首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Cell surface sialylation is emerging as an important feature of cancer cell metastasis. Sialyltransferase expression has been reported to be altered in tumours and may account for the formation of sialylated tumour antigens. We have focused on the influence of alpha-2,3-sialyltransferase ST3Gal III in key steps of the pancreatic tumorigenic process.

Methodology/Principal Findings

ST3Gal III overexpressing pancreatic adenocarcinoma cell lines Capan-1 and MDAPanc-28 were generated. They showed an increase of the tumour associated antigen sialyl-Lewisx. The transfectants'' E-selectin binding capacity was proportional to cell surface sialyl-Lewisx levels. Cellular migration positively correlated with ST3Gal III and sialyl-Lewisx levels. Moreover, intrasplenic injection of the ST3Gal III transfected cells into athymic nude mice showed a decrease in survival and higher metastasis formation when compared to the mock cells.

Conclusion

In summary, the overexpression of ST3Gal III in these pancreatic adenocarcinoma cell lines underlines the role of this enzyme and its product in key steps of tumour progression such as adhesion, migration and metastasis formation.  相似文献   

2.
Changes in cell surface glycosylation are common modifications that occur during oncogenesis, leading to the over-expression of tumour-associated carbohydrate antigens (TACA). Most of these antigens are sialylated and the increase of sialylation is a well-known feature of transformed cells. In breast cancer, expression of TACA such as sialyl-Lewisx or sialyl-Tn is usually associated with a poor prognosis and a decreased overall survival of patients. However, the specific role of these sialylated antigens in breast tumour development and aggressiveness is not clearly understood. These glycosylation changes result from the modification of the expression of genes encoding specific glycosyltransferases involved in glycan biosynthesis and the level of expression of sialyltransferase genes has been proposed to be a prognostic marker for the follow-up of breast cancer patients. Several human cellular models have been developed in order to explain the mechanisms by which carbohydrate antigens can reinforce breast cancer progression and aggressiveness. TACA expression is associated with changes in cell adhesion, migration, proliferation and tumour growth. In addition, recent data on glycolipid biosynthesis indicate an important role of GD3 synthase expression in breast cancer progression. The aim of this review is to summarize our current knowledge of sialylation changes that occur in breast cancer and to describe the cellular models developed to analyze the consequences of these changes on disease progression and aggressiveness.  相似文献   

3.
We have previously reported that human liver cancer cell lines produce interleukin-8 (IL-8) at high levels. Those tumor cells appeared to express two kinds of IL-8 receptor on their surface. In order to analyze the role of IL-8 on the biological characteristics of those tumor cells, we suppressed IL-8 production from human liver (HuH-7 and HuCC-T1) and pancreatic cancer cell lines (HuP-T4) by treatment with IL-8 antisense oligonucleotides. Suppression of IL-8 production resulted not only in inhibition of cell growth, but also in an increase in the concentrations of some tumor-associated substances such as carbohydrate antigen 19-9 (CA19-9) in the medium. These data indicate that IL-8 produced by human liver and pancreatic tumors may act as an autocrine growth factor and may control the production of some tumor-associated substances. Furthermore, surface expression of sialyl-Lewisa, which is a ligand for ELAM-1 on human umbilical vein endothelial cells (HUVEC), HuCC-T1 and HuP-T4 cells was decreased and the attachment of these tumor cells to HUVEC was inhibited by treatment with IL-8 antisense oligonucleotide. Since the soluble form of CA19-9 (sialyl-Lewisa) was shown to inhibit the tumor cell binding to HUVEC, the decrease in release of CA19-9 into the medium and increase in the expression of sialyl-Lewisa on the cell surface may suggest that IL-8 production from the tumor cells enhances metastatic potential by augmenting the binding activity of the tumor cells to HUVEC. These data demonstrate that a cytokine produced by tumor cells may function as an autocrine growth factor and affect tumor cell dissemination. Received: 4 February 1998 / Accepted: 6 May 1998  相似文献   

4.
Summary The Lex (CD15) carbohydrate antigen and sialylated and oligomeric derivatives thereof have been implicated in cell adhesion processes. Expression of these antigens is developmentally regulated and (re)occurrence of several members of this group has been reported in malignant transformation of cells. Studies on the enzymology and genetics of 3-fucosyltransferases, glycosyltransferases that play a key role in the biosynthesis of these antigens, would yield insight in the regulation of expression of these carbohydrate structures. In this paper the existing literature on these enzymes is reviewed and placed in the context of cell adhesion and malignancy.  相似文献   

