首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Postprandial lipid metabolism is largely dependent upon lipoprotein lipase (LPL), which hydrolyses triglycerides (TGs). The time course of LPL activity in the postprandial state following a single meal has never been studied, because its determination required heparin injection. Recently, we have shown that LPL activity could be accurately measured in nonheparinized VLDL using a new assay aiming to determine the LPL-dependent VLDL-TG hydrolysis. Based on the same principle, we used in this study TG-rich lipoprotein (TRL)-bound LPL-dependent TRL-TG hydrolysis (LTTH) to compare the time course of LPL activity of 10 type 2 diabetics to that of 10 controls, following the ingestion of a lipid-rich meal. The peak TG concentration, reached after 4 h, was 67% higher in diabetics than in controls (P < 0.005). Fasting LTTHs were 91.3 +/- 15.6 in controls versus 70.1 +/- 4.8 nmol NEFA/ml/h in diabetics (P < 0.001). LTTH was increased 2 h postprandially by 190% in controls and by only 89% in diabetics, resulting in a 35% lowering of the LTTH area under the curve in diabetics. Postprandial LTTH was inversely correlated with TG or remnant concentrations in controls but not in diabetics, and with insulin resistance in both groups. These data show that TRL-bound LPL activity increases in the postprandial state and is strongly reduced in type 2 diabetes, contributing to postprandial hypertriglyceridemia.  相似文献   

2.
Evidence suggests that increased hydrolysis and/or uptake of triglyceride-rich lipoprotein particles in skeletal muscle can be involved in insulin resistance. We determined the steady state mRNA levels of the low-density lipoprotein-related receptor (LRP) and lipoprotein lipase (LPL) in skeletal muscle of eight healthy lean control subjects, eight type 2 diabetic patients and eight nondiabetic obese individuals. The regulation by insulin of LRP and LPL mRNA expression was also investigated in biopsies taken before and at the end of a 3 h euglycemic hyperinsulinemic clamp (insulinemia of about 1 nM). LRP mRNA was expressed in human skeletal muscle (1.3+/-0.1 amol/microg total RNA in control subjects). Type 2 diabetic patients, but not nondiabetic obese subjects, were characterized by a reduced expression of LRP (0.8+/-0.2 and 1.3+/-0.3 amol/microg total RNA in diabetic and obese patients, respectively; P<0.05 in diabetic vs. control subjects). Insulin infusion decreased LRP mRNA levels in muscle of the control subjects but not in muscle of type 2 diabetic and nondiabetic obese patients. Similar results were found when investigating the regulation of the expression of LPL. Taken together, these results did not support the hypothesis that a higher capacity for clearance or hydrolysis of circulating triglycerides in skeletal muscle is present during obesity- or type 2 diabetes-associated insulin resistance.  相似文献   

3.
LPL and its specific physiological activator, apolipoprotein C-II (apoC-II), regulate the hydrolysis of triglycerides (TGs) from circulating TG-rich lipoproteins. Previously, we developed a skeletal muscle-specific LPL transgenic mouse that had lower plasma TG levels. ApoC-II transgenic mice develop hypertriglyceridemia attributed to delayed clearance. To investigate whether overexpression of LPL could correct this apoC-II-induced hypertriglyceridemia, mice with overexpression of human apoC-II (CII) were cross-bred with mice with two levels of muscle-specific human LPL overexpression (LPL-L or LPL-H). Plasma TG levels were 319 +/- 39 mg/dl in CII mice and 39 +/- 5 mg/dl in wild-type mice. Compared with CII mice, apoC-II transgenic mice with the higher level of LPL overexpression (CIILPL-H) had a 50% reduction in plasma TG levels (P = 0.013). Heart LPL activity was reduced by approximately 30% in mice with the human apoC-II transgene, which accompanied a more modest 10% decrease in total LPL protein. Overexpression of human LPL in skeletal muscle resulted in dose-dependent reduction of plasma TGs in apoC-II transgenic mice. Along with plasma apoC-II concentrations, heart and skeletal muscle LPL activities were predictors of plasma TGs. These data suggest that mice with the human apoC-II transgene may have alterations in the expression/activity of endogenous LPL in the heart. Furthermore, the decrease of LPL activity in the heart, along with the inhibitory effects of excess apoC-II, may contribute to the hypertriglyceridemia observed in apoC-II transgenic mice.  相似文献   

