首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In alfalfa (Medicago sativa L.), plastids are inherited biparentally. Patterns of plastid transmission vary according to the genotypes involved, but there is a strong bias in favor of male plastid transmission. Previous cytological studies on the male gametophyte of this species have not provided an adequate explanation for the differences in plastid transmission frequencies among genotypes. In the present study, we compared egg cells from genotypes classified as strong or weak plastid transmitters to determine whether plastid transmission strength is correlated with egg cell structure before fertilization. We found that plastids in the mature egg cells of the strong female (genotype 6–4) are significantly larger than in mature eggs of the weak female (genotype CUF-B), and that significantly more plastids are positioned in the apical portion of the mature egg cell of genotype 6–4 than in CUF-B. Immature eggs in the two genotypes show the same pattern as mature eggs with regard to plastid number and polarization. Since only the apical portion of the egg cell/zygote gives rise to the functional embryo, these results indicate that the potential input of female plastids, in terms of plastid size and number, may be an important factor in determining the inheritance patterns of these organelles in alfalfa.Support for this work by the United States Department of Agriculture under grant 88-37234-3876, the National Science Foundation under grant DCB-9103658, the Organized Research Fund of Northern Arizona University, and the Arizona Agricultural Experiment Station is gratefully acknowledged. We are indebted to Dr. Craig Caldwell, Northern Arizona University Computer Visualization Laboratory, for his expert help with the computer graphics.  相似文献   

2.
Summary Studies utilizing restriction analysis of plastid DNA, as well as those employing chlorophyll-deficient mutants, have shown a high frequency of paternal plastid transmission in alfalfa. Recent research has also shown that plastid inheritance patterns among alfalfa genotypes and are under genetic control. In a previous study we were unable to detect any correlations between qualitative, three-dimensional ultrastructure of generative cells and male plastid transmission strength in certain genotypes. In the present study we used serial ultrathin sectioning, computerized reconstruction and quantitation, and stereology to further analyze generative cells within mature pollen. Measurements included volumes and surface areas of cells, nuclei, and organelles, as well as organelle number and distribution. Three genotypes were investigated, one that is a strong transmitter of male plastids (genotype 301), one that is a weaker transmitter of male plastids (genotype 7W), and a third that is an even weaker male plastid transmitter (genotype MS-5). Our results show that genotype MS-5 has significantly fewer plastids/generative cell than either of the other genotypes, which may account for it being a relatively poor transmitter of male plastids. However, plastid number does not explain known differences in male plastid inheritance between genotypes 301 and 7W, since plastid number does not differ significantly between these two genotypes. Regarding the other features of generative cells measured in this study, no consistent correlations were found that might account for differences in male plastid inheritance patterns between genotypes. Plastid distribution is equal in each end of the spindle-shaped generative cell in all genotypes studied. Similar relative results were found with regard to mitochondria within generative cells; however, comparative genetic data are not available on mitochondrial transmission patterns in alfalfa genotypes.  相似文献   

3.
Summary Zonal pelargoniums exhibit biparental plastid inheritance. After G x W plastid crosses the progeny are a mixture of green, variegated and white embryos corresponding to a maternal, biparental or paternal inheritance of plastids, respectively. There are two patterns of segregation: type-I females have families in which the majority of embryos are green, variegated are of intermediate frequency and white are the least frequent. Type-II females have families in which green and white embryos are present at about the same frequency and variegated are the least common. The results of many selfs and crosses made within and between 8 type-I and 8 type-II plants led us to conclude that the type of female was determined by its genotype with respect to a pair of complementary genes. Plants giving rise to the type-II pattern contained one or two copies of the dominant alleles of both genes, whereas in the absence of either one or both dominant alleles the plants were type I. The genes were called Pr1/pr1 and Pr2/pr2, an adaptation of symbolism used previously. All 8 type IIs were double heterozygotes Pr1pr1, Pr2pr2, whereas we found 3 genotypes among the type Is, Pr1Pr1, pr2pr2; pr1pr1, Pr2Pr2 and pr1pr1, Pr2pr2. In unrelated experiments we found type IIs of which some were again double heterozygotes and others single heterozygotes Pr1pr1, Pr2Pr2 or Pr1Pr1, Pr2pr2. The model displaces an earlier model based on the proposed operation of a gametophytic lethal or incompatibility system.  相似文献   