5.
Sialyl-Lewis X (SLex) is a sialylated glycan antigen expressed on the cell surface during malignant cell transformation and is associated with cancer progression and poor prognosis. The increased expression of sialylated glycans is associated with alterations in the expression of sialyltransferases (STs). In this study we determined the capacity of ST3GAL3 and ST3GAL4 sialyltransferases to synthesize the SLex antigen in MKN45 gastric carcinoma cells and evaluated the effect of SLex overexpression in cancer cell behavior both in vitro and in vivo using the chicken chorioallantoic membrane (CAM) model. The activation of tyrosine kinase receptors and their downstream molecular targets was also addressed. Our results showed that the expression of ST3GAL4 in MKN45 gastric cancer cells leads to the synthesis of SLex antigens and to an increased invasive phenotype both in vitro and in the in vivo CAM model. Analysis of phosphorylation of tyrosine kinase receptors showed a specific increase in c-Met activation. The characterization of downstream molecular targets of c-Met activation, involved in the invasive phenotype, revealed increased phosphorylation of FAK and Src proteins and activation of Cdc42, Rac1 and RhoA GTPases. Inhibition of c-Met and Src activation abolished the observed increased cell invasive phenotype. In conclusion, the expression of ST3GAL4 leads to SLex antigen expression in gastric cancer cells which in turn induces an increased invasive phenotype through the activation of c-Met, in association with Src, FAK and Cdc42, Rac1 and RhoA GTPases activation.  相似文献   

6.
Transient expression of a human colonic adenocarcinoma Colo 205 cell derived cDNA in cell lines which ordinarily express only neolacto-series glycolipids has resulted in the expression of a beta 1 --> 3galactosyltransferase gene responsible for synthesis of glycolipids based upon the lacto-series type 1 core chain. Calcium phosphate transfected cells were panned on anti-IgM coated plates after initial treatment with a combination of monoclonal antibodies specific for type 1 chain terminal structures (TE-3) and a very broadly specific antibody reactive with multiple type 1 chain derivatives (TE-2). Adherent cells after panning were capable of efficiently transferring Gal in beta 1 --> 3-linkage to the acceptor glycolipid Lc3. Using these reagents, clones of stably transfected human colonic adenocarcinoma HCT-15 cells were produced and isolated. Parental HCT-15 cells do not express type 1 chain based antigens. The nature of the type 1 chain based antigens produced in each of these clones was analyzed by solid phase antibody binding assays. Three types of behavior were observed. Formation of type 1 terminal structures that were either exclusively sialylated or fucosylated, or a mixture of sialylated and fucosylated determinants occurred. In contrast, no difference in type 2 antigen expression between any clone and the parental cells was observed. These data suggest that coordination of subsequent reactions capable of modifying type 1 chain structures is not the same in all clones. The relationship of these results to aspects of cellular regulation of carbohydrate biosynthesis is discussed.  相似文献   

7.
Several glycoconjugates are involved in the immune response. Sialic acid is frequently the glycan terminal sugar and it may modulate immune interactions. Dendritic cells (DCs) are antigen-presenting cells with high endocytic capacity and a central role in immune regulation. On this basis, DCs derived from monocytes (mo-DC) are utilised in immunotherapy, though many features are ignored and their use is still limited. We analyzed the surface sialylated glycans expressed during human mo-DC generation. This was monitored by lectin binding and analysis of sialyltransferases (ST) at the mRNA level and by specific enzymatic assays. We showed that α2-3-sialylated O-glycans and α2-6- and α2-3-sialylated N-glycans are present in monocytes and their expression increases during mo-DC differentiation. Three main ST genes are committed with this rearrangement: ST6Gal1 is specifically involved in the augmented α2-6-sialylated N-glycans; ST3Gal1 contributes for the α2-3-sialylation of O-glycans, particularly T antigens; and ST3Gal4 may contribute for the increased α2-3-sialylated N-glycans. Upon mo-DC maturation, ST6Gal1 and ST3Gal4 are downregulated and ST3Gal1 is altered in a stimulus-dependent manner. We also observed that removing surface sialic acid of immature mo-DC by neuraminidase significantly decreased its endocytic capacity, while it increased in monocytes. Our results indicate the STs expression modulates the increased expression of surface sialylated structures during mo-DC generation, which is probably related with changes in cell mechanisms. The ST downregulation after mo-DC maturation probably results in a decreased sialylation or sialylated glycoconjugates involved in the endocytosis, contributing to the downregulation of one or more antigen-uptake mechanisms specific of mo-DC.  相似文献   

