首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Steroid hormones regulate gene expression by interaction of their receptors with hormone responsive elements (HREs) and recruitment of kinases, chromatin remodeling complexes, and coregulators to their target promoters. Here we show that in breast cancer cells the BAF, but not the closely related PBAF complex, is required for progesterone induction of several target genes including MMTV, where it catalyzes localized displacement of histones H2A and H2B and subsequent NF1 binding. PCAF is also needed for induction of progesterone target genes and acetylates histone H3 at K14, an epigenetic mark that interacts with the BAF subunits by anchoring the complex to chromatin. In the absence of PCAF, full loading of target promoters with hormone receptors and BAF is precluded, and induction is compromised. Thus, activation of hormone-responsive promoters requires cooperation of at least two chromatin remodeling activities, BAF and PCAF.  相似文献   

5.
6.
The induction of type I (alphabeta) IFN following virus infection is necessary for the stimulation of effective antiviral host defense. In fibroblasts, a subset of primary genes (including those encoding IFN-beta and IFN-alpha4) are induced directly by intracellular dsRNA generated by the virus during its replication. These primary type I IFNs induce expression of IFN regulatory factor (IRF)-7, required for production of a second cascade of IFN-alpha subtypes and the further establishment of a complete antiviral state. Previously, we had reported on a role for Fas-associated death domain-containing protein (FADD) in the control of TLR-independent innate immune responses to virus infection. Our data in this study demonstrate that FADD is not only required for efficient primary gene induction, but is also essential for induction of Irf7 and effective expression of secondary IFN-alphas and other antiviral genes. Ectopic overexpression of IRF-7 partially rescued dsRNA responsiveness and IFN-alpha production, and a constitutively active variant of IRF-7 displayed normal activity in Fadd(-/-) murine embryonic fibroblasts. MC159, a FADD-interacting viral protein encoded by the molluscum contagiosum poxvirus was found to inhibit dsRNA-activated signaling events upstream of IRF-7. These data indicate that FADD's antiviral activity involves regulation of IRF-7-dependent production of IFN-alpha subtypes and consequent induction of secondary antiviral genes.  相似文献   

7.
8.
9.
10.
The innate host response to virus infection is largely dominated by the production of type I interferon and interferon stimulated genes. In particular, fibroblasts respond robustly to viral infection and to recognition of viral signatures such as dsRNA with the rapid production of type I interferon; subsequently, fibroblasts are a key cell type in antiviral protection. We recently found, however, that primary fibroblasts deficient for the production of interferon, interferon stimulated genes, and other cytokines and chemokines mount a robust antiviral response against both DNA and RNA viruses following stimulation with dsRNA. Nitric oxide is a chemical compound with pleiotropic functions; its production by phagocytes in response to interferon-γ is associated with antimicrobial activity. Here we show that in response to dsRNA, nitric oxide is rapidly produced in primary fibroblasts. In the presence of an intact interferon system, nitric oxide plays a minor but significant role in antiviral protection. However, in the absence of an interferon system, nitric oxide is critical for the protection against DNA viruses. In primary fibroblasts, NF-κB and interferon regulatory factor 1 participate in the induction of inducible nitric oxide synthase expression, which subsequently produces nitric oxide. As large DNA viruses encode multiple and diverse immune modulators to disable the interferon system, it appears that the nitric oxide pathway serves as a secondary strategy to protect the host against viral infection in key cell types, such as fibroblasts, that largely rely on the type I interferon system for antiviral protection.  相似文献   

