首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dobrin SE  Fahrbach SE 《PloS one》2012,7(6):e37666
A restrained honey bee can be trained to extend its proboscis in response to the pairing of an odor with a sucrose reward, a form of olfactory associative learning referred to as the proboscis extension response (PER). Although the ability of flying honey bees to respond to visual cues is well-established, associative visual learning in restrained honey bees has been challenging to demonstrate. Those few groups that have documented vision-based PER have reported that removing the antennae prior to training is a prerequisite for learning. Here we report, for a simple visual learning task, the first successful performance by restrained honey bees with intact antennae. Honey bee foragers were trained on a differential visual association task by pairing the presentation of a blue light with a sucrose reward and leaving the presentation of a green light unrewarded. A negative correlation was found between age of foragers and their performance in the visual PER task. Using the adaptations to the traditional PER task outlined here, future studies can exploit pharmacological and physiological techniques to explore the neural circuit basis of visual learning in the honey bee.  相似文献   

2.
Onion (Allium cepa L.) seed production has long been plagued with yield problems because of lack of pollination by the honey bee, Apis mellifera L. To attempt to attract more pollinators to the onion seed production field, honey bees were conditioned to associate onion floral odor components with a reward. Isolated nucleus hives of honey bees were fed 30% sucrose solutions scented with a 0.2% solution of onion floral odor compounds. After feeding on these solutions for 6 wk, bees were not found to prefer onion flowers to two competing food sources, carrot and alfalfa flowers, at the 5% significance level. However, there was an overall trend indicating a change in honey bee behavior, with fewer "trained" bees visiting alfalfa and carrot and more visiting onion. Thus, it may be possible to alter honey bee behavior with preconditioning but probably not to a degree that would be economically significant.  相似文献   

3.
In Southeast Asia the native honey bee species Apis cerana is often attacked by hornets (Vespa velutina), mainly in the period from April to November. During the co-evolution of these two species honey bees have developed several strategies to defend themselves such as learning the odors of hornets and releasing alarm components to inform other mates. However, so far little is known about whether and how honey bees modulate their olfactory learning in the presence of the hornet predator and alarm components of honey bee itself. In the present study, we test for associative olfactory learning of A. cerana in the presence of predator odors, the alarm pheromone component isopentyl acetate (IPA), or a floral odor (hexanal) as a control. The results show that bees can detect live hornet odors, that there is almost no association between the innately aversive hornet odor and the appetitive stimulus sucrose, and that IPA is less well associated with an appetitive stimulus when compared with a floral odor. In order to imitate natural conditions, e.g. when bees are foraging on flowers and a predator shows up, or alarm pheromone is released by a captured mate, we tested combinations of the hornet odor and floral odor, or IPA and floral odor. Both of these combinations led to reduced learning scores. This study aims to contribute to a better understanding of the prey-predator system between A. cerana and V. velutina.  相似文献   

4.
This video demonstrates novel techniques of RNA interference (RNAi) which downregulate two genes simultaneously in honey bees using double-stranded RNA (dsRNA) injections. It also presents a protocol of proboscis extension response (PER) assay for measuring gustatory perception.RNAi-mediated gene knockdown is an effective technique downregulating target gene expression. This technique is usually used for single gene manipulation, but it has limitations to detect interactions and joint effects between genes. In the first part of this video, we present two strategies to simultaneously knock down two genes (called double gene knockdown). We show both strategies are able to effectively suppress two genes, vitellogenin (vg) and ultraspiracle (usp), which are in a regulatory feedback loop. This double gene knockdown approach can be used to dissect interrelationships between genes and can be readily applied in different insect species.The second part of this video is a demonstration of proboscis extension response (PER) assay in honey bees after the treatment of double gene knockdown. The PER assay is a standard test for measuring gustatory perception in honey bees, which is a key predictor for how fast a honey bee''s behavioral maturation is. Greater gustatory perception of nest bees indicates increased behavioral development which is often associated with an earlier age at onset of foraging and foraging specialization in pollen. In addition, PER assay can be applied to identify metabolic states of satiation or hunger in honey bees. Finally, PER assay combined with pairing different odor stimuli for conditioning the bees is also widely used for learning and memory studies in honey bees.  相似文献   