8.
Metastin, a post-translationally modified variant of KiSS1, was recently identified as an endogenous peptide agonist for a novel G-protein coupled receptor, hOT7T175 (AXOR12, GPR54). In this study, we analyzed the role of KiSS1 and hOT7T175 in both pancreatic cancer tissues and pancreatic cancer cell lines. Furthermore, we synthesized novel short variant forms of metastin and tested the inhibitory effect of those variants on in vitro cell functions that are relevant to metastasis. Pancreatic cancer tissues showed significantly lower expression of KiSS1 mRNA than normal tissues (p=0.018), while cancer tissues showed significantly higher expression of hOT7T175 mRNA than normal pancreatic tissues (p=0.027). In human pancreatic cancer cell lines, KiSS1 mRNA was highly expressed in 2 out of 6 pancreatic cancer cell lines, while hOT7T175 mRNA was expressed in all cell lines at various degrees. PANC-1 cells showed the highest expression of hOT7T175. Exogenous metastin did not suppress cell proliferation but significantly reduced the in vitro migration of PANC-1 cells (p<0.01). Metastin induced activation of ERK1 in PANC-1 and AsPC-1 cells. Finally, we synthesized 3 novel short variant forms of metastin, FM053a2TFA, FM059a2TFA, and FM052a4TFA. These metastin variants significantly suppressed the migration of PANC-1 cells and activated ERK1. These data suggest that the metastin receptor, hOT7T175, is one of the promising targets for suppression of metastasis, and that small metastin variants could be an anti-metastatic agent to pancreatic cancer.  相似文献   

9.
10.
11.
Cell surface glycoconjugates play an important role in cellular recognition and adhesion. Modification of these structures in tumour cells could affect tumour cell growth and behaviour, including metastasis. 2-Acetamido-1,3,6-tri-O-acetyl-4-deoxy-4-fluoro--D-glycopyranose (4-F-GlcNAc) was synthesized as a potential inhibitor and/or modifier of tumour cell glycoconjugates. The effect of this sugar analogue on the adhesive properties of human colon carcinoma HT-29 cells was evaluated. Treatment of HT-29 cells with 4-F-GlcNAc led to reduced cell surface expression of terminal lactosamine, sialyl-Lex and sialyl-Lea, as determined by Western blotting and flow cytometry. The aberrant expression of these oligosaccharide structures on the HT-29 cell surface resulted in: (1) decreased E-selectin mediated adhesion of human colon cells to human umbilical cord endothelial cells (HUVEC); (2) impaired adhesion of HT-29 cells to -galactoside binding lectin, galectin-1; and (3) reduced ability to form homotypic aggregates. After exposure to 4-F-GlcNAc, lysosomal associated membrane proteins (lamp) 1 and 2, and carcinoembryonic antigen (CEA) detected in HT-29 cells were of lower molecular weight, probably due to impaired glycosylation. These results strongly suggest that modification of tumour cell surface molecules can alter tumour cell adhesion and that tumour cell surface oligosaccharides may be suitable targets for therapeutic exploitation.Abbreviations 4-F-GlcNAc 2-acetamido-1,3,6-tri-O-acetyl-4-deoxy-4-fluoro--glucopyranose - GlcNAc N-acetylglucosamine - s-Lex sialyl-Lewisx - s-Lea sialyl-Lewisa - lamp-1 and lamp-2 Lysosomal Associated Membrane Protein 1 and 2 - CEA carcinoembryonic antigen - DMEM Dulbecco's Modified Eagle Medium - PBS Phosphate Buffered Saline (2.7 mM KCl, 1.5 mM KH2PO4, 137 mM NaCl, 6.5 mM Na2HPO4, pH 7.3) - BSA Bovine Serum Albumin - PMSF Phenylmethylsulfonylfluoride - TBS Tris Buffered Saline (10 mM Tris, 20 mM NaCl, pH 7.3) - TCA Trichloroacetic Acid - DSA Datura stramonium agglutinin  相似文献   