4.
Type 1 diabetes mellitus reduces lipoprotein lipase (LPL) activity in the heart. The diabetic phenotype of decreased LPL activity in freshly isolated cardiomyocytes persisted after overnight culture (16 h). Total cellular LPL activity was 311+/-56 nmol oleate released x h(-1) x mg(-1) cell protein in diabetic cultured cardiomyocytes compared with 661+/-81 nmol oleate released x h(-1) x mg(-1) cell protein for control cultured cells. Diabetes also resulted in lower heparin-releasable (HR) LPL activity compared with control cells (111+/-25 vs. 432+/-63 nmol x h(-1) x mg(-1) cell protein). In kinetic experiments, the reduction in total cellular LPL and HR-LPL activities in cultured cells from diabetic hearts was due to a decrease in maximal velocity, with no change in apparent Km for substrate (triolein). LPL activity in primary cultures of cardiomyocytes from control rats is stimulated by the combination of insulin (Ins) and dexamethasone (Dex). Overnight treatment of cultured cardiomyocytes from diabetic rats with Ins+Dex elicited an 84% increase in cellular LPL activity (to 572+/-65 nmol x h(-1) x mg(-1) cell protein) and a 194% increase in HR-LPL activity (to 326+/-46 nmol x h(-1) x mg(-1) cell protein). This stimulation occurred at subnanomolar concentrations of the hormones, but neither hormone was effective alone. The amount of immunoreactive LPL protein mass in cultured cardiomyocytes from diabetic hearts was unchanged by Ins+Dex treatment. Addition of oleic acid (60 microM) to the overnight culture medium inhibited the already reduced HR-LPL activity in diabetic cultured cells by 73% (to 30+/-4 nmol x h(-1) x mg(-1) cell protein). The presence of oleic acid also reduced hormone-stimulated HR-LPL activity. Increasing the glucose concentration in the culture medium to 26 mM had no effect on total cellular LPL or HR-LPL activities.  相似文献   

5.
We studied the effect of variation at the lipoprotein lipase (LPL) gene locus on the susceptibility of individuals with non-insulin dependent diabetes mellitus (NIDDM) in a population of 110 NIDDM patients and 91 controls. Our objective was to study the relationship between the LPL-Pvu II polymorphism and NIDDM and lipid metabolism. PCR-RFLP was used to determine the DNA polymorphism of the sixth intron of the LPL gene. The frequencies of the genotypes in case and control groups were 29.1 and 30.8% for P+/P+; 45.5 and 36.3% for P+/P-; 25.5 and 33% for P-/P- respectively. There was no significant difference in frequencies of genotypes between the two groups. Logistic regression analysis revealed that triacylglycerol (TAG) and apolipoprotein E levels were associated with NIDDM, whereas Pvu II genotypes were not found as independent risk factors for the disease. Overall this study demonstrates the role of the Pvu II polymorphism in the LPL gene in modulating plasma lipid/lipoprotein levels in patients with NIDDM.  相似文献   

6.
Previous studies have shown that overexpression of human apolipoprotein C-I (apoC-I) results in moderate hypercholesterolemia and severe hypertriglyceridemia in mice in the presence and absence of apoE. We assessed whether physiological endogenous apoC-I levels are sufficient to modulate plasma lipid levels independently of effects of apoE on lipid metabolism by comparing apolipoprotein E gene-deficient/apolipoprotein C-I gene-deficient (apoe-/-apoc1-/-), apoe-/-apoc1+/-, and apoe-/-apoc1+/+ mice. The presence of the apoC-I gene-dose-dependently increased plasma cholesterol (+45%; P < 0.001) and triglycerides (TGs) (+137%; P < 0.001), both specific for VLDL. Whereas apoC-I did not affect intestinal [3H]TG absorption, it increased the production rate of hepatic VLDL-TG (+35%; P < 0.05) and VLDL-[35S]apoB (+39%; P < 0.01). In addition, apoC-I increased the postprandial TG response to an intragastric olive oil load (+120%; P < 0.05) and decreased the uptake of [3H]TG-derived FFAs from intravenously administered VLDL-like emulsion particles by gonadal and perirenal white adipose tissue (WAT) (-34% and -25%, respectively; P < 0.05). As LPL is the main enzyme involved in the clearance of TG-derived FFAs by WAT, and total postheparin plasma LPL levels were unaffected, these data demonstrate that endogenous apoC-I suffices to attenuate the lipolytic activity of LPL. Thus, we conclude that endogenous plasma apoC-I increases VLDL-total cholesterol and VLDL-TG dose-dependently in apoe-/- mice, resulting from increased VLDL particle production and LPL inhibition.  相似文献   

