首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
By investigating the effects of recombinant juvenile hormone esterase (JHE) on the stimulation of ovarian development and egg laying in the house cricket Acheta domesticus L., we have tested the hypothesis that recombinant JHE (derived from the tobacco budworm Heliothis virescens) can be used as a biochemical anti-juvenile hormone (JH) agent. Recombinant JHE, produced by a genetically engineered baculovirus, was affinity-purified and injected into females of A. domesticus. JHE was cleared rapidly from the hemolymph of the crickets. However, upon repeated injection, significant reductions were seen in the extent of development of the ovaries and in the numbers of eggs laid. The effects of JHE could be rescued by topical application of the JHE inhibitor, OTFP. Thus, we have demonstrated an anti-JH effect on reproduction and that the recombinant JHE derived from a lepidopteran is active in an orthopteran insect. Arch. Insect Biochem. Physiol. 34:359–368, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

2.
3.
《Insect Biochemistry》1991,21(6):583-595
A major peak of juvenile hormone esterase (JHE) activity approaching 330 nmol JH III hydrolyzed/min/ml of hemolymph was observed during the last larval growth stage in Lymantria dispar. A smaller peak of JHE occurred 3–5 days after pupation. The gypsy moth JHE was purified from larval hemolymph using a classical approach. A specific activity of 766 units per mg of protein and a Km of 3.6 × 10−7 M for racemic JH III and the (10R, 11S) enantiomer of JH II was determined for the purified enzyme. The 62 kDa esterase was insensitive to inhibition by O,O-diisopropyl phosphorofluoridate (DFP), or by phenylmethylsulfonyl fluoride (PMSF). Two forms of JHE isolated by RP-HPLC were indistinguishable by HPLC tryptic peptide mapping and share an identical N-terminal amino acid sequence. Polyclonal antisera raised against gypsy moth enzyme cross-reacted with JHE from Trichoplusia ni but not with JHE from Manduca sexta. A weak cross-reactivity was observed with JHE from Heliothis virescens. Forty amino acid residues of the N-terminus were placed in sequence. The N-terminal sequence of JHE from L. dispar showed little homology to the sequence of JHE from H. virescens. The immunological and structural data support the conclusion that markedly different esterases, which catalyze the hydrolysis of juvenile hormone, are present in the hemolymph of different Lepidoptera.  相似文献   

4.
Juvenile hormone (JH) esterases can be artificially induced to appear in the hemolymph of last instar larvae of the lepidopterous insect Trichoplusiani (Noctuidae) by topical treatment with JH I, JH II, or dihomo branched juvenoids. ETB (ethyl-4-[2-(t-butylcarbonyloxy) butoxy] benzoate; ZR-2646) at high doses is a weak inducer of JH esterase (JHE). However, at doses of ETB that induce only low levels of JHE activity, ETB will block the JHE induction caused by the dihomo juvenoid epofenonane and at higher doses will reduce the induction caused by JH I or JH II. ETB is not a JHE inhibitor; rather, it appears to be acting as a JH agonist/antagonist in normal larvae and in isolated abdomens. These effects of ETB on JHE induction may illustrate a new mode of action of anti-JH's.  相似文献   

5.
6.
Juvenile hormone esterase (JHE), a selective enzyme that hydrolyzes the methyl ester of insect juvenile hormone plays an important role in regulating metamorphosis in nymphs as well as reproduction in adults. Studies on JH degradation provide insight into the possibilities of physiological disruption in the insects. In the present study, the JH degrading enzyme, JHE from the cotton pest Dysdercus cingulatus (Heteroptera) is characterized. Electrophoretic analysis of haemolymph during various developmental stages showed the JHE bands prominent only on the final day of 5th instar nymph, and the esterase substrate specificity confirmed the presence of JHE isoforms. In an attempt to clone cDNA of JHE gene from the final instar nymphs, mRNA isolated from fat bodies was coupled with JHE gene-specific primers and the cDNA was synthesized using RT-PCR. The PCR amplified cDNA showed the presence of JHE isoforms in D. cingulatus.  相似文献   