4.
Kanamycin-resistant alfalfa has a point mutation in the 16S plastid rRNA   总被引:2,自引:0,他引:2  
Genes conferring resistance to kanamycin are frequently used to obtain transgenic plants as spontaneous resistance to kanamycin is not known to exist in higher plants. Nevertheless, mutations conferring kanamycin resistance have been identified in Chlamydomonas reinhardtii, raising the question as to why kanamycin-resistant mutants have not been found in higher plants. While attempting plastid transformation of alfalfa, we obtained non-transgenic but kanamycin-resistant somatic embryos following 2 months of culture in the presence of 50 mg l–1 kanamycin. Sequencing of the plastid DNA region corresponding to the decoding site of the 16S rRNA in ten independent resistant events revealed an A to C transversion at position 1357 of the 16S plastid rDNA, the same site at which an A to G conversion confers kanamycin resistance to C. reinhardtii by reducing the ability of the antibiotic to bind to its target site. All plants derived from the resistant embryos through additional cycles of somatic embryogenesis in the absence of kanamycin retained the mutant phenotype, suggesting that the mutation was homoplastomic. Resistant plants produced 85% less biomass than controls; their leaves were chlorotic during early development and over time slowly turned green. The absence of kanamycin- resistant mutants in higher plants might be explained by the requirement for a regeneration system capable of resulting in homoplastomic individuals, or it may be the result of the detrimental effect of the mutation on the phenotype.Communicated by C.F. Quiros  相似文献   

5.
Summary A high frequency of paternal plastid transmission occurred in progeny from crosses among normal green alfalfa plants. Plastid transmission was analyzed by hybridization of radiolabeled alfalfa plastid DNA (cpDNA) probes to Southern blots of restriction digests of the progeny DNA. Each probe revealed a specific polymorphism differentiating the parental plastid genomes. Of 212 progeny, 34 were heteroplastidic, with their cpDNAs ranging from predominantly paternal to predominantly maternal. Regrowth of shoots from heteroplasmic plants following removal of top growth revealed the persistence of mixed plastids in a given plant. However, different shoots within a green heteroplasmic plant exhibited paternal, maternal, or mixed cpDNAs. Evidence of maternal nuclear genomic influence on the frequency of paternal plastid transmission was observed in some reciprocal crosses. A few tetraploid F1 progeny were obtained from tetraploid (2n=4x=32) Medicago sativa ssp. sativa x diploid (2n=2x=16) M. sativa ssp. falcata crosses, and resulted from unreduced gametes. Here more than the maternal genome alone apparently functioned in controlling plastid transmission. Considering all crosses, only 5 of 212 progeny cpDNAs lacked evidence of a definitive paternal plastid fragment.Contribution No. 89-524-J from the Kansas Agricultural Experiment Station, Kansas State University, Manhattan  相似文献   

6.
F. L. Guo  S. Y. Hu 《Protoplasma》1995,186(3-4):201-207
Summary Based on the organelle differences between egg and sperm cells inPelargonium hortorum, the zygote, proembryo, and endosperm were examined under the transmission electron microscope. Plastids and mitochondria in the egg cell are significantly different from those of the sperm cell. Egg plastids are starch-containing and less electron dense. They appear circular, elliptical irregular elongate in sections. Sperm cell plastids are relatively electrondense, mostly cup-shaped or dumbbell and devoid of starch granules. Mitochondria of the egg cell are giant and mostly cup-shaped while sperm mitochondria are smaller and usually circular in section. Double fertilization is completed by 24 h after pollination and the pollen tube can be seen in the degenerated synergid. In the zygote, plastids and mitochondria from male and female gametes can be distinguished by their characteristic differences. Moreover, paternal and maternal organelles appear to be distributed at random in the zygote. Aside from the pollen tube and its released starch granules, there is no enucleated cytoplasmic body in the degenerated synergid. Two days after pollination, the zygote undergoes one transverse division to form a 2-celled proembryo which consists of one larger vacuolated basal cell and one smaller densely cytoplasmic apical cell. Paternal and maternal organelles can be detected in both cells of the proembryo and also in the endosperm at this stage. From these results, it can be concluded that plastids and mitochondria from both male and female gametes have been transmitted into the apical cell of the proembryo and most probably to the following generation.Abbreviations TEM transmission electron microscope - DAPI 4,6-diamidino-2-phenylindole - RFLP restriction fragment length polymorphism  相似文献   