7.
Patients with diabetes commonly manifest hypertriglyceridemia along with decreased adipose tissue lipoprotein lipase (LPL) activity, and improved diabetes control tends to reverse these abnormalities. To better understand the mechanism of regulation of LPL in diabetes, 11 diabetic patients (3 type I, 8 type II) were brought under improved glycemic control, and adipose tissue LPL gene expression was assessed by performing paired fat biopsies. Six of the 11 patients attained improved control with insulin, with a decrease in glycohemoglobin (glyc Hgb) from 13.8 +/- 0.9 to 10.4 +/- 0.6%; 5 patients attained improved control with glyburide (glyc Hgb fell from 14.2 +/- 2.4 to 8.8 +/- 0.6%), and together they demonstrated a lowering of serum triglycerides and total cholesterol. No changes were observed in HDL cholesterol. Improved diabetes control resulted in a significant increase in LPL activity in both the heparin-releasable (HR) and extractable (EXT) fractions of adipose tissue, as well as in LPL immunoreactive mass. The change in LPL activity with improved control was variable, and showed a positive correlation with the HDL levels prior to treatment (r = 0.74, P less than 0.02). When adipose tissue was pulse-labeled with [35S]methionine, there was an increase in isotope incorporation into LPL after treatment, indicating an increase in LPL synthetic rate. However, improved diabetes control resulted in no significant change in LPL mRNA levels. Thus, improved glycemic control resulted in an increase in LPL activity which correlated with each patient's basal high density lipoprotein. This increase in LPL activity was accompanied by an increase in LPL immunoreactive mass, and an increase in LPL synthesis.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
In this study, we examined whether the documented increase of plasma triglycerides in patients with generalized aggressive periodontitis (GAgP) is associated with changes in lipoprotein subclass distribution and/or LDL-associated platelet-activating factor acetylhydrolase (PAF-AH) activity. Lipoprotein subclasses were analyzed in whole plasma samples using nuclear magnetic resonance methods. Compared with subjects without periodontitis (NP subjects; n = 12), GAgP subjects (n = 12) had higher plasma levels of large, medium, and small VLDL (35.0 +/- 6.7 vs. 63.1 +/- 9.6 nmol/l; P = 0.025), higher levels of intermediate density lipoprotein (24.8 +/- 11.6 vs. 87.2 +/- 16.6 nmol/l; P = 0.006), lower levels of large LDL (448.3 +/- 48.5 vs. 315.8 +/- 59.4 nmol/l; P = 0.098), and higher levels of small LDL (488.2 +/- 104.2 vs. 946.7 +/- 151.6 nmol/l; P = 0.021). The average size of LDL from NP and GAgP subjects was 21.4 +/- 0.2 and 20.6 +/- 0.3 nm, respectively (P = 0.031). Compared with NP subjects, GAgP subjects had a greater number of circulating LDL particles (961.3 +/- 105.3 vs. 1,349.0 +/- 133.2 nmol/l; P = 0.032). Differences in the plasma levels of large, medium, and small HDL were not statistically significant. NP and GAgP subjects had similar plasma levels of total LDL-associated PAF-AH activity; however, LDL of GAgP subjects contained less PAF-AH activity per microgram of LDL protein (1,458.0 +/- 171.0 and 865.2 +/- 134 pmol/min/microg; P = 0.014). These results indicate that, in general, GAgP subjects have a more atherogenic lipoprotein profile and lower LDL-associated PAF-AH activity than NP subjects. These differences may help explain the increased risk of GAgP subjects for cardiovascular disease.  相似文献   