7.
Juvenile hormone (JH) plays a crucial role in preventing precocious metamorphosis and stimulating reproduction. Thus, its hemolymph titer should be under a tight control. As a negative controller, juvenile hormone esterase (JHE) performs a rapid breakdown of residual JH in the hemolymph during last instar to induce a larval-to-pupal metamorphosis. A whole genome of the diamondback moth (DBM), Plutella xylostella, has been annotated and proposed 11 JHE candidates. Sequence analysis using conserved motifs commonly found in other JHEs proposed a putative JHE (Px004817). Px004817 (64.61 kDa, pI = 5.28) exhibited a characteristic JHE expression pattern by showing high peak at the early last instar, at which JHE enzyme activity was also at a maximal level. RNA interference of Px004817 reduced JHE activity and interrupted pupal development with a significant increase of larval period. This study identifies Px004817 as a JHE-like gene of P. xylostella.  相似文献   

8.
Juvenile hormone esterase (JHE) activity released by the corpora allata (CA) into incubation media (CA-JHE) was titered daily during the course of the last (fifth [V]) larval stadium of Manduca sexta. This CA-JHE activity was relatively low during the early last stadium up to the time of commitment (V4), then rose rapidly to a peak on V6. Activity declined sharply almost to precommitment levels by V8, before rising to a second peak on the first day of the pupal phase (P0). This pattern of activity is distinct from that of hemolymph JHE activity, which peaks just prior to wandering on V4 and again just prior to pupation (V9). Although the CA-JHE and hemolymph-JHE possess different temporal patterns of activity, isoelectric focusing, gel electrophoresis, and initial studies with selected inhibitors suggest that the enzymes responsible for the CA-JHE and hemolymph-JHE activities are similar, but not identical, in nature. Exposure of the V6 CA in vitro to JH II (0.1 μM) or fluoromevalonolactone (FMev; 0.1 mM) produced an approximate fivefold increase and 60% decrease in JH acid synthesis, respectively. Conversely, the same treatments resulted in an inhibition (JH II) and stimulation (FMev) of CA-JHE activity. These observations suggest that JH may be involved in the direct positive feedback regulation of postwandering larval CA and that the CA-JHE may also be integrally related to this positive feedback mechanism.  相似文献   

9.
For the cockroach species Leucophaea maderae and Periplaneta americana two major juvenile hormone (JH)-binding proteins have been identified: lipophorin (Lp) and vitellogenin (Vg). Each of these macromolecules binds JH with an approximate affinity of K(d) of 10 nM. In Leucophaea the concentration of Lp is augmented by JH during vitellogenesis at the same time when Vg is induced de novo. The circulating levels of each of Lp and Vg at mid-vitellogenesis are in the 10 microM range. Similar values have been determined for Periplaneta. Total JH concentrations (bound and free) can be as high as micromolar in Leucophaea. However, because of the large quantities of the two major JH-binding proteins and their high affinity for JH, we can assume that the amount of free (unbound) JH in circulation is extremely low (the actual values are not know).The JH esterases (JHEs) of the hemolymph in both cockroach species have been isolated by anion exchange chromatography. The JHEs of Leucophaea bound to the anion exchange resin more tightly than the JHE of Periplaneta. The V(max) of the Leucophaea esterases fluctuated by a factor of 2 to 3 during vitellogenesis. The K(m) values for the two distinct esterases of Leucophaea were similar (about 0.15x10(-6) M). On the other hand, k(cat) of the JHEs for Leucophaea at ovulation time was two to three times higher than earlier during vitellogenesis, i.e. 23.30 min(-l) compared to 6.20 min(-1). The JHE of Leucophaea is shown to bind JH III with high affinity: K(d)=3x10(-9) M. However, since there are only very small amounts of JH available for degradation (due to the binding to Lp and Vg), the quantitative removal of JH from circulation, and this includes the release of bound JH, is indeed slow, with a measured half-life of 6-8 h. Classical kinetic assumptions are not met in conditions where the enzyme concentrations exceed by far that of the available substrate. Nonetheless, we attempted to determine the initial velocity of JH hydrolysis under natural conditions, i.e. for undiluted hemolymph, by measuring the initial velocities of JH hydrolysis in serially diluted hemolymph and extrapolating to zero dilution. For in vivo conditions we estimated an initial velocity of JH hydrolysis of <0.1 fmol microl hemolymph(-1) min(-1), i.e. four to five orders of magnitude lower than that measured at substrate saturation in vitro.  相似文献   