7.
Summary Several large RNA molecules that migrated to electrophoretic positions ranging from 1.7–10 kb were observed in preparation of alfalfa (Medicago sativa) mitochondria. F1 progenies inherited the RNA's from both maternal and paternal parents (Fig. 1). Treatment of intact mitochondria with RNase A failed to remove the RNA's, indicating that they were contained within an RNase impermeable compartment. Further purification of mitochondria in linear sucrose gradients failed to separate the RNA's from mitochondria. Transmission electron microscopic examination of sucrose gradient purified mitochondria revealed that mitochondria were free of contamination by virus-like particles, indicating that the RNA's were contained within the mitochondrion. Biparental inheritance of large mitochondrial RNA's in alfalfa provides evidence that mitochondria are inherited biparentally in this species.  相似文献   

8.
9.
The microtubular cytoskeleton has been studied during development of the zygote, proembryo and free-nuclear endosperm inA. thaliana using immunofluorescence localization of tubulin in enzymatically isolated material. Abundant micro tubules (MTs) are found throughout proembryogenesis. Microtubules in the coenocytic endosperm are mainly internal. By contrast, there is a re-orientation of MTs to a transverse cortical distribution during zygote development, predominantly in a subapical band which accompanies a phase of apical extension. The presence of these cortical arrays coincides with the elongation of the zygote. Cortical arrays also accompany elongation of the cylindrical suspensor. Extensive networks of MTs ramify throughout the cytoplasm of cells in the proembryo proper. Perinuclear arrays are detected in a number of cell types and MTs contribute to typical mitotic configurations during nuclear divisions. Preprophase bands of MTs are absent throughout megasporogenesis and embryo-sac development and do not occur in endosperm cell divisions. We have observed MTs throughout the first division cycle of the zygote. By placing the observed stages in a most probable sequence, we have identified this cell cycle as the point during embryogenesis at which a preprophase band is reinstated as a regular feature of cell division. Preprophase bands were observed to predict planes of cytokinesis in cell divisions up to the octant stage.Abbreviations DIC differential interference contrast optics - MT microtubule - PPB preprophase band of microtubule We thank Ms. Margaret Travers for her helpful English translation of Yakovlev and Alimova (1976) and Mr. James Whitehead for preparation of Fig. 11. M.C.W. was supported by an Australian Postgraduate Research Award.  相似文献   

10.
Ji X  Zhang Q  Liu Y  Sodmergen 《Protoplasma》2004,224(3-4):211-216
Summary. Epifluorescence microscopy of mature pollen grains of Turnera ulmifolia and Zantedeschia aethiopica stained with 4,6-diamidino-2-phenylindole demonstrated the presence of fluorescent cytoplasmic DNA aggregates in the male reproductive cells of both species. Double staining of the cells with 4,6-diamidino-2-phenylindole and 3,3-dihexyloxacarbocyanine iodide in Technovit resin sections showed that the mitochondria of these cells did not correspond to the fluorescent cytoplasmic DNA aggregates. Electron microscopy studies revealed both plastids and mitochondria in the cells of these species. In addition, immunoelectron microscopy using an anti-DNA monoclonal antibody showed clear labeling of plastids but not mitochondria. These data provide cytological evidence for biparental plastid inheritance and maternal mitochondrial inheritance in these species.Correspondence and reprints: College of Life Sciences, Peking University, Beijing 100871, Peoples Republic of China.  相似文献   

11.
12.
Hong-Shi Yu  Scott D. Russell 《Planta》1994,193(1):115-122
The dynamics of plastid and mitochondrial populations in male reproductive cells of tobacco (Nicotiana tabacum L.) were examined during development using serial ultrathin sections and transmission electron microscopy to reconstruct 58 generative cells and 31 sperm cells at selected stages of maturation from generative cell formation through gametic fusion. The first haploid mitosis resulted in incomplete exclusion of plastids providing an average of 2.81 plastids and 82.7 mitochondria for each newly formed generative cell. During generative-cell maturation, plastid content decreased to an average of 0.48 plastids/generative cell at anthesis owing to autophagy of organelles. Plastids were present in low frequency within generative and sperm cells in the pollen tube and appeared to be transmitted, according to observations immediately prior to fertilization. This forms a cytological basis for genetic reports of occasional biparental plastid inheritance. In contrast, mitochondria were transmitted in larger numbers, and approximately 80 mitochondria per generative cell or sperm cell pair were retained throughout development. This provides a potentially stable source for the transmission of male mitochondrial DNA, if present at fertilization.Abbreviations GC generative cell - SC sperm cell We thank Dr. Frank J. Sonleitner, for helpful suggestions on the statistical calculations and Dr. Bing-Quan Huang for technical assistance in the preparation of embryo sacs during fertilization. This research was supported in part by U.S. Department of Agriculture grant 91-37304-6471. We gratefully acknowledge use of the Samuel Roberts Noble Electron Microscopy Laboratory of the University of Oklahoma.  相似文献   