12.
Summary Activation of lymphocytes by interleukin-2 (IL-2) induces lymphokine-activated killer (LAK) cells that show promising effects on tumour growth in clinical trials. We examined the effect of the superantigen staphylococcal enterotoxin A (SEA) on anti-tumour activity of freshly prepared human lymphocytes. Picomolar amounts of SEA rapidly induced cytotoxic activity against K562 and Raji cells as well as some natural-killer(NK)-resistant tumour cell lines. Cytotoxic activity was not dependent on target cell expression of either major histocompatibility complex (MHC) class I or II antigens as shown using mutated cell lines. Cell-sorting experiments showed that the activity was expressed by NK (CD5CD56+) as well as T (CD5+) cells, although the former contained the majority of cytotoxic activity. NK cells could not be directly activated by SEA. In contrast, SEA activated purified T cells to the same extent as in bulk cultures. It is suggested that SEA activation of NK cells is secondary to that brought about by lymphokines produced by T cells. Activation of LAK cells with SEA was comparable in magnitude as well as target cell spectrum to that of IL-2. In addition to the LAK-like cytotoxic activity induced by SEA, a superimposed cytotoxicity towards target cells expressing MHC class II antigens coated with SEA was observed. This staphylococcal-enterotoxin-dependent cell-mediated cytotoxicity (SDCC) was exclusively mediated by T cells. It is well established that MHC class II antigens function as receptors for staphylococcal enterotoxins on mammalian cells and that the complex between MHC class II antigen and — SEA apparently functions as a target structure for activated T cells with target cell lysis as a consequence. Activation of T lymphocytes with IL-2 also resulted in the capability to mediate SDCC. Staphylococcal enterotoxins represent a novel way of inducing anti-tumour activity in human lymphocytes, which could be of value in therapeutic applications.  相似文献   

13.
Our previous studies suggest that the α2,3sialylated T-antigen (NeuAcα2,3Galβ1,3GalNac-) and associated glycan structures are likely to be elevated during cancer. An easy and reliable strategy to label mucinous glycans that contain such carbohydrates can enable the identification of novel glycoproteins that are cancer associated. To this end, the present study demonstrates that the exchange sialylation property of mammalian ST3Gal-II can facilitate the labeling of mucin glycoproteins in cancer cells, tumor specimens, and glycoproteins in cancer sera. Results show that (i) the radiolabeled mucin glycoproteins of each of the cancer cell lines studied (T47D, MCF7, LS180, LNCaP, SKOV3, HL60, DU4475, and HepG2) is distinct either in terms of the specific glycans presented or their relative distribution. While some cell lines like T47D had only one single sialylated O-glycan, others like LS180 and DU4475 contained a complex mixture of mucinous carbohydrates. (ii) [14C]sialyl labeling of primary tumor cells identified a 25-35 kDa mucin glycoprotein unique to pancreatic tumor. Labeled glycoproteins for other cancers had higher molecular weight. (iii) Studies of [14C] sialylated human sera showed larger mucin glycopeptides and >2-fold larger mucin-type chains in human serum compared to [14C]sialyl labeled glycans of fetuin. Overall, the exchange sialylation property of ST3Gal-II provides an efficient avenue to identify mucinous proteins for applications in glycoproteomics and cancer research.  相似文献   

14.
Insect cells, like other eucaryotic cells, modify many of their proteins by N-glycosylation. However, the endogenous insect cell N-glycan processing machinery generally does not produce complex, terminally sialylated N-glycans such as those found in mammalian systems. This difference in the N-glycan processing pathways of insect cells and higher eucaryotes imposes a significant limitation on their use as hosts for baculovirus-mediated recombinant glycoprotein production. To address this problem, we previously isolated two transgenic insect cell lines that have mammalian beta1,4-galactosyltransferase or beta1,4-galactosyltransferase and alpha2,6-sialyltransferase genes. Unlike the parental insect cell line, both transgenic cell lines expressed the mammalian glycosyltransferases and were able to produce terminally galactosylated or sialylated N-glycans. The purpose of the present study was to investigate the structures of the N-glycans produced by these transgenic insect cell lines in further detail. Direct structural analyses revealed that the most extensively processed N-glycans produced by the transgenic insect cell lines were novel, monoantennary structures with elongation of only the alpha1,3 branch. This led to the hypothesis that the transgenic insect cell lines lacked adequate endogenous N-acetylglucosaminyltransferase II activity for biantennary N-glycan production. To test this hypothesis and further extend the N-glycan processing pathway in Sf9 cells, we produced a new transgenic line designed to constitutively express a more complete array of mammalian glycosyltransferases, including N-acetylglucosaminyltransferase II. This new transgenic insect cell line, designated SfSWT-1, has higher levels of five glycosyltransferase activities than the parental cells and supports baculovirus replication at normal levels. In addition, direct structural analyses showed that SfSWT-1 cells could produce biantennary, terminally sialylated N-glycans. Thus, this study provides new insight on the glycobiology of insect cells and describes a new transgenic insect cell line that will be widely useful for the production of more authentic recombinant glycoproteins by baculovirus expression vectors.  相似文献   