10.
Juvenile hormone esterase (JHE), which catalyzes the hydrolysis of juvenile hormone, was isolated from the hemolymph of 5(th) instars of Lymantria dispar by two different procedures. One procedure was based on affinity chromatography and the other on anion-exchange chromatography. The material from both purifications showed bands of approximately 50 kDa when analyzed by SDS-PAGE. Isoelectric focusing (IEF) gels in combination with enzyme activity assays indicated two isoelectric forms with the same pI values (pH 5.1. and 5.3) from affinity purification and from anion-exchange chromatography. Amino acid sequencing of several internal peptides from the 50 kDa band following affinity purification and alignment of these sequences with JHEs from previously purified lepidopteran species (Heliothis virescens, Manduca sexta) showed high homology of these enzymes.The isolated JHE, at least in the stage of insect used, was different from the enzyme reported earlier [Valaitis, A.P., 1991. Characterization of hemolymph juvenile hormone esterase from Lymantria dispar. Insect Biochemistry 21, 583-595] to hydrolyze JH in the hemolymph of gypsy moth, based on molecular weight and amino acid sequence.  相似文献   

11.
Burying beetles, Nicrophorus orbicollis, depend on the location of an unpredictable resource, a small vertebrate carcass, for reproduction. When they discover a carcass, they undergo a correlated rapid rise in titers of juvenile hormone (JH) in the hemolymph and ovarian development. This study investigates the regulation of the changes in JH during breeding in both male and female burying beetles and the role of JH in ovarian development. JH biosynthesis by the corpora allata (CA), measured in vitro, increased in females within an hour of their discovery of a carcass and increased later in males. After returning to low rates as oviposition began, JH biosynthesis rose again 3 days later in females but not in males. Neither the ovaries nor testes synthesized JH. There was a concomitant fall in JH esterase activity within 12 h of discovery of the carcass in both males and females. Although the rise in JH titers and biosynthesis and the fall in JH esterase is correlated with ovarian development, application of methoprene or JH III in the absence of a carcass did not result in vitellogenin uptake by the oocytes. Therefore, we conclude that, in spite of the rapid rise in JH before oviposition, it is not sufficient to regulate vitellogenin synthesis and/or its uptake by the ovaries. We suggest that its role has been preempted to organize social behavior and coordinate parental behavior between mates.  相似文献   

12.
Kinetic analysis was performed on the juvenile hormone (JH) esterase activity in the hemolymph of feeding, last instar larvae of Trichoplusia ni (Lepidoptera: Noctuidae). When the results were analyzed by several different graphical and regression procedures, all approaches yielded the same conclusion that at least two forms of JH esterase active sites exist in the hemolymph. The apparent Km for one site for JH I, II and III was 8.5 X 10(-8) M, and 6.6 X 10(-8) M, respectively. The Km for the other site for JH I, II and III was 6.6 X 10(-7) M, 7.6 X 10(-7) M, 40 X 10(-7) M, respectively. When hemolymph JHE activity was subjected to high resolution isoelectric focusing (IEF), two distinct large peaks of JHE activity were observed, with pIs of 5.3 and 5.5, as well as a small peak at pI 5.1. Separate kinetic analysis of the JHE activity in each peak showed that only the higher Km active site for each substrate was present (in the 10(-7) M range). These data necessitate a change in the current model for JHE in T. ni, and some other insects, which states that a single active site is responsible for most or all of the JH esterase activity in vivo. The data also explain the different estimates of the Km of JHE in T. ni obtained by different laboratories. Studies on the purification of, and the development of inhibitors for, JHE esterase must consider the role of both JHE forms and sites in regulation of T. ni metamorphosis.  相似文献   

