首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
tRNA-guanine transglycosylase (TGT) catalyzes the exchange of queuine (or a precursor) for guanine 34 in tRNA. The minimal RNA recognition motif for TGT has been found to involve a UGU sequence in the anticodon loop of the queuine-cognate tRNAs. Recent studies have shown that the enzyme is capable of recognizing the UGU sequence in alternative contexts (Kung, F. L., Nonekowski, S., and Garcia, G. A. (2000) RNA 6, 233-244) and have investigated the role of the first U of the UGU sequence in tRNA recognition by TGT (Nonekowski, S. T., and Garcia, G. A. (2001) RNA 7, 1432-1441). The TGT reaction involves the breakage and re-formation of a glycosidic bond. To rule out a potential chemical mechanism involving the 2'-hydroxyl at position 34, we synthesized and evaluated an RNA minihelix with 2'-deoxy-G at 34. The high level of activity exhibited by this analogue indicates that the 2'-hydroxyl of G(34) is not required for catalysis. Furthermore, we find that TGT can recognize analogues composed entirely of DNA, but only when 2'-deoxyuridines replace the thymidines in the DNA. The requirement for uridine bases for recognition is perhaps not surprising given the UGU recognition motif for TGT. However, it is not clear if the uracil requirement is due to specific recognition by TGT or due to the effect of uracils on the conformation of the oligonucleotide.  相似文献   

3.
C Romier  K Reuter  D Suck    R Ficner 《The EMBO journal》1996,15(11):2850-2857
tRNA-guanine transglycosylases (TGT) are enzymes involved in the modification of the anticodon of tRNAs specific for Asn, Asp, His and Tyr, leading to the replacement of guanine-34 at the wobble position by the hypermodified base queuine. In prokaryotes TGT catalyzes the exchange of guanine-34 with the queuine (.)precursor 7-aminomethyl-7-deazaguanine (preQ1). The crystal structure of TGT from Zymomonas mobilis was solved by multiple isomorphous replacement and refined to a crystallographic R-factor of 19% at 1.85 angstrom resolution. The structure consists of an irregular (beta/alpha)8-barrel with a tightly attached C-terminal zinc-containing subdomain. The packing of the subdomain against the barrel is mediated by an alpha-helix, located close to the C-terminus, which displaces the eighth helix of the barrel. The structure of TGT in complex with preQ1 suggests a binding mode for tRNA where the phosphate backbone interacts with the zinc subdomain and the U33G34U35 sequence is recognized by the barrel. This model for tRNA binding is consistent with a base exchange mechanism involving a covalent tRNA-enzyme intermediate. This structure is the first example of a (beta/alpha)-barrel protein interacting specifically with a nucleic acid.  相似文献   

4.
5.
Soderberg T  Poulter CD 《Biochemistry》2000,39(21):6546-6553
Escherichia coli dimethylallyl diphosphate:tRNA dimethylallyltransferase (DMAPP-tRNA transferase) catalyzes the alkylation of the exocyclic amine of A37 by a dimethylallyl unit in tRNAs with an adenosine in the third anticodon position (position 36). By use of purified recombinant enzyme, steady- state kinetic studies were conducted with chemically synthesized RNA oligoribonucleotides to determine the essential elements within the tRNA anticodon stem-loop structure required for recognition by the enzyme. A 17-base oligoribonucleotide corresponding to the anticodon stem-loop of E. coli tRNA(Phe) formed a stem-loop minihelix (minihelix(Phe)) when annealed rapidly on ice, while the same molecule formed a duplex structure with a central loop when annealed slowly at higher concentrations. Both the minihelix and duplex structures gave k(cat)s similar to that for the normal substrate (full-length tRNA(Phe) unmodified at A37), although the K(m) for minihelix(Phe) was approximately 180-fold higher than full-length tRNA. The A36-A37-A38 motif, which is completely conserved in tRNAs modified by the enzyme, was found to be important for modification. Changing A36 to G in the minihelix resulted in a 260-fold reduction in k(cat) compared to minihelix(Phe) and a 13-fold increase in K(m). An A38G variant was modified with a 9-fold reduction in k(cat) and a 5-fold increase in K(m). A random coil 17-base oligoribonucleotide in which the loop sequence of E. coli tRNA(Phe) was preserved, but the 5 base pair helix stem was completely disrupted and showed no measurable activity, indicating that a helix-loop structure is essential for recognition. Finally, altering the identity of several base pairs in the helical stem did not have a major effect on catalytic efficiency, suggesting that the enzyme does not make base-specific contacts important for binding or catalysis in this region.  相似文献   