9.
Lipoprotein lipase (LPL) is the rate-limiting enzyme for the hydrolysis of the triglyceride-rich lipoproteins and plays a critical role in lipoprotein and free fatty acid metabolism. Genetic manipulation of LPL may be beneficial in the treatment of hypertriglyceridemias, but it is unknown whether increased LPL activity may be effective in lowering plasma cholesterol and improving insulin resistance in familial hypercholesterolemic patients. To test the hypothesis that stimulation of LPL expression may be used as an adjunctive therapy for treatment of homozygous familial hypercholesterolemia, we have generated transgenic (Tg) Watanabe heritable hyperlipidemic (WHHL) rabbits that overexpress the human LPL transgene and compared their plasma lipid levels, glucose metabolism, and body fat accumulation with those of non-Tg WHHL rabbits. Overexpression of LPL dramatically ameliorated hypertriglyceridemia in Tg WHHL rabbits. Furthermore, increased LPL activity in male Tg WHHL rabbits also corrected hypercholesterolemia (544 +/- 52 in non-Tg versus 227 +/- 29 mg/dl in Tg, p < 0.01) and reduced body fat accumulation by 61% (323 +/- 27 in non-Tg versus 125 +/- 21ginTg, p < 0.01), suggesting that LPL plays an important role in mediating plasma cholesterol homeostasis and adipose accumulation. In addition, overexpression of LPL significantly suppressed high fat diet-induced obesity and insulin resistance in Tg WHHL rabbits. These results imply that systemic elevation of LPL expression may be potentially useful for the treatment of hyperlipidemias, obesity, and insulin resistance.  相似文献   

10.
Mixed dyslipidemia of phenotype IIB is characterized by elevated levels of very low density lipoprotein (VLDL)-1 and VLDL-2 subfractions and of low density lipoprotein (LDL), which are associated with premature formation of atherosclerotic plaques, characterized by the presence of lipid-rich macrophage foam cells. Lipoprotein lipase (LPL) is a key factor in mediating macrophage lipid accumulation and foam-cell formation from native VLDL particles. The action of macrophage-derived LPL in the induction of intracellular lipid accumulation from triglyceride-rich lipoprotein (TRL) subfractions (VLDL-1, VLDL-2) is, however, indeterminate, as is the potential role of VLDL-1 and VLDL-2 in modulating macrophage LPL expression. We evaluated the role of LPL in the interaction of type IIB VLDL-1 and VLDL-2 with human macrophages. Both VLDL-1 and VLDL-2 subfractions induced significant accumulation of triglyceride (9.8-fold, P<0.0001, and 4.8-fold, P<0.0001, respectively) and of free cholesterol content (1.4-fold, P<0.001, and 1.2-fold, P=0.02, respectively). Specific inhibition (90%) of the lipolytic activity of endogenous LPL by tetrahydrolipstatin (THL) in the presence of VLDL-1 or VLDL-2 resulted in marked reduction in cellular loading of both triglycerides (-89%, P=0.008, and -89%, P=0.015, respectively) and free cholesterol (-76%, P=0.02, and -55%, P=0.06 respectively). Furthermore, VLDL-1 and VLDL-2 induced marked increase in macrophage-derived LPL enzyme activity (+81%, P=0.002, and +45%, P=0.02), but did not modulate macrophage-derived LPL mRNA and protein expression; consequently, LPL specific activity was significantly increased from 1.6 mU/microg at baseline to 4.1 mU/microg (P=0.01) and 3.1 mU/microg (P=0.05), in the presence of VLDL-1 and VLDL-2, respectively. We conclude that type IIB VLDL-1 and VLDL-2 induce triglyceride accumulation in human monocyte-macrophages primarily via the lipolytic action of LPL, which may involve stabilization and activation of the macrophage-secreted enzyme, rather than via modulation of enzyme production.  相似文献   