13.
Non-antibiotic,efficient selection for alfalfa genetic engineering   总被引:2,自引:0,他引:2  
A selectable marker gene (SMG), usually conferring resistance to an antibiotic or herbicide, is generally introduced into the plant cells with the gene(s) for the trait of interest to allow only the cells that have integrated and express the foreign sequences to regenerate into a plant. The availability of several SMGs for each plant species is useful for both basic and applied research to combine several genes of interest in the same plant. A selection system based on gabaculine (3-amino-2,3-dihydrobenzoic acid) as the selective substance and the bacterial hemL gene [encoding a mutant for of the enzyme glutamate 1-semialdehyde aminotransferase (GSA-AT)] as the SMG was previously used for genetic transformation of tobacco. The hemL gene is a good candidate for a safe SMG, because GSA-AT is present in all plants and is likely involved in one metabolic step only, so that unintended effects of its overexpression in plants are not probable. In this work, we have compared this new selection system with the conventional, kanamycin-based system for alfalfa Agrobacterium-mediated transformation. The hemL and NptII genes were placed together into a T-DNA under the control of identical promoters and terminators. We show that the gabaculine-based system is more efficient than the conventional, kanamycin-based system. The inheritance of hemL was Mendelian, and no obvious phenotypic effect of its expression was observed.  相似文献   

14.
Summary An optimum 10-day exposure of petioles of alfalfa [Medicago sativa ssp.falcata (L.) Arcangeli] to 2,4-dichlorophenoxyacetic acid or 2,4,5-trichlorophenoxyacetic acid results in the semisynchronous production of somatic embryos starting about 4 days after transfer to a non-auxin-containing medium. The timing of cell division induction in the petiole explants was found to vary depending on the petiole tissue type. Cells adjacent to the vascular bundles divide first at about 48 h after exposure to auxin, closely followed by those of the inner parenchyma, whereas most of the cells of the subepidermal and epidermal layers start to divide later, between 72 and 120 h. Two different sources of callus were also evident. Cells adjacent to the vascular bundles and the inner parenchyma cells were the primary source of callus when a short, 2-day (non-embryo-producing) exposure to auxin was used. In contrast, the subepidermal and epidermal cells were the primary source of callus tissue when a longer, 10-day (embryo producing) exposure was used. It is concluded that the source of somatic embryos is primarily the daughter cells of the subepidermal or epidermal tissue or both.  相似文献   

15.
In addition to the flavonoids exuded by many legumes as signals to their rhizobial symbionts, alfalfa (Medicago sativa L.) releases two betaines, trigonelline and stachydrine, that induce nodulation (nod) genes inRhizobium meliloti. Experiments with14C-phenylalanine in the presence and absence of phenylalanine ammonia-lyase inhibitors show that exudation of flavonoidnod-gene inducers from alfalfa roots is linked closely to their concurrent synthesis. In contrast, flavonoid and betainenod-gene inducers are already present on mature seeds before they are released during germination. Alfalfa seeds and roots release structurally differentnod-gene-inducing signals in the absence of rhizobia. WhenR. meliloti is added to roots, medicarpin, a classical isoflavonoid phytoalexin normally elicited by pathogens, and anod-gene-inducing compound, formononetin-7-O-(6-O-malonylglycoside), are exuded. Carbon flow through the phenylpropanoid pathway and into the flavonoid pathway via chalcone synthase is controlled by complexcis-acting sequences andtrans-acting factors which are not completely understood. Even less information is available on molecular regulation of the two other biosynthetic pathways that produce trigonelline and stachydrine. Presumably the three separate pathways for producingnod-gene inducers in some way protect the plant against fluctuations in the production or transmission of the two classes of signals. Factors influencing transmission of alfalfanod-gene inducers through soil are poorly defined, but solubility differences between hydrophobic flavonoids and hydrophilic betaines suggest that the diffusional traits of these molecules are not similar. Knowledge derived from studies of how legumes regulate rhizobial symbionts with natural plant products offers a basis for defining new fundamental concepts of rhizosphere ecology.  相似文献   

