首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Introduction of the E1A early region of the human adenovirus type 5 impairs the ability of mammalian cells to stop in the cell cycle at G1/S after damage. Two-parameter fluorescence cell sorting with iododeoxyuridine revealed the radiation-induced G1/S arrest in rat embryo fibroblasts transformed with the complementing E1A and E1B-19kDa oncogenes. This was due to selective inhibition of CyclE/Cdk2-associated kinase activity, while activities of type 2 kinase and of CyclA/Cdk2 complexes remained unchanged. The inhibitor of G1-phase cyclin kinases, p21/Waf1, was accumulated and interacted with target kinases both in normal and in transformed cells after irradiation. As shown by immunoprecipitation, p21/Waf1 formed complexes with the E1A oncoproducts in the transformants, which possibly accounted for its functional inactivation. Kinase modification in cyclin–kinase complexes was assumed to play a key role in regulation of cyclin-dependent kinases in the transformants with inactivated p21/Waf1.  相似文献   

2.
3.
前列腺素A2(PGA2)具有强的体内、外抗增殖活性,引起细胞周期阻滞,同时,可诱导cdk抑制物p21蛋白的表达,后者亦可介导多种细胞的G1阻滞.提示p21waf1/cip1在PGA2诱导的细胞周期阻滞中具有重要作用.主要介绍了近两年来有关p21waf1/cip1与转录因子E2F间的相互作用的研究,阐述p21waf1/cip1在PGA2介导的细胞周期阻滞中的作用机制.  相似文献   

4.
Cell cycle arrest in potentially dividing cells is often mediated by inhibitors of G1/S-phase cyclin-dependent kinases. The cyclin E/CDK2-inhibitor p27Kip1 has been implicated in this context in epithelial cells. We cloned and sequenced p27Kip1 of ducklings (Anas platyrhynchos) and used an in vitro assay system to study the mechanism of p27Kip1 downregulation in the nasal gland which precedes an increase in proliferation rate upon initial exposure of the animals to osmotic stress. Western blot studies revealed that p27Kip1 is downregulated during 24 h of osmotic stress in ducklings with the steepest decline in protein levels between 5 and 8 h. As indicated by the results of Northern blot and semi-quantitative PCR studies, protein downregulation is not accompanied by similar changes in mRNA levels indicating that Kip1 is regulated mainly at the translational (synthesis) or posttranslational level (degradation). Using recombinant duck Kip1 protein expressed in E. coli, we showed that Kip1 is subject to polyubiquitinylation by cytosolic enzymes from nasal gland cells indicating that loss of Kip1 may be regulated, at least in part, by acceleration of protein degradation. In cultured nasal gland tissue, attenuation of Kip1 expression could be induced by activation of the muscarinic acetylcholine receptor indicating that mAChR-receptor signalling may play a role in the re-entry of quiescent gland cells into the cell cycle.  相似文献   

5.
6.
The cyclin-dependent kinase (CDK) inhibitor p21CDKN1A is known to induce cell cycle arrest by inhibiting CDK activity and by interfering with DNA replication through binding to proliferating cell nuclear antigen. Although the molecular mechanisms have been elucidated, the temporal dynamics, as well as the intracellular sites of the activity of p21 bound to cyclin/CDK complexes during cell cycle arrest, have not been fully investigated. In this study we have induced the expression of p21CDKN1A fused to green fluorescent protein (GFP) in HeLa cells, in order to visualize the intracellular localization of the inhibitor during the cell cycle arrest. We show that p21-GFP is preferentially expressed in association with cyclin E in cells arrested in G1 phase, and with cyclin A more than with cyclin B1 in cells arrested in the G2/M compartment. In addition, we show for the first time that p21-GFP colocalizes with cyclin E in the nucleolus of HeLa cells during the G1 phase arrest.O. Cazzalini and P. Perucca contributed equally to this work  相似文献   