11.
Our objective was to test the hypothesis that a common polymorphism in the hepatic lipase (HL) gene (LIPC -514C>T, rs1800588) influences aerobic exercise training-induced changes in TG, very-low-density lipoprotein (VLDL), and high-density lipoprotein (HDL) through genotype-specific increases in lipoprotein lipase (LPL) activity and that sex may affect these responses. Seventy-six sedentary overweight to obese men and women aged 50-75 yr at risk for coronary heart disease (CHD) underwent a 24-wk prospective study of the LIPC -514 genotype-specific effects of exercise training on lipoproteins measured enzymatically and by nuclear magnetic resonance, postheparin LPL and HL activities, body composition by dual energy x-ray absorptiometry and computer tomography scan, and aerobic capacity. CT genotype subjects had higher baseline total cholesterol, HDL-C, HDL(2)-C, large HDL, HDL particle size, and large LDL than CC homozygotes. Exercise training elicited genotype-specific decreases in VLDL-TG (-22 vs. +7%; P < 0.05; CC vs. CT, respectively), total VLDL and medium VLDL, and increases in HDL-C (7 vs. 4%; P < 0.03) and HDL(3)-C with significant genotype×sex interactions for the changes in HDL-C and HDL(3)-C (P values = 0.01-0.02). There were also genotype-specific changes in LPL (+23 vs. -6%; P < 0.05) and HL (+7 vs. -24%; P < 0.01) activities, with LPL increasing only in CC subjects (P < 0.006) and HL decreasing only in CT subjects (P < 0.007). Reductions in TG, VLDL-TG, large VLDL, and medium VLDL and increases in HDL(3)-C and small HDL particles correlated significantly with changes in LPL, but not HL, activity only in CC subjects. This suggests that the LIPC -514C>T variant significantly affects training-induced anti-atherogenic changes in VLDL-TG, VLDL particles, and HDL through an association with increased LPL activity in CC subjects, which could guide therapeutic strategies to reduce CHD risk.  相似文献   

12.
Recent studies indicate an important role of the kidney in postprandial glucose homeostasis in normal humans. To determine its role in the abnormal postprandial glucose metabolism in type 2 diabetes mellitus (T2DM), we used a combination of the dual-isotope technique and net balance measurements across kidney and skeletal muscle in 10 subjects with T2DM and 10 age-, weight-, and sex-matched nondiabetic volunteers after ingestion of 75 g of glucose. Over the 4.5-h postprandial period, diabetic subjects had increased mean blood glucose levels (14.1 +/- 1.1 vs. 6.2 +/- 0.2 mM, P < 0.001) and increased systemic glucose appearance (100.0 +/- 6.3 vs. 70.0 +/- 3.3 g, P < 0.001). The latter was mainly due to approximately 23 g greater endogenous glucose release (39.8 +/- 5.9 vs. 17.0 +/- 1.8 g, P < 0.002), since systemic appearance of the ingested glucose was increased by only approximately 7 g (60.2 +/- 1.4 vs. 53.0 +/- 2.2 g, P < 0.02). Approximately 40% of the diabetic subjects' increased endogenous glucose release was due to increased renal glucose release (19.6 +/- 3.1 vs. 10.6 +/- 2.4 g, P < 0.05). Postprandial systemic tissue glucose uptake was also increased in the diabetic subjects (82.3 +/- 4.7 vs. 69.8 +/- 3.5 g, P < 0.05), and its distribution was altered; renal glucose uptake was increased (21.0 +/- 3.5 vs. 9.8 +/- 2.3 g, P < 0.03), whereas muscle glucose uptake was normal (18.5 +/- 1.8 vs. 25.9 +/- 3.3 g, P = 0.16). We conclude that, in T2DM, 1) both liver and kidney contribute to postprandial overproduction of glucose, and 2) postprandial renal glucose uptake is increased, resulting in a shift in the relative importance of muscle and kidney for glucose disposal. The latter may provide an explanation for the renal glycogen accumulation characteristic of diabetes mellitus as well as a mechanism by which hyperglycemia may lead to diabetic nephropathy.  相似文献   

