首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
《Epigenetics》2013,8(8):767-775
Chromatin is broadly compartmentalized in two defined states: euchromatin and heterochromatin. Generally, euchromatin is trimethylated on histone H3 lysine 4 (H3K4me3) while heterochromatin contains the H3K9me3 marks. The H3K9me3 modification is added by lysine methyltransferases (KMTs) such as SETDB1. Herein, we show that SETDB1 interacts with its substrate H3, but only in the absence of the euchromatic mark H3K4me3. In addition, we show that SETDB1 fails to methylate substrates containing the H3K4me3 mark. Likewise, the functionally related H3K9 KMTs G9A, GLP, and SUV39H1 also fail to bind and to methylate H3K4me3 substrates. Accordingly, we provide in vivo evidence that H3K9me2-enriched histones are devoid of H3K4me2/3 and that histones depleted of H3K4me2/3 have elevated H3K9me2/3. The correlation between the loss of interaction of these KMTs with H3K4me3 and concomitant methylation impairment leads to the postulate that, at least these four KMTs, require stable interaction with their respective substrates for optimal activity. Thus, novel substrates could be discovered via the identification of KMT interacting proteins. Indeed, we find that SETDB1 binds to and methylates a novel substrate, the inhibitor of growth protein ING2, while SUV39H1 binds to and methylates the heterochromatin protein HP1α. Thus, our observations suggest a mechanism of post-translational regulation of lysine methylation and propose a potential mechanism for the segregation of the biologically opposing marks, H3K4me3 and H3K9me3. Furthermore, the correlation between H3-KMTs interaction and substrate methylation highlights that the identification of novel KMT substrates may be facilitated by the identification of interaction partners.  相似文献   

3.
Dynamic regulation of histone lysine methylation by demethylases   总被引:2,自引:0,他引:2  
  相似文献   

4.
The Prader-Willi syndrome (PWS)/Angelman syndrome (AS) region, on human chromosome 15q11-q13, exemplifies coordinate control of imprinted gene expression over a large chromosomal domain. Establishment of the paternal state of the region requires the PWS imprinting center (PWS-IC); establishment of the maternal state requires the AS-IC. Cytosine methylation of the PWS-IC, which occurs during oogenesis in mice, occurs only after fertilization in humans, so this modification cannot be the gametic imprint for the PWS/AS region in humans. Here, we demonstrate that the PWS-IC shows parent-specific complementary patterns of H3 lysine 9 (Lys9) and H3 lysine 4 (Lys4) methylation. H3 Lys9 is methylated on the maternal copy of the PWS-IC, and H3 Lys4 is methylated on the paternal copy. We suggest that H3 Lys9 methylation is a candidate maternal gametic imprint for this region, and we show how changes in chromatin packaging during the life cycle of mammals provide a means of erasing such an imprint in the male germline.  相似文献   

5.
Chondroblastoma is a cartilaginous tumor that typically arises under 25 y of age (80%). Recent studies have identified a somatic and heterozygous mutation at the H3F3B gene in over 90% chondroblastoma cases, leading to a lysine 36 to methionine replacement (H3.3K36M). In human cells, H3F3B gene is one of 2 genes that encode identical H3.3 proteins. It is not known how H3.3K36M mutant proteins promote tumorigenesis. We and others have shown that, the levels of H3K36 di- and tri-methylation (H3K36me2/me3) are reduced dramatically in chondroblastomas and chondrocytes bearing the H3.3K36M mutation. Mechanistically, H3.3K36M mutant proteins inhibit enzymatic activity of some, but not all H3K36 methyltransferases. Chondrocytes harboring the same H3F3B mutation exhibited the cancer cell associated phenotypes. Here, we discuss the potential effects of H3.3K36M mutation on epigenomes including H3K36 and H3K27 methylation and cellular phenotypes. We suggest that H3.3K36M mutant proteins alter epigenomes of specific progenitor cells, which in turn lead to cellular transformation and tumorigenesis.  相似文献   

6.
7.
8.
9.
Chromatin is broadly compartmentalized in two defined states: euchromatin and heterochromatin. Generally, euchromatin is trimethylated on histone H3 lysine 4 (H3K4me3) while heterochromatin contains the H3K9me3 mark. The H3K9me3 modification is added by lysine methyltransferases (KMTs) such as SETDB1. Herein, we show that SETDB1 interacts with its substrate H3, but only in the absence of the euchromatic mark H3K4me3. In addition, we show that SETDB1 fails to methylate substrates containing the H3K4me3 mark. Likewise, the functionally related H3K9 KMTs G9A, GLP and SUV39H1 also fail to bind and to methylate H3K4me3 substrates. Accordingly, we provide in vivo evidence that H3K9me2-enriched histones are devoid of H3K4me2/3 and that histones depleted of H3K4me2/3 have elevated H3K9me2/3. The correlation between the loss of interaction of these KMTs with H3K4me3 and concomitant methylation impairment leads to the postulate that at least these four KMTs require stable interaction with their respective substrates for optimal activity. Thus, novel substrates could be discovered via the identification of KMT interacting proteins. Indeed, we find that SETDB1 binds to and methylates a novel substrate, the inhibitor of growth protein ING2, while SUV39H1 binds to and methylates the heterochromatin protein HP1α. Thus, our observations suggest a mechanism of post-translational regulation of lysine methylation and propose a potential mechanism for the segregation of the biologically opposing marks, H3K4me3 and H3K9me3. Furthermore, the correlation between H3-KMTs interaction and substrate methylation highlights that the identification of novel KMT substrates may be facilitated by the identification of interaction partners.Key words: histone methylation, lysine methyltransferase, H3K4me3, H3K9me3, SETDB1, G9A, ING2  相似文献   

