene produced no effect on cell growth, sporulation, or viability of ascospores. The PHO13 locus was mapped at 1.9 centimorgans from the HO locus on the left arm of chromosome IV. By chromosome fragmentation, the PHO13 locus was found to be located about 72 kb from the left-hand telomere of chromosome IV and distal to the HO locus.  相似文献   

20.
The major limit to plant growth in acid soils is the presence of toxic aluminum (Al) cations, which limit growth by inhibiting root elongation. Aluminum tolerance in rye is controlled by (at least) four independent loci (Alt1, Alt2, Alt3 and Alt4) located on chromosome arms 6RS, 3RS, 4RL and 7RS, respectively. In this work, we analyzed several F2 populations in which two different Alt loci were segregating. We constructed a map of chromosome 7R, which contains the Alt4 locus and microsatellite and PCR-markers (B1, B4, B11, B26 and BCD1230). These markers were mapped to the S arm of 7R using wheat-rye addition lines. Our results show that all these markers are linked to the Alt4 locus already known to be on 7RS. In addition, the OPS14 705 RAPD marker was linked to the Alt3 locus using bulked segregant analysis. This RAPD marker was transformed into a SCAR (ScOPS14 705 ) and was localized to arm 4RL using wheat-rye addition lines. Finally, this SCAR was linked to the Alt3 locus at a genetic distance of 23.4 cM. In light of the current findings, and taking into account the synteny relationships in cereals, we propose candidate Alt3 and Alt4 orthologues in other cereals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号