15.
It has long been known that cancer cells often express more heavily sialylated glycans on their surface and that this feature sometimes correlates with invasion. It is now well established that specific sialylated structures, such as the Thomsen-Friedenreich-related antigens, the sialyl Lewis antigens, the sialyl alpha2-6 lactosaminyl structure, the polysialic acid or some gangliosides, can mediate cellular interactions and are altered in cancer cells. This review summarizes the current knowledge on the cancer-associated alterations in sialyltransferase expression which are often at the basis of the deranged expression of sialylated structures.  相似文献   

16.
Mucin O-glycosylation in cancer is characterized by aberrant expression of immature carbohydrate structures leading to exposure of simple mucin-type carbohydrate antigens and peptide epitopes. Glycosyltransferases controlling the initial steps of mucin O-glycosylation are responsible for the altered glycosylation observed in cancer. We studied the expression in gastric cell lines of six UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferases (GalNAc-T1, T2, T3, T4, T6, T11) that catalyze the initial key step in the regulation of mucin O-glycosylation, the transfer of GalNAc from UDP-GalNAc to serine and threonine residues. We also studied the expression of ST6GalNAc-I, the enzyme responsible for the synthesis of Sialyl-Tn antigen (NeuAcalpha2,6GalNAc) and the ST3Gal-I, the enzyme responsible for the synthesis of Sialyl-T antigen (NeuAcalpha2,3Galbeta1,3GalNAc). This study was done using specific monoclonal antibodies, enzymatic assays, and RT-PCR. Our results showed that GalNAc-T1, -T2, and -T3 have an ubiquitous expression in all gastric cell lines, whereas GalNAc-T4, -T6, and -T11 show a restricted expression pattern. The immunoreactivity with MAb VU-2-G7 suggests that, apart from GalNAc-T4, another GalNAc transferase is involved in the glycosylation of the Thr in the PDTR region of the MUC1 tandem repeat. The expression of ST3Gal-I correlates with the expression of the Sialyl-T antigen in gastric cell lines and in the control cell lines studied. The expression of ST6GalNAc-I is low in gastric cell lines, in accordance with the low/absent expression of the Sialyl-Tn antigen.  相似文献   

17.
Rapoport E  Pendu JL 《Glycobiology》1999,9(12):1337-1345
Comparisons of carbohydrate profiles between control and apoptotic colon carcinoma cells were performed by flow cytometry using a set of lectins and anti-carbohydrate antibodies. The six cell lines analyzed presented distinct carbohydrate profiles before induction of apoptosis. PHA-L and MAA binding decreased after induction of apoptosis by UV-treatment. In contrast an increase of PNA binding was observed after induction of apoptosis, except on SW-48 cells for which a decrease occurred. A decrease of SNA binding was observed after induction of apoptosis from strongly positive control cell lines, whereas it increased on weakly positive ones. All the blood group related antigens A, H, Lewis a, Lewis x, Lewis b, and Lewis y, had their expression strongly diminished on apoptotic cells. These changes occurred irrespective of the mode of apoptosis induction since similar results were obtained after UV, TNFalpha, or anti-Fas treatment. Fucosyltransferases activities were also decreased after apoptosis induction, except for alpha1,3fucosyltransferase in anti-Fas treated HT-29 cells, where it was strongly augmented. This could be attributed to the IFNgamma preteatment required to induce Fas expression on these cells. Fucosidase activity decreased after induction of apoptosis suggesting that it was not responsible for the loss of fucosylated structures. In the rat PRO cell line, H blood group antigens are mainly carried by a high molecular weight variant of CD44. It could be shown that the loss of H antigen after induction of apoptosis correlated with a loss of the carrier glycoprotein.  相似文献   