7.
8.
9.
The physiology of p16INK4A-mediated G1 proliferative arrest   总被引:11,自引:0,他引:11  
Phosphorylation of the product of the retinoblastoma susceptibility gene (Rb) physiologically inactivates its growth-suppressive properties. Rb phosphorylation is mediated by cyclin-dependent kinases (CDKs), whose activity is enhanced by cyclins and inhibited by CDK inhibitors. p16INK4A is a member of a family of inhibitors specific for CDK4 and CDK6. p16INK4A is deleted and inactivated in a wide variety of human malignancies, including familial melanomas and pancreatic carcinoma syndromes, indicating that it is an authentic human tumor suppressor. Although one mechanism for its tumor suppression may be prevention of Rb phosphorylation, thereby causing G1 arrest, many normal cell types express p16INK4A, and are still able to traverse the cell cycle. In a search for other mechanisms, we have found that p16INK4A is required for p53-independent G1 arrest in response to DNA-damaging agents, including topoisomerase I and II inhibitors. Thus, like other tumor suppressors, p16INK4A plays an essential role in a DNA-damage checkpoint that leads to cell cycle arrest.  相似文献   

10.
p27Kip1 is a critical modulator of cell proliferation by controlling assembly, localization and activity of cyclin-dependent kinase (CDK). p27Kip1 also plays important roles in malignant transformation, modulating cell movement and interaction with the extracellular matrix. A critical p27Kip1 feature is the lack of a stable tertiary structure that enhances its “adaptability” to different interactors and explains the heterogeneity of its function. The absence of a well-defined folding underlines the importance of p27Kip1 post-translational modifications that might highly impact the protein functions. Here, we characterize the metabolism and CDK interaction of phosphoserine10-p27Kip1 (pS10- p27Kip1), the major phosphoisoform of p27Kip1. By an experimental strategy based on specific immunoprecipitation and bidimensional electrophoresis, we established that pS10-p27Kip1 is mainly bound to cyclin E/CDK2 rather than to cyclin A/CDK2. pS10- p27Kip1 is more stable than non-modified p27Kip1, since it is not (or scarcely) phosphorylated on T187, the post-translational modification required for p27Kip1 removal in the nucleus. pS10-p27Kip1 does not bind CDK1. The lack of this interaction might represent a mechanism for facilitating CDK1 activation and allowing mitosis completion. In conclusion, we suggest that nuclear p27Kip1 follows 2 almost independent pathways operating at different rates. One pathway involves threonine-187 and tyrosine phosphorylations and drives the protein toward its Skp2-dependent removal. The other involves serine-10 phosphorylation and results in the elongation of p27Kip1 half-life and specific CDK interactions. Thus, pS10-p27Kip1, due to its stability, might be thought as a major responsible for the p27Kip1-dependent arrest of cells in G1/G0 phase.  相似文献   

11.
12.
Summary The two human homologues of the fission yeast cell cycle protein p13 suc1 displayed structural characteristics consistent with their existing in solution as differently folded monomers despite 81% identity with respect to their primary structures and both being capable of fulfilling the functions of their homologues in fission and budding yeasts. Carboxyfluorescein-labelled p9 CksHs1 and p9 CksHs2 retained their native structures. When microinjected into live stamen hair cells ofTradescantia virginiana, the labelled proteins accumulated in the nuclei of the cells. Markedly different nuclearaccumulation kinetics indicated that the human proteins interact differently with other cellular constituents, which supports the proposition that they may have different roles in cellular regulation.Abbreviations Cdk cyclin-dependent kinase - tris tris(hydroxymethyl)aminomethane - Hepes N-(2-hydroxyethyl)piperazine-N-(3-ethanesulphonic acid) - CF 5(6)-carboxyfluorescein-N-hydroxysuccinamide ester - SDS-PAGE sodium dodecyl sulphatepolyacrylamide gel electrophoresis - IEF isoelectric focusing - DEAE Sephacel diethylaminoethyl Sephacel - ELISA enzyme-linked immunosorbent assay - IgG immunoglobulin  相似文献   