5.
The application of smoke to honey bee(Apis mellifera) antennae reduced the subsequent electroantennograph response of the antennae to honey bee alarm pheromones, isopentyl acetate, and 2-heptanone. This effect was reversible, and the responsiveness of antennae gradually returned to that of controls within 10–20 min. A similar effect occurred with a floral odor, phenylacetaldehyde, suggesting that smoke interferes with olfaction generally, rather than specifically with honey bee alarm pheromones. A reduction in peripheral sensitivity appears to be one component of the mechanism by which smoke reduces nest defense behavior of honey bees.  相似文献   

6.
Summary Amino acids occur in most floral nectars but their role in pollinator attraction is relatively unstudied. Nectars of butterfly-pollinated flower tend to have higher concentrations of amino acids than do flowers pollinated by bees and many other animals, suggesting that amino acids are important attractants of butterflies to flowers. In order to determine whether amino acids are important in attracting butterflies and bees, we tested the preference of cabbage white butterflies (Pieris rapae) and honey bees (Apis mellifera) by allowing them to feed from artificial flowers containing sugar-only or sugar-amino acid mimics ofLantana camara nectar. Honey bees and female cabbage white butterflies consumed more sugar-amino acid nectar than sugar-only nectar. In addition, female cabbage white butterflies visited artificial flowers containing sugar-amino acid nectars more frequently than flowers containing sugar-only nectars; honey bees spent more time consuming the sugar-amino acid nectar. Male cabbage white butterflies did not discriminate between the two nectars. These results support the hypothesis that the amino acids of nectar contribute to pollinator attraction and/or feeding.  相似文献   

7.
Olfactory interference during inhibitory backward pairing in honey bees   总被引:1,自引:0,他引:1  
Dacher M  Smith BH 《PloS one》2008,3(10):e3513

Background

Restrained worker honey bees are a valuable model for studying the behavioral and neural bases of olfactory plasticity. The proboscis extension response (PER; the proboscis is the mouthpart of honey bees) is released in response to sucrose stimulation. If sucrose stimulation is preceded one or a few times by an odor (forward pairing), the bee will form a memory for this association, and subsequent presentations of the odor alone are sufficient to elicit the PER. However, backward pairing between the two stimuli (sucrose, then odor) has not been studied to any great extent in bees, although the vertebrate literature indicates that it elicits a form of inhibitory plasticity.

Methodology/Principal Findings

If hungry bees are fed with sucrose, they will release a long lasting PER; however, this PER can be interrupted if an odor is presented 15 seconds (but not 7 or 30 seconds) after the sucrose (backward pairing). We refer to this previously unreported process as olfactory interference. Bees receiving this 15 second backward pairing show reduced performance after a subsequent single forward pairing (excitatory conditioning) trial. Analysis of the results supported a relationship between olfactory interference and a form of backward pairing-induced inhibitory learning/memory. Injecting the drug cimetidine into the deutocerebrum impaired olfactory interference.

Conclusions/Significance

Olfactory interference depends on the associative link between odor and PER, rather than between odor and sucrose. Furthermore, pairing an odor with sucrose can lead either to association of this odor to PER or to the inhibition of PER by this odor. Olfactory interference may provide insight into processes that gate how excitatory and inhibitory memories for odor-PER associations are formed.  相似文献   

8.
Amino acids are the most abundant class of compounds in nectar after sugars. Like its sugar concentration, the amino acid concentration of nectar has been linked to pollinator type, and it has been suggested that amino acid concentrations are high in the floral nectars of plant species pollinated by passerine birds compared to those pollinated by hummingbirds. We investigated the feeding response of whitebellied sunbirds (Nectarinia talatala) to the inclusion of amino acids in artificial nectar (0.63 M sucrose solution). The response to asparagine, glutamine, phenylalanine, proline, serine and valine, amino acids commonly found in floral nectars, was tested individually and using a mixture of all six amino acids, at two different concentrations (2 and 15 mM). Sunbirds showed no significant preference for amino acids in nectar, or avoided them, especially at the higher concentration. We discuss these findings in the light of the nitrogen requirements of nectarivorous birds and data on amino acids in floral nectars.  相似文献   