13.
Glyptapanteles liparidis is a gregarious, polydnavirus (PDV)-carrying braconid wasp that parasitizes larval stages of Lymantria dispar. In previous studies we showed that parasitized hosts dramatically increase juvenile hormone (JH) titers, whereas JH degradation is significantly inhibited in the hemolymph. Here we (i) quantified the effects of parasitism on JH esterase (JHE) activity in hemolymph and fat body of penultimate and final instars of L. dispar hosts and (ii) assessed the relative contribution of individual and combined wasp factors (PDV/venom, teratocytes, and wasp larvae) to the inhibition of host JHE activity. The effects of PDV/venom was investigated through the use of gamma-irradiated wasps, which lay non-viable eggs (leading to pseudoparasitization), while the effects of teratocytes and wasp larvae were examined by injection or insertion of these two components in either control or pseudoparasitized L. dispar larvae. Parasitism strongly suppressed host JHE activity in both hemolymph and fat body irrespective of whether the host was parasitized early (premolt-third instar) or late (mid-fourth instar). Down-regulation of JHE activity is primarily due to the injection of PDV/venom at the time of oviposition, with only very small additive effects of teratocytes and wasp larvae under certain experimental conditions. We compare the results with those reported earlier for L. dispar larvae parasitized by G. liparidis and discuss the possible role of JH alterations in host development disruption.  相似文献   

14.
In the ovoviviparous cockroach Blaberus craniifer, low doses of the pesticide lindane (1-6 microg/g of body mass) have been implicated in the enhancement of ovarian growth and vitellogenesis onset in headless female ovaries. In order to investigate lindane effects on protein release by the fat body, we used antibodies raised against egg proteins to quantify protein levels in fat body, hemolymph and ovaries of treated-fed or -decapitated females 3- or 5-days -old. In vitro assays used fat body in Grace's medium to quantify the protein amount released in the medium. Individual data for each treatment were related to their corresponding control in paired series. In vivo, ovarian enhanced protein content was linked to an enhanced protein secretion by the fat body. This was ascertained in vitro by high levels of released protein in the medium containing lindane (1 microM) by fat body from females, but not from males. This effect was inhibited by EDTA, a calcium chelator. The present results confirmed that low doses of lindane (about 3 microg/g of body mass) acted as a juvenile hormone analogue, at the level of the ovaries, by enhancing protein uptake, and also at the level of the fat body, by triggering protein release. This property is calcium-dependent.  相似文献   

15.
The effects of the social environment and age on juvenile hormone (JH) and reproduction were investigated by measuring ovarian development, hemolymph levels of JH III, and rates of JH biosynthesis from the same individual bumble bees (Bombus terrestris). Differences in social environment were associated with differences in rates of JH biosynthesis, JH titer and ovarian development. Young queenless workers had a higher rate of JH biosynthesis, JH titer and ovarian development than queenright (QR) workers of similar age. Dominant workers in QR colonies had a higher rate of JH biosynthesis, JH titer and ovarian development than low ranked workers of similar size. There was a positive correlation between JH titer and ovarian development, but no correlation between rate of JH biosynthesis and ovarian development or between JH biosynthesis and JH titer. Both JH titer and rate of JH biosynthesis increased with age from emergence to 3 days of age, but 6-day-old workers, egg-laying workers, and actively reproducing queens had high JH titers and highly developed ovaries but low rates of JH biosynthesis. These results show that reproduction in B. terrestris is strongly affected by the social environment and the influence of the environment on reproduction is mediated by JH. Our data also indicate that the rate of JH biosynthesis measured in vitro is not a reliable indicator of JH titer or ovarian development in B. terrestris; possible reasons are discussed.  相似文献   