6.
We have investigated the specificity of the enzymes Q-insertase and mannosyl-Q transferase that replace the guanosine at position 34 (wobble base) in the anticodon of several tRNAs by Q or mannosyl-Q derivatives. We have restructured in vitro the normal anticodon of yeast tRNA-Asp-GUC, yeast tRNAArgICG and yeast tRNALeuUAG. With yeast tRNA-Asp-GUC, we have replaced one or several nucleotides in the vicinity of G34 by one of the four canonical nucleotides or by pseudouridylic acid; we have also constructed a tRNAAsp with eight bases instead of seven in the anticodon loop. With yeast tRNAArgICG and yeast tRNALeuUAG, we have replaced their anticodon by the trinucleotide GUC, coding for aspartic acid. The chimerical tRNAs were microinjected into the cytoplasm of Xenopus laevis oocytes and after 72 h the amount of Q34 and mannosyl-Q34 incorporated was measured. Our results show that the U33G34U35 sequence, within an anticodon loop of seven bases in chimerical yeast tRNA-Asp-GUC, tRNAArgGUC or tRNALeuGUC, is the main determinant for Q-insertase activity at position 34; the rest of the tRNA sequence has only a slight influence. For mannosyl-Q transferase, however, a much broader structural feature of the tRNA than just the U33G34U35 sequence is important for the efficiency of Q34 transformation into mannosyl-Q34.  相似文献   

7.
Kluyveromyces lactis gamma-toxin is a tRNA endonuclease that cleaves Saccharomyces cerevisiae [see text] between position 34 and position 35. All three substrate tRNAs carry a 5-methoxycarbonylmethyl-2-thiouridine (mcm(5)s(2)U) residue at position 34 (wobble position) of which the mcm(5) group is required for efficient cleavage. However, the different cleavage efficiencies of mcm(5)s(2)U(34)-containing tRNAs suggest that additional features of these tRNAs affect cleavage. In the present study, we show that a stable anticodon stem and the anticodon loop are the minimal requirements for cleavage by gamma-toxin. A synthetic minihelix RNA corresponding to the anticodon stem loop (ASL) of the natural substrate [see text] is cleaved at the same position as the natural substrate. In [see text], the nucleotides U(34)U(35)C(36)A(37)C(38) are required for optimal gamma-toxin cleavage, whereas a purine at position 32 or a G in position 33 dramatically reduces the cleavage of the ASL. Comparing modified and partially modified forms of E. coli and yeast [see text] reinforced the strong stimulatory effects of the mcm(5) group, revealed a weak positive effect of the s(2) group and a negative effect of the bacterial 5-methylaminomethyl (mnm(5)) group. The data underscore the high specificity of this yeast tRNA toxin.  相似文献   

8.
9.
10.
11.
The absence of a Watson-Crick base pair at the end of the amino acid acceptor stem is one of the features which distinguishes prokaryotic initiator tRNAs as a class from all other tRNAs. We show that this structural feature prevents Escherichia coli initiator tRNA from acting as an elongator in protein synthesis in vivo. We generated a mutant of E. coli initiator tRNA in which the anticodon sequence is changed from CAU to CUA (the T35A36 mutant). This mutant tRNA has the potential to read the amber termination codon UAG. We then coupled this mutation to others which change the C1.A72 mismatch at the end of the acceptor stem to either a U1:A72 base pair (T1 mutant) or a C1:G72 base pair (G72 mutant). Transformation of E. coli CA274 (HfrC Su- lacZ125am trpEam) with multicopy plasmids carrying the mutant initiator tRNA genes show that mutant tRNAs carrying changes in both the anticodon sequence and the acceptor stem suppress amber codons in vivo, whereas mutant tRNA with changes in the anticodon sequence alone does not. Mutant tRNAs with the above anticodon sequence change are aminoacylated with glutamine in vitro. Measurement of kinetic parameters for aminoacylation by E. coli glutaminyl-tRNA synthetase show that both the nature of the base pair at the end of the acceptor stem and the presence or absence of a base pair at this position can affect aminoacylation kinetics. We discuss the implications of this result on recognition of tRNAs by E. coli glutaminyl-tRNA synthetase.  相似文献   