9.
Workers in a social insect colony have distinct experiences that may affect their performance in a learning task. In this study using free-foraging and flight-cage bumblebee Bombus huntii colonies, the strength of olfactory proboscis extension conditioning (PEC) was affected by a bee’s task specialization as a nurse or forager and the stimulus odor. Nurses (n?=?26) learned to respond to the odors 1-hexanol and lavender, but foragers (n?=?25) had inhibited conditioning to both odors. More nurses (73 %) than foragers (48 %) had at least one conditioned response (CR), and nurses displayed significantly more CRs than foragers. As expected, a pseudoconditioned control group (n?=?9) showed very few CRs. Among bees that were given a second day of trials, nurses—but not foragers—showed modest improvement. Such strong inhibition of PEC has not been described in honeybee or bumblebee foragers. The stimulus odor also affected conditioning strength in nurses. Lavender, a familiar odor, elicited earlier and more CRs than 1-hexanol. We propose that learning floral odors in the context of foraging may inhibit PEC in bumblebee foragers, whereas exposure to odors in the honey stores may prime subsequent learning in nurses.  相似文献   

10.
Two organophosphate compounds, coumaphos and diazinon, were examined for effects of sublethal exposure on odor learning and generalization in honey bees, Apis mellifera L. Using proboscis extension response training as a measure of odor learning and discrimination, a series of two experiments tested whether these compounds would inhibit bees from learning a new odor or discriminating between different odors. Bees were exposed to coumaphos or diazinon in acetone applied to the thorax, or to coumaphos or diazinon in hexane injected intracranially. At no dose tested or exposure method used was coumaphos shown to inhibit acquisition of a novel odor stimulus, although it was shown to slightly reduce discriminatory ability when given by intracranial injection. Diazinon had effects on odor learning at several small doses, and a small injected dose was shown to significantly inhibit learning of an odor stimulus paired with a sucrose reward. When bee head acetylcholineasterase activity was measured after dermal applications of both pesticides, only the higher doses of diazinon showed reduced activity, indicating that externally-applied coumaphos shows no significant effect on bee brain acetylcholinesterase activity. These data suggest that acute application of coumaphos has only slight nonlethal effects upon the behavior of honey bees and should have little effect upon bee tasks that involve odor learning.  相似文献   

11.
Through the use of proboscis-extension reflex conditioning, we demonstrate that honey bees (Apis mellifera L.) bred for hygienic behavior (a behavioral mechanism of disease resistance) are able to discriminate between odors of healthy and diseased brood at a lower stimulus level than bees from a non-hygienic line. Electroantennogram recordings confirmed that hygienic bees exhibit increased olfactory sensitivity to low concentrations of the odor of chalkbrood infected pupae (a fungal disease caused by Ascosphaera apis). Three-week-old hygienic bees were able to discriminate between the brood odors significantly better than three-week old non-hygienic bees. However, the differential performance in brood odor discrimination was primarily genetically based, not a direct result of age, experience, or the temporary behavioral state of the bee. Lower stimulus thresholds for both the olfactory and behavioral responses of hygienic bees may facilitate their ability to detect, uncap and remove diseased brood rapidly from the nest. In contrast, non-hygienic bees, possessing higher response thresholds, may not be able to detect diseased brood as easily. Our results provide an example of how physiological and behavioral differences between the hygienic and non-hygienic honey bee lines, operating at the level of the individual, could produce colony-specific behavioral phenotypes.  相似文献   

12.
Learning in insects has been extensively studied using different experimental approaches. One of them, the proboscis extension response (PER) paradigm, is particularly well suited for quantitative studies of cognitive abilities of honeybees under controlled conditions. The goal of this study was to analyze the capability of three eusocial bee species to be olfactory conditioned in the PER paradigm. We worked with two Brazilian stingless bees species, Melipona quadrifasciata and Scaptotrigona aff. depilis, and with the invasive Africanized honeybee, Apis mellifera. These three species present very different recruitment strategies, which could be related with different odor-learning abilities. We evaluated their gustatory responsiveness and learning capability to discriminate floral odors. Gustatory responsiveness was similar for the three species, although S. aff. depilis workers showed fluctuations along the experimental period. Results for the learning assays revealed that M. quadrifasciata workers can be conditioned to discriminate floral odors in a classical differential conditioning protocol and that this discrimination is maintained 15 min after training. During conditioning, Africanized honeybees presented the highest discrimination, for M. quadrifasciata it was intermediate, and S. aff. depilis bees presented no discrimination. The differences found are discussed considering the putative different learning abilities and procedure effect for each species.  相似文献   