16.
This is a study of a feedback loop from a stimulated organ to glands that produce the stimulatory hormone in the cockroach Diploptera punctata. In this insect as in many others, juvenile hormone (JH) produced by corpora allata (CA) stimulates vitellogenesis. In our previous studies, transplantations of ovaries at certain stages of development into ovariectomized mated females stimulated JH synthesis within 24h. An in vitro study by other investigators showed that all stages of ovaries release a stimulatory factor into culture medium that was not retained on a solid-phase extraction column but occurred in the aqueous flow-through. The present study is a comparison of the effect of medium conditioned with ovaries from days 1-4 and 8 of the first reproductive cycle, to the effect of the flow-through of that medium on members of a pair of CA from day 3 females. Results provide evidence for an ovarian factor that stimulates JH synthesis by CA in vitro after removal from the conditioning medium (i.e., stable stimulation). Only medium conditioned with ovaries from days 2 or 3 females significantly stimulated CA more than flow-through. Stimulation was dose dependent, sensitive to trypsin, and survived freezing. These results indicate that CA can be directly and stably stimulated by a stage-specific peptidergic ovarian factor.  相似文献   

17.
Application of juvenile hormone esterase inhibitor 3-octylthio-1,1,1- trifluropropan-2-one (OTFP) to 5th instar nymphs and virgin females of D. cingulatus revealed the profound role played by juvenile hormone esterase (JHE) in metamorphosis and reproduction. The ability of OTFP to cause delay and the formation of malformed nymphs, suggests that inhibition of JHE in vivo maintains a higher than normal hemolymph JH titer. It is obvious that OTFP does inhibit in vivo JHE activity in late instar nymphs. Further, the application of JHE inhibitor, OTFP to virgin females demonstrates that substituted trifluropropanones can indirectly stimulate egg development by inhibiting JHE activity in virgin females.  相似文献   

18.
We report on juvenile hormone (JH) biosynthesis in vitro by male accessory glands (MAGs) in the longhorned beetle, Aprionona germari, accompanied by the transfer of JH from males to females during copulation. JH was extracted from the MAGs and separated by reversed‐phase high‐performance liquid chromatography. JH III was identified as the major JH by gas chromatography–mass spectrometry. A radiochemical assay and a non‐radioactive method were used to measure the in vitro rate of JH biosynthesis by the MAGs. After 4 h of incubation with 3H‐methionine in the medium, the radioactivity in the MAGs substantially increased. In a separate assay, incubation of the MAGs with non‐radioactive methionine for 4 h resulted in a 39% increase in JH III. Seven‐day‐old males were injected with medium 199 containing 3H–methionine and 24 h later they were mated with virgin females. Hemolymph and the MAGs were collected from the mated males and hemolymph, ovaries and eggs were collected from the mated females for assaying radioactive JH. The radioactivity incorporated into JH in the MAGs was transferred to the females during copulation and later transferred into their eggs. Assayed 1 h after copulation, JH III level in the MAGs decreased 42% and the content of JH III in the male hemolymph did not change, whereas the content of JH III in the female hemolymph and ovaries both increased. © 2010 Wiley Periodicals, Inc.  相似文献   

19.
20.
The role of juvenile hormone (JH) esterase (JHE) and epoxide hydrolase (EH) in reproduction of the cotton bollworm, Helicoverpa zea, was investigated. Peak emergence of male and female bollworm adults occurred early in the scotophase. Female adults were added to males in a 1:2 ratio, respectively, at the beginning of the first photophase after emergence (d0). The highest oviposition rates for mated females were noted on d 2-4. The in vitro JH III esterase and JH III EH activity was measured in whole body homogenates of virgin and mated females from d0 to d8 post-emergence. Maximal JHE activity for virgin females occurred on d2 (1.09+/-0.14(+/-1 SEM) nmol of JH III degraded/min/mg protein), which was approximately twice that of mated females on the same day. The same results were observed for EH where the activity peaked on d2 at 0.053+/-0.003 as compared to 0.033+/-0.003 nmol of JH III degraded/min/mg protein, respectively. By d4, both JHE and JH EH activities declined significantly in virgin and mated females and were the same through d7. The developmental changes and effects of mating on JH degradation were similar when measured per insect. The highest levels of JHE and JH EH activity/min/mg protein in d2 virgin and mated females was found in ovaries followed by the carcass and then haemolymph; no EH activity was found in haemolymph as expected. For ovary, the JHE and JH EH activity was highest in virgin compared to mated females. The role of both enzymes in the regulation of reproduction is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号