12.
The total nucleotide sequence of tRNAGGA/G -Gly2 from Escherichia coli is pG-C-G-G-G-C-A-U-C-G-U-A-U-A-A-U-G-G-C-U-A-U-U-A-C-C-U-C-A-G-C-C-U-N-C-C-A-A-G-C-U-G-A-U-G-A-U-G-C-G-G-G-T-psi-C-G-A-U-U-C-C-C-G-C-U-G-C-C-C-G-C-U-C-C-AOH, where T- at position 53 is ribothymidylic acid, and psi- at position 54 is pseudouridylic acid; N- at position 36 is an unidentified derivative of uridylic acid, and is present in modified form in a portion of tRNAGGA/G -Gly 2 molecules isolated from E. coli cells. The missense suppressor mutation, glyTsuA36(HA), results in a C yields U base substitution at the 3' end of the anticodon of tRNAGGA/G -Gly 2 (nucleotide position 38). A secondary effect of this base substitution is the modification of the A residue directly adjacent to the 3' end of the anticodon of tRNAsuA36(HA), -Gly 2 suggesting that the enzymes responsible for this modification recognize the anticodon sequences of prospective tRNA substrates. The creation of a missense-suppressing tRNA, tRNAsuA36(HA), -Gly 2 by an alteration of the anticodon sequence of tRNAGGA/G -Gly 2 is analogous to mechanisms whereby other suppressor tRNAs have arisen. The high degree of nucleotide sequence homology between the amino acid acceptor stems and anticodon regions of four glycine isoaccepting tRNAs specified by E. coli and bacteriophage T4 suggests that these regions may be recognized by the glycyl-tRNA synthetase; the involvement of the anticodon region in the synthetase recognition process is supported by the greatly decreased rate of aminoacylation of tRNAsuA36(HA) -Gly 2.  相似文献   

13.
The rates of the cross-aminoacylation reactions of tRNAs(Met) catalyzed by methionyl-tRNA synthetases from various organisms suggest the occurrence of two types of tRNA(Met)/methionyl-tRNA synthetase systems. In this study, the tRNA determinants recognized by mammalian or E. coli methionyl-tRNA synthetases, which are representative members of the two types, have been examined. Like its prokaryotic counterpart, the mammalian enzyme utilizes the anticodon of tRNA as main recognition element. However, the mammalian cytoplasmic elongator tRNA(Met) species is not recognized by the bacterial synthetase, and both the initiator and elongator E. coli tRNA(Met) behave as poor substrates of the mammalian cytoplasmic synthetase. Synthetic genes encoding variants of tRNAs(Met), including the elongator one from mammals, were expressed in E. coli. tRNAs(Met) recognized by a synthetase of a given type can be converted into a substrate of an enzyme of the other type by introducing one-base substitutions in the anticodon loop or stem. In particular, a reduction of the size of the anticodon loop of cytoplasmic mammalian elongator tRNA(Met) from 9 to 7 bases, through the creation of an additional Watson-Crick pair at the bottom of the anticodon stem, makes it a substrate of the prokaryotic enzyme and decreases its ability to be methionylated by the mammalian enzyme. Moreover, enlarging the size of the anticodon loop of E. coli tRNA(Metm) from 7 to 9 bases, by disrupting the base pair at the bottom of the anticodon stem, renders the resulting tRNA a good substrate of the mammalian enzyme, while strongly altering its reaction with the prokaryotic synthetase. Finally, E. coli tRNA(Metf) can be rendered a better substrate of the mammalian enzyme by changing its U33 into a C. This modification makes the sequence of the anticodon loop of tRNA(Metf) identical to that of cytoplasmic initiator tRNA(Met).  相似文献   

14.
15.
During protein biosynthesis, all aminoacylated elongator tRNAs except selenocysteine-inserting tRNA Sec form ternary complexes with activated elongation factor. tRNA Sec is bound by its own translation factor, an elongation factor analogue, e.g. the SELB factor in prokaryotes. An apparent reason for this discrimination could be related to the unusual length of tRNA Sec amino acid-acceptor branch formed by 13 bp. However, it has been recently shown that an aspartylated minihelix of 13 bp derived from yeast tRNA Asp is an efficient substrate for Thermus thermophilus EF-Tu-GTP, suggesting that features other than the length of tRNA Sec prevent its recognition by EF-Tu-GTP. A stepwise mutational analysis of a minihelix derived from tRNA Sec in which sequence elements of tRNA Asp were introduced showed that the sequence of the amino acid- acceptor branch of Escherichia coli tRNA Sec contains a specific structural element that hinders its binding to T.thermophilus EF-Tu-GTP. This antideterminant is located in the 8th, 9th and 10th bp in the acceptor branch of tRNA Sec, corresponding to the last base pair in the amino acid acceptor stem and the two first pairs in the T-stem. The function of this C7.G66/G49.U65/C50.G64 box was tested by its transplantation into a minihelix derived from tRNA Asp, abolishing its recognition by EF-Tu-GTP. The specific role of this nucleotide combination is further supported by its absence in all known prokaryotic elongator tRNAs.  相似文献   