13.
Acyl-coenzyme A:diacylglycerol transferase (DGAT), fatty acid synthetase (FAS), and LPL are three enzymes important in adipose tissue triglyceride accumulation. To study the relationship of DGAT1, FAS, and LPL with insulin, we examined adipose mRNA expression of these genes in subjects with a wide range of insulin sensitivity (SI). DGAT1 and FAS (but not LPL) expression were strongly correlated with SI. In addition, the expression of DGAT1 and FAS (but not LPL) were higher in normal glucose-tolerant subjects compared with subjects with impaired glucose tolerance (IGT) (P < 0.005). To study the effects of insulin sensitizers, subjects with IGT were treated with pioglitazone or metformin for 10 weeks, and lipogenic enzymes were measured in adipose tissue. After pioglitazone treatment, DGAT1 expression was increased by 33 +/- 10% (P < 0.05) and FAS expression increased by 63 +/- 8% (P < 0.05); however, LPL expression was not altered. DGAT1, FAS, and LPL mRNA expression were not significantly changed after metformin treatment. The treatment of mice with rosiglitazone also resulted in an increase in adipose expression of DGAT1 by 2- to 3-fold, as did the treatment of 3T3 F442A adipocytes in vitro with thiazolidinediones. These data support a more global concept suggesting that adipose lipid storage functions to prevent peripheral lipotoxicity.  相似文献   

14.
This study determines whether changes in abdominal (ABD) and gluteal (GLT) adipose tissue lipoprotein lipase (LPL) activity in response to a 6-mo weight loss intervention, comprised of a hypocaloric diet and low-intensity walking, affect changes in body composition, fat distribution, lipid metabolism, and the magnitude of weight regain in 36 obese postmenopausal women. Average adipose tissue LPL activity did not change with an average 5.6-kg weight loss, but changes in LPL activity were inversely related to baseline LPL activity (ABD: r = -0.60, GLT: r = -0.48; P < 0.01). The loss of abdominal body fat and decreases in total and low-density lipoprotein cholesterol were greater in women whose adipose tissue LPL activity decreased with weight loss despite a similar loss of total body weight and fat mass. Moreover, weight regain after a 6-mo follow-up was less in women whose adipose tissue LPL activity decreased than in women whose LPL increased (ABD: 0.9 +/- 0.5 vs. 2.8 +/- 0.6 kg, P < 0.05; GLT: 0.2 +/- 0.5 vs. 2.8 +/- 0.5 kg, P < 0.01). These results suggest that a reduction in adipose tissue LPL activity with weight loss is associated with improvements in lipid metabolic risk factors with weight loss and with diminished weight regain in postmenopausal women.  相似文献   

15.
Patients at increased cardiovascular risk commonly display high levels of plasma triglycerides (TGs), elevated LDL cholesterol, small dense LDL particles and low levels of HDL-cholesterol. Many remain at high risk even after successful statin therapy, presumably because TG levels remain high. Lipoprotein lipase (LPL) maintains TG homeostasis in blood by hydrolysis of TG-rich lipoproteins. Efficient clearance of TGs is accompanied by increased levels of HDL-cholesterol and decreased levels of small dense LDL. Given the central role of LPL in lipid metabolism we sought to find small molecules that could increase LPL activity and serve as starting points for drug development efforts against cardiovascular disease. Using a small molecule screening approach we have identified small molecules that can protect LPL from inactivation by the controller protein angiopoietin-like protein 4 during incubations in vitro. One of the selected compounds, 50F10, was directly shown to preserve the active homodimer structure of LPL, as demonstrated by heparin-Sepharose chromatography. On injection to hypertriglyceridemic apolipoprotein A-V deficient mice the compound ameliorated the postprandial response after an olive oil gavage. This is a potential lead compound for the development of drugs that could reduce the residual risk associated with elevated plasma TGs in dyslipidemia.  相似文献   

16.
To explore whether the placenta contributes to the lipoprotein metabolism of pregnant women, we took advantage of the fact that placental proteins are encoded from the fetal genome and examined the associations between lipids of 525 pregnant women and the presence, in their newborns, of genetic polymorphisms of LPL and apolipoprotein E (APOE), two genes expressed in placenta. After adjustment for maternal polymorphisms, newborn LPL*S447X was associated with lower triglycerides (-21 +/- 9 mg/dl), lower LDL-cholesterol (LDL-C; -12 +/- 5 mg/dl), lower apoB (-14 +/- 4 mg/dl), higher HDL-C (5 +/- 2 mg/dl), and higher apoA-I (9 +/- 4 mg/dl) in their mothers; newborn LPL*N291S was associated with higher maternal triglycerides (114 +/- 31 mg/dl); and newborn APOE*E2 (compared to E3E3) was associated with higher maternal LDL-C (14 +/- 6 mg/dl) and higher maternal apoB (14 +/- 5 mg/dl). These associations (all P < 0.05) were independent of polymorphisms carried by the mothers and of lipid concentrations in newborns and were similar in amplitude to the associations between maternal polymorphisms and maternal lipids. Such findings support the active role of placental LPL and APOE in the metabolism of maternal lipoproteins and suggest that fetal genes may modulate the risk for problems related to maternal dyslipidemia (preeclampsia, pancreatitis, and future cardiovascular disease).  相似文献   