10.
11.
We mapped Polycomb-associated H3K27 trimethylation (H3K27me3) and Trithorax-associated H3K4 trimethylation (H3K4me3) across the whole genome in human embryonic stem (ES) cells. The vast majority of H3K27me3 colocalized on genes modified with H3K4me3. These commodified genes displayed low expression levels and were enriched in developmental function. Another significant set of genes lacked both modifications and was also expressed at low levels in ES cells but was enriched for gene function in physiological responses rather than development. Commodified genes could change expression levels rapidly during differentiation, but so could a substantial number of genes in other modification categories. SOX2, POU5F1, and NANOG, pluripotency-associated genes, shifted from modification by H3K4me3 alone to colocalization of both modifications as they were repressed during differentiation. Our results demonstrate that H3K27me3 modifications change during early differentiation, both relieving existing repressive domains and imparting new ones, and that colocalization with H3K4me3 is not restricted to pluripotent cells.  相似文献   

12.
Chromosomal surfaces are ornamented with a variety of post-translational modifications of histones, which are required for the regulation of many of the DNA-templated processes. Such histone modifications include acetylation, sumoylation, phosphorylation, ubiquitination, and methylation. Histone modifications can either function by disrupting chromosomal contacts or by regulating non-histone protein interactions with chromatin. In this review, recent findings will be discussed regarding the regulation of the implementation and physiological significance for one such histone modification, histone H3 lysine 4 (H3K4) methylation by the yeast COMPASS and mammalian COMPASS-like complexes.  相似文献   

13.
The aim of this study was to identify in human cells common targets of histone H3 lysine 9 (H3-Lys9) methylation, a modification that is generally associated with gene silencing. After chromatin immunoprecipitation using an H3-Lys9 methylated antibody, we cloned the recovered DNA and sequenced 47 independent clones. Of these, 38 clones (81%) contained repetitive elements, either short interspersed transposable element (SINE or Alu elements), long terminal repeat (LTR), long interspersed transposable element (LINE), or satellite region (ALR/Alpha) DNA, and three additional clones were near Alu elements. Further characterization of these repetitive elements revealed that 32 clones (68%) were Alu repeats, corresponding to both old Alu (23 clones) and young Alu (9 clones) subfamilies. Association of H3-Lys9 methylation was confirmed by chromatin immunoprecipitation-PCR using conserved Alu primers. In addition, we randomly selected 5 Alu repeats from the recovered clones and confirmed association with H3-Lys9 by PCR using primer sets flanking the Alu elements. Treatment with the DNA methyltransferase inhibitor 5-aza-2'-deoxycytidine rapidly decreased the level of H3-Lys9 methylation in the Alu elements, suggesting that H3-Lys9 methylation may be related to the suppression of Alu elements through DNA methylation. Thus H3-Lys9 methylation is enriched at human repetitive elements, particularly Alu elements, and may play a role in the suppression of recombination by these elements.  相似文献   

14.
15.
16.
Heterochromatin,HP1 and methylation at lysine 9 of histone H3 in animals   总被引:22,自引:0,他引:22  
We show that methylated lysine 9 of histone H3 (Me9H3) is a marker of heterochromatin in divergent animal species. It localises to both constitutive and facultative heterochromatin and replicates late in S-phase of the cell cycle. Significantly, Me9H3 is enriched in the inactive mammalian X chromosome (Xi) in female cells, as well as in the XY body during meiosis in the male, and forms a G-band pattern along the arms of the autosomes. Me9H3 is a constituent of imprinted chromosomes that are repressed. The paternal and maternal pronuclei in one-cell mouse embryos show a striking non-equivalence in Me9H3: the paternal pronucleus contains no immunocytologically detectable Me9H3. The levels of Me9H3 on the parental chromosomes only become equivalent after the two-cell stage. Finally, we provide evidence that Me9H3 is neither necessary nor sufficient for localisation of heterochromatin protein 1 (HP1) to chromosomal DNA.  相似文献   

17.
Smyd3 is a lysine methyltransferase implicated in chromatin and cancer regulation. Here we show that Smyd3 catalyzes histone H4 methylation at lysine 5 (H4K5me). This novel histone methylation mark is detected in diverse cell types and its formation is attenuated by depletion of Smyd3 protein. Further, Smyd3-driven cancer cell phenotypes require its enzymatic activity. Thus, Smyd3, via H4K5 methylation, provides a potential new link between chromatin dynamics and neoplastic disease.  相似文献   

18.
《Epigenetics》2013,8(4):340-343
Smyd3 is a lysine methyltransferase implicated in chromatin and cancer regulation. Here we show that Smyd3 catalyzes histone H4 methylation at lysine 5 (H4K5me). This novel histone methylation mark is detected in diverse cell types and its formation is attenuated by depletion of Smyd3 protein. Further, Smyd3-driven cancer cell phenotypes require its enzymatic activity. Thus, Smyd3, via H4K5 methylation, provides a potential new link between chromatin dynamics and neoplastic disease.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号