16.
Fall dormancy results in decumbent, slow shoot growth of alfalfa (Medicago sativa L.) in autumn and reduced shoot regrowth rates after herbage removal in summer. Although fall dormancy is used to predict alfalfa adaptation, we possess a poor understanding of the biological mechanisms underlying fall dormancy. Our objective was to examine growth and carbohydrate metabolism of suspension cell cultures derived from contrasting alfalfa cultivars that genetically differed in fall dormancy. Suspension cells were grown in B5h media containing 2% sucrose. Cells derived from fall non-dormant plants accumulated sugars more rapidly after transfer to fresh media and to higher concentrations than did cells derived from fall dormant alfalfa cultivars. Dark respiration rates of cells derived from non-dormant plants were similar to those derived from fall dormant plants when growth was limited at low cell sugar concentrations. However, both cell growth and dark respiration rates increased in cells derived from non-dormant cultivars in response to greater cell sugar concentrations. High growth rates of cells derived from rapid growing, fall non-dormant alfalfa cultivars were associated with rapid sugar uptake and higher cell respiration rates when compared to cells derived from dormant alfalfa cultivars.  相似文献   

17.
18.
Extracellular proteins, released into the culture medium from alfalfa cells grown in embryogenic and non-embryogenic conditions, were 35S-methionine labelled at different days of culture. SDS-PAGE analysis showed significant differences between the patterns of extracellular proteins secreted into the medium devoid of 2,4-d, in which cells formed somatic embryos, or in presence of 2,4-d, in which undifferentiated cell proliferation took place. Some proteins, evident in 2,4-d-supplied cultures, disappeared when cells were subcultured in the embryogenic conditions. Western analysis with antibodies against the carrot extracellular proteins EP1 and EP2 showed the presence of homologous alfalfa proteins. In 2,4-d depleted alfalfa cells, an EP1-like protein disappeared and another one was reduced, while the presence of the EP2-like protein was, in the same conditions, strongly enhanced.Abbreviations 2,4-d 2,4-dichlorophenoxyacetic acid - EP extracellular proteins - ns-LTP non specific lipid transfer protein - SDS-PAGE Sodium dodecyl sulphate polyacrilamide gel electrophoresis  相似文献   

19.
Summary Various preconditioning treatments of alfalfa (Medicago sativa L.) somatic embryos to improve embryo quality and conversion were studied. Four different regenerating genotypes were compared. Embryogenic cultures were established in liquid culture. Globular embryos were collected and plated on an embryo development medium until they reached cotyledonary stage. They were then exposed to three treatments: a standard embryo development medium (control), media supplementation with 1 μM abscisic acid (ABA), 50 mM glutamine and 5% sucrose (T), additional supplementation with 50 μM ABA (TT), and additional supplementation followed by desiccation (TTD). Treatments affected embryo conversion, but not uniformly for all genotypes. Embryo conversion was increased (P<0.05) by pretreatment (T), while only one exhibited any response to additional ABA (T vs. TT). Desiccation decreased (P<0.05) conversion of pretreated embryos (TT vs. TTD) of all genotypes. The effect of treatments on plantlet weight was less pronounced and inconsistent across genotypes.  相似文献   

20.
Patterns of inheritance of the chloroplast genome in Passiflora were analyzed by examining the progeny from both interspecific and intraspecific crosses. Artificial crosses of field-collected material were performed in greenhouses at The University of Texas at Austin. DNA from fresh leaf material was analyzed by Southern blot techniques to identify the donor of the chloroplast genome. Initially, single progeny were analyzed for 11 crosses; two intraspecific crosses demonstrated maternal inheritance, whereas the nine interspecific crosses had paternal inheritance. Subsequently, the donor of the chloroplast genome was determined for multiple progeny in seven crosses. Passiflora oerstedii × P. retipetala showed strict paternal inheritance in all of 17 progeny. A series of five crosses and backcrosses between P. oerstedii and P. menispermifolia demonstrated strictly paternal inheritance. Finally, when 15 progeny were analyzed for the P. costaricensis × P. costaricensis cross, 12 of the 15 showed maternal inheritance, whereas the remaining three were biparental. Interestingly, all interspecific crosses had primarily paternal inheritance, whereas all intraspecific crosses had primarily maternal inheritance. The implications of heteroplasmy on phylogenetic analyses of chloroplast DNA are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号