17.
Microalbuminuria (MA) is an independent risk factor for atherosclerosis in patients with type 2 diabetes mellitus (T2DM). Postprandial lipemia is also associated with excess cardiovascular risk. However, the association between MA and postprandial lipemia in diabetes has not been investigated. A total of 64 patients with T2DM, 30 with and 34 without MA, were examined. Plasma total triglycerides (TGs), triglycerides contained in chylomicrons (CM-TG), and TGs in CM-deficient plasma were measured at baseline and every 2 h for 6 h after a mixed meal. Postheparin LPL and HL activities were also determined. Plasma levels of apolipoprotein A-V (apoA-V), apoC-II, and apoC-III were measured in the fasting state and 2 h postprandially. Patients with MA had higher postprandial total TG levels than those without MA (P < 0.001); this increase been attributed mainly to CM-TG. LPL activity and fasting concentrations of the measured apolipoproteins were not different between the studied groups, whereas HL activity was higher in the patients with MA. ApoC-II and apoC-III levels did not change postprandially in either study group, whereas apoA-V increased more in the patients with MA. These data demonstrate for the first time that MA is characterized by increased postprandial lipemia in patients with T2DM and may explain in part the excess cardiovascular risk in these patients.  相似文献   

18.
Omega-3 fatty acids (FAs) reduce postprandial triacylglycerol (TG) concentrations. This study was undertaken to determine whether this effect was due to reduced production or increased clearance of chylomicrons. Healthy subjects (n = 33) began with a 4-week, olive oil placebo (4 g/d) run-in period. After a 4-week wash-out period, subjects were randomized to supplementation with 4 g/d of ethyl esters of either safflower oil (SAF), eicosapentaenoic acid (EPA), or docosahexaenoic acid (DHA) for 4 weeks. Results for EPA and DHA were similar, and therefore the data were combined into one omega-3 FA group. Omega-3 FA supplementation reduced the postprandial TG and apolipoprotein B (apo B)-48 and apoB-100 concentrations by 16% (P = 0.08), 28% (P < 0.001), and 24% (P < 0.01), respectively. Chylomicron TG half-lives in the fed state were reduced after omega-3 FA treatment (6.0 +/- 0.5 vs. 5.1 +/- 0.4 min; P < 0.05), but not after SAF (6.9 +/- 0.7 vs. 7.1 +/- 0.7 min). Omega-3 FA supplementation decreased chylomicron particle sizes (mean diameter; 293 +/- 44 vs. 175 +/- 25 nm; P < 0.01) and increased preheparin lipoprotein lipase (LPL; 0.6 +/- 0.1 vs. 0.9 +/- 0.1 micromol/h/ml; P < 0.05) activity during the fed state, but had no effect on postheparin LPL or hepatic lipase activities. The results suggest that omega-3 FA supplementation accelerates chylomicron TG clearance by increasing LPL activity, and that EPA and DHA are equally effective.  相似文献   