13.
We know very little about how soil-borne pollutants such as selenium (Se) can impact pollinators, even though Se has contaminated soils and plants in areas where insect pollination can be critical to the functioning of both agricultural and natural ecosystems. Se can be biotransferred throughout the food web, but few studies have examined its effects on the insects that feed on Se-accumulating plants, particularly pollinators. In laboratory bioassays, we used proboscis extension reflex (PER) and taste perception to determine if the presence of Se affected the gustatory response of honey bee (Apis mellifera L., Hymenoptera: Apidae) foragers. Antennae and proboscises were stimulated with both organic (selenomethionine) and inorganic (selenate) forms of Se that commonly occur in Se-accumulating plants. Methionine was also tested. Each compound was dissolved in 1 M sucrose at 5 concentrations, with sucrose alone as a control. Antennal stimulation with selenomethionine and methionine reduced PER at higher concentrations. Selenate did not reduce gustatory behaviors. Two hours after being fed the treatments, bees were tested for sucrose response threshold. Bees fed selenate responded less to sucrose stimulation. Mortality was higher in bees chronically dosed with selenate compared with a single dose. Selenomethionine did not increase mortality except at the highest concentration. Methionine did not significantly impact survival. Our study has shown that bees fed selenate were less responsive to sucrose, which may lead to a reduction in incoming floral resources needed to support coworkers and larvae in the field. If honey bees forage on nectar containing Se (particularly selenate), reductions in population numbers may occur due to direct toxicity. Given that honey bees are willing to consume food resources containing Se and may not avoid Se compounds in the plant tissues on which they are foraging, they may suffer similar adverse effects as seen in other insect guilds.  相似文献   

14.
The honeybee is one of several insect model systems for the study of olfaction, yet our knowledge regarding the spectrum of odorants detectable by Apis mellifera is limited. One class of odorants that has never been tested so far are the amino acids, which are important constituents of floral nectar. Using the proboscis extension response paradigm, we assessed whether the odor of amino acids is detectable for honeybees and determined olfactory detection thresholds for those amino acids that were detectable. We found that honeybees are able to detect the odor of 5 of the 20 proteinogenic amino acids when presented at a concentration of 50 or 100 mM. Median olfactory detection thresholds for these 5 amino acids were 12.5 mM with L-tyrosine and L-cysteine, 50 mM with L-tryptophan and L-asparagine, and 100 mM with L-proline. All detection thresholds were much higher than reported concentrations of amino acids in floral nectars. We conclude that in the foraging and feeding context, honeybees are likely to detect amino acids through taste rather than olfaction. Across-species comparisons of the detectability of and sensitivity to amino acids suggest that the number of functional genes coding for olfactory receptors may affect both a species' sensitivity for odorants and the breadth of its spectrum of detectable odorants.  相似文献   

15.
Tsuruda JM  Amdam GV  Page RE 《PloS one》2008,3(10):e3397

Background

Honey bees display a complex set of anatomical, physiological, and behavioral traits that correlate with the colony storage of surplus pollen (pollen hoarding). We hypothesize that the association of these traits is a result of pleiotropy in a gene signaling network that was co-opted by natural selection to function in worker division of labor and foraging specialization. By acting on the gene network, selection can change a suite of traits, including stimulus/response relationships that affect individual foraging behavior and alter the colony level trait of pollen hoarding. The ‘pollen-hoarding syndrome’ of honey bees is the best documented syndrome of insect social organization. It can be exemplified as a link between reproductive anatomy (ovary size), physiology (yolk protein level), and foraging behavior in honey bee strains selected for pollen hoarding, a colony level trait. The syndrome gave rise to the forager-Reproductive Ground Plan Hypothesis (RGPH), which proposes that the regulatory control of foraging onset and foraging preference toward nectar or pollen was derived from a reproductive signaling network. This view was recently challenged. To resolve the controversy, we tested the associations between reproductive anatomy, physiology, and stimulus/response relationships of behavior in wild-type honey bees.