16.
We have used the temperature-jump relaxation technique to determine the kinetic and thermodynamic parameters for the association between the following tRNAs pairs having complementary anticodons: tRNA(Ser) with tRNA(Gly), tRNA(Cys) with tRNA(Ala) and tRNA(Trp) with tRNA(Pro). The anticodon sequence of E. coli tRNA(Ser), GGA, is complementary to the U*CC anticodon of E. coli tRNA(Gly(2] (where U* is a still unknown modified uridine base) and A37 is not modified in none of these two tRNAs. E. coli tRNA(Ala) has a VGC anticodon (V is 5-oxyacetic acid uridine) while tRNA(Cys) has the complementary GCA anticodon with a modified adenine on the 3' side, namely 2-methylthio N6-isopentenyl adenine (mS2i6A37) in E. Coli tRNA(Cys) and N6-isopentenyl adenine (i6A37) in yeast tRNA(Cys). The brewer yeast tRNA(Trp) (anticodon CmCA) differs from the wild type E. coli tRNA(Trp) (anticodon CCA) in several positions of the nucleotide sequence. Nevertheless, in the anticodon loop, only two interesting differences are present: A37 is not modified while C34 at the first anticodon position is modified into a ribose 2'-O methyl derivative (Cm). The corresponding complementary tRNA is E.coli tRNA(Pro) with the VGG anticodon. Our results indicate a dominant effect of the nature and sequence of the anticodon bases and their nearest neighbor in the anticodon loop (particularly at position 37 on the 3' side); no detectable influence of modifications in the other tRNA stems has been detected. We found a strong stabilizing effect of the methylthio group on i6A37 as compared to isopentenyl modification of the same residue. We have not been able so far to assess the effect of isopentenyl modification alone in comparison to unmodified A37. The results obtained with the complex yeast tRNA(Trp)-E.coli tRNA(Pro) also suggest that a modification of C34 to Cm34 does not significantly increase the stability of tRNA(Trp) association with its complementary anticodon in tRNA(Pro). The observations are discussed in the light of inter- and intra-strand stacking interactions among the anticodon triplets and with the purine base adjacent to them, and of possible biological implications.  相似文献   

17.
The eukaryotic tRNA-guanine transglycosylases (queuine insertases) catalyse an exchange of guanine for queuine in position 34, the wobble nucleoside, of tRNAs having a GUN anticodon where N (position 36) stands for A, U, C or G. In tRNAAsp (anticodon QUC) and tRNATyr (anticodon Q psi A) from certain eukaryotic cells, the nucleoside Q-34 is further hypermodified into a glycosylated derivative by tRNA-queuine glycosyltransferase. In order to gain insight into the influence of the nucleosides in position 36, 37 and 38 of an anticodon loop on the potential of a tRNA to become a substrate for the two modifying enzymes, we have constructed several variants of yeast tRNAs in which the normal anticodon has been replaced by one of the synthetic anticodons GUA, GUC, GUG or GUU. In yeast tRNAAsp, the nucleosides 37 (m1G) and 38(C) have also been replaced by an adenosine. These reconstructed chimerical tRNAs were microinjected into the cytoplasm of Xenopus laevis oocytes and tested for their ability to react with the oocyte maturation enzymes. Our results indicate that the nucleosides in positions 36, 37 and 38 influence the efficiencies of conversion of G-34 to Q-34 and of Q-34 to glycosyl Q-34; the importance of their effects are much more pronounced on the glycosylation of Q-34 than on the insertion of queuine. The effect of the nucleoside in position 37 is of particular importance in the case of yeast tRNAAsp: the replacement of the naturally occurring m1G-37 by an unmodified adenosine (as it is in X. laevis tRNAAsp), considerably increases the yield of the glycosylation reaction catalysed by the X. laevis tRNA-queuine glycosyltransferase.  相似文献   

18.
Mutant tRNAs containing an extra nucleotide in the anticodon loop are known to suppress +1 frameshift mutations, but in no case has the molecular mechanism been clarified. It has been proposed that the expanded anticodon pairs with a complementary mRNA sequence (the frameshift sequence) in the A site, and this quadruplet "codon-anticodon" helix is translocated to the P site to restore the correct reading frame. Here, we analyze the ability of tRNA analogs containing expanded anticodons to recognize and position mRNA in ribosomal complexes in vitro. In all cases tested, 8 nt anticodon loops position the 3' three-quarters of the frameshift sequence in the P site, indicating that the 5' bases of the expanded anticodon (nucleotides 33.5, 34, and 35) pair with mRNA in the P site. We also provide evidence that four base-pairs can form between the P-site tRNA and mRNA, and the fourth base-pair involves nucleotide 36 of the tRNA and lies toward (or in) the 30 S E site. In the A site, tRNA analogs with the expanded anticodon ACCG are able to recognize either CGG or GGU. These data imply a flexibility of the expanded anticodon in the A site. Recognition of the 5' three-quarters of the frameshift sequence in the A site and subsequent translocation of the expanded anticodon to the P site results in movement of mRNA by four nucleotides, explaining how these tRNAs can change the mRNA register in the ribosome to restore the correct reading frame.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号