13.
8-Chloroadenosine, an active dephosphorylated metabolite of the antineoplastic agent 8-chloroadenosine 3',5'-monophosphate (8-Cl-cAMP), induces growth inhibition in multiple carcinomas. Here we report that 8-chloroadenosine inhibits growth in human promyelocytic leukemia HL-60 cells by a G(0)/G(1) phase arrest and terminates cell differentiation along the granulocytic lineage. The mechanism of 8-chloroadenosine-induced G(0)/G(1) arrest is independent of apoptosis. The expressions of cyclin D1 and c-myc in HL-60 are suppressed by 8-chloroadenosine, whereas the cyclin-dependent kinases inhibitor p21(WAF1/CIP1) is up-regulated. 8-Chloroadenosine has less effect on the expressions of cyclin-dependent kinase (cdk)2 and cdk4, G(1) phase cyclin-dependent kinases, and only moderately induces the expression of transforming growth factor beta1 (TGFbeta1) and the mitotic inhibitor p27(KIP1). Telomerase activity is reduced in extracts of 8-chloroadenosine treated HL-60 cells, but 8-chloroadenosine does not directly inhibit the catalytic activity of telomerase in vitro. Therefore, anti-proliferation of HL-60 cells by 8-chloroadenosine involves coordination of cyclin D1 suppression, reduction of telomerase activity, and up-regulation of p21(WAF1/CIP1) that arrest cell-cycle progression at G(0)/G(1) phase and terminate cell differentiation.  相似文献   

14.
Prp43p is a RNA helicase required for pre‐mRNA splicing and for the synthesis of large and small ribosomal subunits. The molecular functions and modes of regulation of Prp43p during ribosome biogenesis remain unknown. We demonstrate that the G‐patch protein Pfa1p, a component of pre‐40S pre‐ribosomal particles, directly interacts with Prp43p. We also show that lack of Gno1p, another G‐patch protein associated with Prp43p, specifically reduces Pfa1p accumulation, whereas it increases the levels of the pre‐40S pre‐ribosomal particle component Ltv1p. Moreover, cells lacking Pfa1p and depleted for Ltv1p show strong 20S pre‐rRNA accumulation in the cytoplasm and reduced levels of 18S rRNA. Finally, we demonstrate that Pfa1p stimulates the ATPase and helicase activities of Prp43p. Truncated Pfa1p variants unable to fully stimulate the activity of Prp43p fail to complement the 20S pre‐rRNA processing defect of Δpfa1 cells depleted for Ltv1p. Our results strongly suggest that stimulation of ATPase/helicase activities of Prp43p by Pfa1p is required for efficient 20S pre‐rRNA‐to‐18S rRNA conversion.  相似文献   

15.
Human CAP10-like protein 46 kDa (hCLP46) is the homolog of Rumi, which is the first identified protein O-glucosyltransferase that modifies Notch receptor in Drosophila. Dysregulation of hCLP46 occurs in many hematologic diseases, but the role of hCLP46 remains unclear. Knockdown of hCLP46 by RNA interference resulted in decreased protein levels of endogenous Notch1, Notch intracellular domain (NICD) and Notch target gene Hes-1, suggesting the impairment of the Notch signaling. However, neither cell surface Notch expression nor ligand binding activities were affected. In addition, down-regulated expression of hCLP46 inhibited the proliferation of U937 cells, which was correlated with increased cyclin-dependent kinase inhibitor (CDKI) CDKN1B (p27) and decreased phosphorylation of retinoblastoma (RB) protein. We showed that lack of hCLP46 results in impaired ligand induced Notch activation in mammalian cell, and hCLP46 regulates the proliferation of U937 cell through CDKI-RB signaling pathway, which may be important for the pathogenesis of leukemia.  相似文献   

16.
Cell growth and division are controlled through the actions of cyclin-dependent kinases (CDKs) and cyclin dependent kinase inhibitors (CKIs). Treatment of cell lines with Trichostatin A leads to induction of one of these CKIs, p21, and growth arrest. Induction of p21 can also occur through the actions of TGFβ1. Latent TGFβ1 can be activated by the M6P/IGF2R. In the present study we have examined the effect of TSA on members of the IGF axis, the CKIs p21 and p27, and also TGFβ1 in Hep3B cells. The only member of the IGF axis to be affected by treatments was IGF2. Expression of another gene from the same chromosomal location, H19, was also affected. TGFβ1 expression was greatly enhanced by TSA. In addition, both CKIs, p21 and p27, were upregulated by TSA. Effects of adding IGF-II or TGFβ1 to TSA-treated cells on p21 induction were examined. The results show that the induction of p21 by TSA can be modulated by additions of IGF-II whereas addition of TGFβ1 affects its own expression but not p21. In conclusion, the results indicate that the induction of p21 and cell growth arrest caused by Trichostatin A may involve multiple signaling pathways.  相似文献   