11.
12.
13.
14.
15.
Type III interferons (IFNs) (interleukin-28/29 or lambda interferon [IFN-lambda]) are cytokines with IFN-like activities. Here we show that several classes of viruses induce expression of IFN-lambda1 and -lambda2/3 in similar patterns. The IFN-lambdas were-unlike alpha/beta interferon (IFN-alpha/beta)-induced directly by stimulation with IFN-alpha or -lambda, thus identifying type III IFNs as IFN-stimulated genes. In vitro assays revealed that IFN-lambdas have appreciable antiviral activity against encephalomyocarditis virus (EMCV) but limited activity against herpes simplex virus type 2 (HSV-2), whereas IFN-alpha potently restricted both viruses. Using three murine models for generalized virus infections, we found that while recombinant IFN-alpha reduced the viral load after infection with EMCV, lymphocytic choriomeningitis virus (LCMV), and HSV-2, treatment with recombinant IFN-lambda in vivo did not affect viral load after infection with EMCV or LCMV but did reduce the hepatic viral titer of HSV-2. In a model for a localized HSV-2 infection, we further found that IFN-lambda completely blocked virus replication in the vaginal mucosa and totally prevented development of disease, in contrast to IFN-alpha, which had a more modest antiviral activity. Finally, pretreatment with IFN-lambda enhanced the levels of IFN-gamma in serum after HSV-2 infection. Thus, type III IFNs are expressed in response to most viruses and display potent antiviral activity in vivo against select viruses. The discrepancy between the observed antiviral activity in vitro and in vivo may suggest that IFN-lambda exerts a significant portion of its antiviral activity in vivo via stimulation of the immune system rather than through induction of the antiviral state.  相似文献   

16.
17.
Joo CH  Shin YC  Gack M  Wu L  Levy D  Jung JU 《Journal of virology》2007,81(15):8282-8292
Upon viral infection, the major defense mounted by the host immune system is activation of the interferon (IFN)-mediated antiviral pathway that is mediated by IFN regulatory factors (IRFs). In order to complete their life cycle, viruses must modulate the host IFN-mediated immune response. Kaposi's sarcoma-associated herpesvirus (KSHV), a human tumor-inducing herpesvirus, has developed a unique mechanism for antagonizing cellular IFN-mediated antiviral activity by incorporating viral homologs of the cellular IRFs, called vIRFs. Here, we report a novel immune evasion mechanism of KSHV vIRF3 to block cellular IRF7-mediated innate immunity in response to viral infection. KSHV vIRF3 specifically interacts with either the DNA binding domain or the central IRF association domain of IRF7, and this interaction leads to the inhibition of IRF7 DNA binding activity and, therefore, suppression of alpha interferon (IFN-alpha) production and IFN-mediated immunity. Remarkably, the central 40 amino acids of vIRF3, containing the double alpha helix motifs, are sufficient not only for binding to IRF7, but also for inhibiting IRF7 DNA binding activity. Consequently, the expression of the double alpha helix motif-containing peptide effectively suppresses IRF7-mediated IFN-alpha production. This demonstrates a remarkably efficient means of viral avoidance of host antiviral activity.  相似文献   

18.
Freshly harvested mouse peritoneal cells, from normal lipopolysaccharide (LPS)-responsive (Lpsn) mice, were capable of transferring an antiviral state (to vesicular stomatitis virus) to "in vitro aged" mouse macrophages permissive for viral replication. The transfer of the antiviral state was completely abrogated by addition of antibody to interferon (IFN)-alpha/beta in the co-culture medium. In contrast, even large numbers of donor peritoneal cells from LPS-hyporesponsive (Lpsd) C3H/HeJ and C57BL/10ScCR mice did not transfer an antiviral state to target cells. Although peritoneal macrophages from Lpsd mice did not transfer an antiviral state to target cells, they were nevertheless found to be in an antiviral state when first placed in culture. Injection of mice with antibody to mouse IFN-alpha/beta rendered peritoneal macrophages from both Lpsn and Lpsd mice permissive for vesicular stomatitis virus. The decay of this initial antiviral state in peritoneal macrophages during in vitro culture was far more rapid for Lpsd mice than for normal mice. Addition of antibody to mouse IFN-alpha/beta markedly enhanced the in vitro decay of the antiviral state of peritoneal macrophages. Treatment of total peritoneal cells from Lpsn mice with LPS resulted in IFN production, whereas IFN was not detected in the cellfree medium of LPS-treated peritoneal cells from Lpsd C3H/HeJ and C57BL/10ScCR mice. Genetic studies with F1 hybrids between Lpsn and Lpsd mice and with Lpsn and Lpsd recombinant inbred strains revealed a striking correlation between the capacity of peritoneal cells to transfer an antiviral state and their capacity to produce IFN after stimulation with LPS, suggesting that closely linked, if not identical, genes are in some way involved in the transfer of antiviral state as well as in the LPS response by peritoneal cells of normal mice.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号