19.
OBJECTIVE: To investigate whether ScrF I polymorphism in the 2nd intron of the HMG-COA reductase gene (HMGCR) influences serum lipid levels and whether this polymorphism affects the efficiency of the cholesterol lowering HMG-CoA reductase inhibitor, simvastatin. METHODS: One hundred sixty-eight patients with type 2 diabetes mellitus (T2DM) prospectively received simvastatin as a single-agent therapy (20mg day-1 p.o.) for 12 weeks. Serum lipid levels were determined before and after simvastatin treatment. Genotyping was performed by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). RESULTS: Subjects with the AA homozygotes had significantly higher serum very low-density lipoprotein cholesterol (VLDL-C) levels than those with the aa homozygotes. In addition, in 168 patients with T2DM who took 20mg simvastatin, the VLDL-C lowering effect by simvastatin in subjects with the aa homozygotes was significantly lower than in those with the Aa heterozygotes and AA homozygotes. CONCLUSIONS: Simvastatin treatment significantly decreased plasma lipids in all patients (P<0.01). Importantly, we demonstrate that ScrF I polymorphism of the HMGCR gene in patients with T2DM groups is associated with significant elevation of serum VLDL-C levels. Subjects with the AA homozygotes had significantly higher serum high VLDL-C levels than those with the Aa heterozygotes and aa homozygotes (AA: 2.18+/-0.51; Aa: 2.04+/-0.59, aa: 1.86+/-0.43, P<0.05 for comparison among three genotypes and P<0.01 for difference between AA and aa). Furthermore, this polymorphism tends to show an enhanced response to an HMG-CoA reductase inhibitor in terms of the cholesterol-lowering effect. In 168 patients with T2DM who took 20mg simvastatin, the VLDL-C lowering effect by simvastatin in subjects with the AA homozygotes was significantly lower than in those with the Aa heterozygotes and aa homozygotes (the reduction in serum VLDL-C levels; 37.03+/-5.67 versus 28.97+/-4.96, P<0.01; 34.62+/-5.87 versus 28.97+/-4.96, P<0.05). These results suggest that the HMGCR gene may serve as a modifier gene for hypercholesterolemia in Chinese diabetic patients.  相似文献   

20.
The purpose of this study was to determine the factors contributing to the ability of exercise to enhance insulin-stimulated glucose disposal. Sixteen insulin-resistant nondiabetic and seven Type 2 diabetic subjects underwent two hyperinsulinemic (40 mU x m-2 x min-1) clamps, once without and once with concomitant exercise at 70% peak O2 consumption. Exercise was begun at the start of insulin infusion and was performed for 30 min. Biopsies of the vastus lateralis were performed before and after 30 min of insulin infusion (immediately after cessation of exercise). Exercise synergistically increased insulin-stimulated glucose disposal in nondiabetic [from 4.6 +/- 0.4 to 9.5 +/- 0.8 mg x kg fat-free mass (FFM)-1x min-1] and diabetic subjects (from 4.3 +/- 1.0 to 7.9 +/- 0.7 mg. kg FFM-1x min-1) subjects. The rate of glucose disposal also was significantly greater in each group after cessation of exercise. Exercise enhanced insulin-stimulated increases in glycogen synthase fractional velocity in control (from 0.07 +/- 0.02 to 0.22 +/- 0.05, P < 0.05) and diabetic (from 0.08 +/- 0.03 to 0.15 +/- 0.03, P < 0.01) subjects. Exercise also enhanced insulin-stimulated glucose storage (glycogen synthesis) in nondiabetic (2.9 +/- 0.9 vs. 4.9 +/- 1.1 mg x kg FFM-1x min-1) and diabetic (1.7 +/- 0.5 vs. 4.2 +/- 0.8 mg x kg FFM-1. min-1) subjects. Increased glucose storage accounted for the increase in whole body glucose disposal when exercise was performed during insulin stimulation in both groups; effects of exercise were correlated with enhancement of glucose disposal and glucose storage (r = 0.93, P < 0.001). Exercise synergistically enhanced insulin-stimulated insulin receptor substrate 1-associated phosphatidylinositol 3-kinase activity (P < 0.05) and Akt Ser473 phosphorylation (P < 0.05) in nondiabetic subjects but had little effect in diabetic subjects. The data indicate that exercise, performed in conjunction with insulin infusion, synergistically increases insulin-stimulated glucose disposal compared with insulin alone. In nondiabetic and diabetic subjects, increased glycogen synthase activation is likely to be involved, in part, in this effect. In nondiabetic, but not diabetic, subjects, exercise-induced enhancement of insulin stimulation of the phosphatidylinositol 3-kinase pathway is also likely to be involved in the exercise-induced synergistic enhancement of glucose disposal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号