18.
Summary After a 5-day period of continuous intravenous infusion of recombinant interleukin 2 (rIL-2) in seven patients with malignant melanoma or gastric or pancreatic cancer, different lymphocyte subsets were separated from patients' blood and tested ex vivo for cytotoxic activity against various tumour cell lines. Lytic activity was mediated by CD3+CD56+, CD3CD56+, CD3CD2+ and CD8+CD56+ lymphocytes. No cytotoxic activity could be observed within the CD3+CD56, CD3+CD2+ or CD4+ T cell subsets. To characterize CD56+ cytotoxic cells further, the expression of other antigens on this population was analysed before and after IL-2 therapy. CD3, CD4, CD16 and CD57 antigens were weakly expressed, and the IL-2 receptor (CD25) was not detectable on these cells either before and after treatment with IL-2. In contrast, increased expression of CD2, CD8 and HLA-DR antigens occurred following therapy. The divergence of CD3 and CD8 antigen expression after IL-2 therapy was caused by an increase in CD3CD8+ cells, detectable as a low-density CD8+ subset. This study shows that cytotoxic activity of in vivo IL-2-activated killer cells is predominantly, but not exclusively, mediated by CD3CD56+ lymphocytes, partially coexpressing the CD8 antigen and lacking the expression of CD 16 antigens.  相似文献   

19.
In our previous studies we have described that ST3Gal III transfected pancreatic adenocarcinoma Capan-1 and MDAPanc-28 cells show increased membrane expression levels of sialyl-Lewis x (SLex) along with a concomitant decrease in α2,6-sialic acid compared to control cells. Here we have addressed the role of this glycosylation pattern in the functional properties of two glycoproteins involved in the processes of cancer cell invasion and migration, α2β1 integrin, the main receptor for type 1 collagen, and E-cadherin, responsible for cell-cell contacts and whose deregulation determines cell invasive capabilities. Our results demonstrate that ST3Gal III transfectants showed reduced cell-cell aggregation and increased invasive capacities. ST3Gal III transfected Capan-1 cells exhibited higher SLex and lower α2,6-sialic acid content on the glycans of their α2β1 integrin molecules. As a consequence, higher phosphorylation of focal adhesion kinase tyrosine 397, which is recognized as one of the first steps of integrin-derived signaling pathways, was observed in these cells upon adhesion to type 1 collagen. This molecular mechanism underlies the increased migration through collagen of these cells. In addition, the pancreatic adenocarcinoma cell lines as well as human pancreatic tumor tissues showed colocalization of SLex and E-cadherin, which was higher in the ST3Gal III transfectants. In conclusion, changes in the sialylation pattern of α2β1 integrin and E-cadherin appear to influence the functional role of these two glycoproteins supporting the role of these glycans as an underlying mechanism regulating pancreatic cancer cell adhesion and invasion.  相似文献   

20.
In human pancreatic adenocarcinoma, alterations of glycosylation processes leads to the expression of tumor-associated carbohydrate antigens, representing potential targets for cancer immunotherapy. Among these pancreatic tumor-associated carbohydrate antigens, the J28 glycotope located within the O-glycosylated mucin-like C-terminal domain of the fetoacinar pancreatic protein (FAPP) and expressed at the surface of human tumoral tissues, can be a good target for anticancer therapeutic vaccines. However, the oncodevelopmental self character of the J28 glycotope associated with the low immunogenicity of tumor-associated carbohydrate antigens may be a major obstacle to effective anti-tumor vaccine therapy. In this study, we have investigated a method to increase the immunogenicity of the recombinant pancreatic oncofetal J28 glycotope by glycoengineering Galalpha1,3Galss1,4GlcNAc-R (alphaGal epitope) which may be recognized by natural anti-alphaGal antibody present in humans. For this purpose, we have developed a stable Chinese hamster ovary cell clone expressing the alphaGal epitope by transfecting the cDNA encoding the alpha1,3galactosyltransferase. These cells have been previously equipped to produce the recombinant O-glycosylated C-terminal domain of FAPP carrying the J28 glycotope. As a consequence, the C-terminal domain of FAPP produced by these cells carries the alphaGal epitope on oligosaccharide structures associated with the J28 glycotope. Furthermore, we show that this recombinant "alpha1,3galactosyl and J28 glycotope" may not only be targeted by human natural anti-alphaGal antibodies but also by the mAbJ28, suggesting that the J28 glycotope remains accessible to the immune system as vaccinating agent. This approach may be used for many identified tumor-associated carbohydrate antigens which can be glycoengineered to carry a alphaGal epitope to increase their immunogenicity and to develop therapeutic vaccines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号