17.
The biological functions of the tumor suppressor ING1 have been studied extensively in the past few years since it was cloned. It shares many biological functions with p53 and has been reported to mediate growth arrest, senescence, apoptosis, anchorage-dependent growth, chemosensitivity, and DNA repair. Some of these functions, such as cell cycle arrest and apoptosis, have been shown to be dependent on the activity of both ING1 and p53 proteins. Two recent reports by Scott and colleagues demonstrate that p33ING1 (one of the ING1 isoforms) translocates to the nucleus and binds to PCNA upon UV irradiation. Here we report that p33ING1 mediates UV-induced cell death in melanoma cells. We found that overexpression of p33ING1 increased while the introduction of an antisense p33ING1 plasmid reduced the apoptosis rate in melanoma cells after UVB irradiation. We also demonstrated that enhancement of UV-induced apoptosis by p33ING1 required the presence of p53. Moreover, we found that p33ING1 enhanced the expression of endogenous Bax and altered the mitochondrial membrane potential. Taken together, these observations strongly suggest that p33ING1 cooperates with p53 in UVB-induced apoptosis via the mitochondrial cell death pathway in melanoma cells.  相似文献   

18.
Diet can be one of the most important factors that influence risks for cardiovascular diseases. Hesperetin, a flavonoid present in grapefruits and oranges, is one candidate that may benefit the cardiovascular system. In this study, we have investigated the effect of hesperetin on the platelet-derived growth factor (PDGF)-BB-induced proliferation of primary cultured rat aortic vascular smooth muscle cells (VSMCs). Hesperetin significantly inhibited 50 ng/ml PDGF-BB-induced rat aortic VSMCs proliferation and [(3)H]-thymidine incorporation into DNA at concentrations of 5, 25, 50, and 100 microM. In accordance with these findings, hesperetin revealed blocking of the PDGF-BB-inducible progression through G(0)/G(1) to S phase of the cell cycle in synchronized cells. Western blot showed that hesperetin inhibited not only phosphorylation of retinoblastoma protein (pRb) and expressions of cyclin A, cyclin D, cyclin E, cyclin-dependent kinase 2 (CDK2) as well as proliferating cell nuclear antigen (PCNA) protein, but also downregulation of cyclin-dependent kinase inhibitor (CKI) p27(kip1), while did not affect CKI p21(cip1), p16(INK4), p53, and CDK4 expressions as well as early signaling transductions such as PDGF beta-receptor, extracellular signal-regulated kinase (ERK) 1/2, Akt, p38, and JNK phosphorylation. These results suggest that hesperetin inhibits PDGF-BB-induced rat aortic VSMCs proliferation via G(0)/G(1) arrest in association with modulation of the expression or activation of cell-cycle regulatory proteins, which may contribute to the beneficial effect of grapefruits and oranges on cardiovascular system.  相似文献   

19.
The Ganoderma lucidum (G. lucidum) is one of the oriental fungi that has been reported to have immunomodulatory properties. Although effect of β-glucans from G. lucidum has been well documented, little is known about how other major bioactive components, the triterpenes, contribute to the immunomodulatory function of G. lucidum. Here, we showed that triterpenes-rich extract of antlered form of G. lucidum (G. lucidum AF) induces TNFα production in monocytic THP-1 cells. Furthermore, the extract also synergized with lipopolysaccharide (LPS) to induce TNFα production in THP-1 cells, suggesting an immunostimulatory role of triterpenes-rich extract of G. lucidum AF. Notably, the extract enhanced LPS-induced phosphorylation of p38 mitogen-activated protein kinase (MAPK), while it suppressed LPS-induced phosphorylation of c-Jun N-terminal kinase (JNK) MAPK. p38 Inhibitor suppressed TNFα production, while JNK inhibitor enhanced TNFα production, implying that synergistic effect of the extract may work by modulating p38 and JNK MAPKs. Moreover, we found that the triterpenes-rich extract of G. lucidum AF contains high amounts of lucidenic acids. Lucidenic acid-A, -F and -D2, which seem to dominantly exist in the extract, were purified from the triterpenes-rich extract. We also identified Lucidenic acid-A and -F as modulators of JNK and p38, respectively. Thus, our data demonstrate that lucidenic acids-rich extract from G. lucidum AF enhances LPS-induced immune responses in monocytic THP-1 cells possibly via the modulation of p38 and JNK MAPKs activation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号