Methodology/Principal Findings

Central to the stimulus/response relationships of honey bee foraging behavior and pollen hoarding is the behavioral trait of sensory sensitivity to sucrose (an important sugar in nectar). To test the linkage of reproductive traits and sensory response systems of social behavior, we measured sucrose responsiveness with the proboscis extension response (PER) assay and quantified ovary size and vitellogenin (yolk precursor) gene expression in 6–7-day-old bees by counting ovarioles (ovary filaments) and by using semiquantitative real time RT-PCR. We show that bees with larger ovaries (more ovarioles) are characterized by higher levels of vitellogenin mRNA expression and are more responsive to sucrose solutions, a trait that is central to division of labor and foraging specialization.

Conclusions/Significance

Our results establish that in wild-type honey bees, ovary size and vitellogenin mRNA level covary with the sucrose sensory response system, an important component of foraging behavior. This finding validates links between reproductive physiology and behavioral-trait associations of the pollen-hoarding syndrome of honey bees, and supports the forager-RGPH. Our data address a current evolutionary debate, and represent the first direct demonstration of the links between reproductive anatomy, physiology, and behavioral response systems that are central to the control of complex social behavior in insects.  相似文献   

16.
Learning impairment in honey bees caused by agricultural spray adjuvants   总被引:1,自引:0,他引:1  

Background

Spray adjuvants are often applied to crops in conjunction with agricultural pesticides in order to boost the efficacy of the active ingredient(s). The adjuvants themselves are largely assumed to be biologically inert and are therefore subject to minimal scrutiny and toxicological testing by regulatory agencies. Honey bees are exposed to a wide array of pesticides as they conduct normal foraging operations, meaning that they are likely exposed to spray adjuvants as well. It was previously unknown whether these agrochemicals have any deleterious effects on honey bee behavior.

Methodology/Principal Findings

An improved, automated version of the proboscis extension reflex (PER) assay with a high degree of trial-to-trial reproducibility was used to measure the olfactory learning ability of honey bees treated orally with sublethal doses of the most widely used spray adjuvants on almonds in the Central Valley of California. Three different adjuvant classes (nonionic surfactants, crop oil concentrates, and organosilicone surfactants) were investigated in this study. Learning was impaired after ingestion of 20 µg organosilicone surfactant, indicating harmful effects on honey bees caused by agrochemicals previously believed to be innocuous. Organosilicones were more active than the nonionic adjuvants, while the crop oil concentrates were inactive. Ingestion was required for the tested adjuvant to have an effect on learning, as exposure via antennal contact only induced no level of impairment.

Conclusions/Significance

A decrease in percent conditioned response after ingestion of organosilicone surfactants has been demonstrated here for the first time. Olfactory learning is important for foraging honey bees because it allows them to exploit the most productive floral resources in an area at any given time. Impairment of this learning ability may have serious implications for foraging efficiency at the colony level, as well as potentially many social interactions. Organosilicone spray adjuvants may therefore contribute to the ongoing global decline in honey bee health.  相似文献   

17.
Chemical signals influence the selection of potential nest cavities by honey bee reproductive swarms. Attractants for swarms include the odors of old dark honey bee brood combs, odors from noncomb hive materials and propolis, and Nasonov pheromone, the odor released from the Nasonov glands of worker bees. Based on crossover and choice test experiments, swarms were shown to prefer, among otherwise identical cavities, those cavities containing Nasonov pheromone over cavities with only comb or other hive odors, cavities containing old comb over those with only noncomb odors or propolis, and cavities containing noncomb odors or propolis over those without bee or hive odor. Synergy between odors was not observed; that is, comb and/or noncomb hive odors did not enhance the attractiveness of Nasonov pheromone. The data support a model based on a hierarchy of olfactory attractants used by honey bee swarms, in order of highest to lowest: Nasonov pheromone, comb odor, noncomb and propolis odors, and, finally, absence of bee- or hive-produced odor.  相似文献   

18.
The parasitic mite Varroa destructor influences flight behavior, orientation and returning success of forager honeybees (Apis mellifera) infested as adults. As impaired orientation toward the nest entrance might be due to deficiency in recognition and responsiveness to stimuli in the environment, we examined effects of V. destructor on sensory responsiveness, non-associative and associative learning of honey bee foragers by using proboscis extension reaction paradigm (PER). Although infested and uninfested workers were initially equally responsive to different concentrations of sugar water, we found differences in non-associative learning. In habituation, PER to repeated sugar stimulation of the antennae occurred faster in infested foragers compared to uninfested foragers. In sensitization, infested foragers showed a lower response to an odor stimulus following sugar stimulation than non-infested foragers. Differences in non-associative paradigms were more pronounced in bees with lower responsiveness to sucrose. In conditioning learning experiments, a significant reduction in proboscis extension response was found 1 min but not 12 min after a single conditioning trial indicating that V. destructor predominantly affects the non-associative components of learning and its underlying neural and molecular processes. Jasna Kralj and Axel Brockmann have contributed equally to this study.  相似文献   

19.
Acquisition of enhanced natural killer cell activity under anesthesia   总被引:1,自引:0,他引:1  
An increase in natural killer (NK) cell activity can be conditioned with a one trial learning paradigm to demonstrate the interaction between the central nervous system (CNS) and the immune system. In order to demonstrate learning possibilities during ‘non-conscious’ state, mice were anesthetized with a ketamin/rompun mixture and underwent one trial learning with odor cue as the conditioned stimulus (CS) preceding the unconditioned stimulus (US). The results indicated that mice that were exposed to camphor odor cue under the influence of anesthesia can associate the signal with the poly I:C unconditioned stimulus and were able to recall the conditioned response upon reexposure to the CS. Secondly, the conditioned association made in a conscious state can be recalled by exposure to the same olfactory odor cue in a ‘non-conscious’ state. The increase in the conditioned change in NK cell activity of both situations was significantly higher than the control group. The results demonstrate that learning can take place and the learned response can be recalled under the reduced awareness caused by anesthesia. The findings we report are unusual and novel in that they demonstrate that the CNS can learn new associations under conditions where the host is apparently unaware of the signals being linked. Anesthesia combined with the long interstimulus interval indicates that certain neuronal pathways in the CNS are receptive to second signals (elicited by the US) even when the second signal is separated by one day. This means the conditioned learning of a physiological response can take place unconsciously at a separate level and under situations where the host is totally unaware of the events which the brain is processing and linking as incoming information.  相似文献   

20.
Hygienic behavior in honey bees is a behavioral mechanism of disease resistance. Bees bred for hygienic behavior exhibit an increased olfactory sensitivity to odors of diseased brood, which is most likely differentially enhanced in the hygienic line by the modulatory effects of octopamine (OA), a noradrenaline-like neuromodulator. Here, we addressed whether the hygienic behavioral state is linked to other behavioral activities known to be modulated by OA. We specifically asked if, during learning trials, bees from hygienic colonies discriminate better between odors of diseased and healthy brood because of differences in sucrose (reward) response thresholds. This determination had to be tested because sucrose response thresholds are susceptible to OA modulation and may have influenced the honey bee's association of the conditioned stimulus (odor) with the unconditioned stimulus (i.e., the sucrose reward). Because the onset of first foraging is also modulated by OA, we also examined whether bees from hygienic colonies differentially forage at an earlier age compared to bees from non-hygienic colonies. Our study revealed that 1-day- and 15- to 20-day-old bees from the hygienic line do not have lower sucrose response thresholds compared to bees from the non-hygienic lines. In addition, hygienic bees did not forage at an earlier age or forage preferentially for pollen as compared to non-hygienic bees. These results support the idea that OA does not function in honey bees simply to enhance the detection of all chemical cues non-selectively or control related behaviors regardless of their environmental milieu. Our results indicate that the behavioral profile of the hygienic bee is sculpted by multiple factors including genetic, neural, social and environmental systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号