首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A chlorosome is an antenna complex located on the cytoplasmic side of the inner membrane in green photosynthetic bacteria that contains tens of thousands of self-assembled bacteriochlorophylls (BChls). Green bacteria are known to incorporate various esterifying alcohols at the C-17 propionate position of BChls in the chlorosome. The effect of these functional substitutions on the biogenesis of the chlorosome has not yet been fully explored. In this report, we address this question by investigating various esterified bacteriochlorophyll c (BChl c) homologs in the thermophilic green non-sulfur bacterium Chloroflexus aurantiacus. Cultures were supplemented with exogenous long-chain alcohols at 52 °C (an optimal growth temperature) and 44 °C (a suboptimal growth temperature), and the morphology, optical properties and exciton transfer characteristics of chlorosomes were investigated. Our studies indicate that at 44 °C Cfl. aurantiacus synthesizes more carotenoids, incorporates more BChl c homologs with unsaturated and rigid polyisoprenoid esterifying alcohols and produces more heterogeneous BChl c homologs in chlorosomes. Substitution of phytol for stearyl alcohol of BChl c maintains similar morphology of the intact chlorosome and enhances energy transfer from the chlorosome to the membrane-bound photosynthetic apparatus. Different morphologies of the intact chlorosome versus in vitro BChl aggregates are suggested by small-angle neutron scattering. Additionally, phytol cultures and 44 °C cultures exhibit slow assembly of the chlorosome. These results suggest that the esterifying alcohol of BChl c contributes to long-range organization of BChls, and that interactions between BChls with other components are important to the assembly of the chlorosome. Possible mechanisms for how esterifying alcohols affect the biogenesis of the chlorosome are discussed.  相似文献   

2.
The green sulfur photosynthetic bacterium Chlorobaculum (Cba.) tepidum was grown in liquid cultures containing perfluoro-1-decanol, 1H,1H,2H,2H-heptadecafluoro-1-decanol [CF3(CF2)7(CH2)2OH] or 1H,1H-nonadecafluoro-1-decanol [CF3(CF2)8CH2OH], to introduce rigid and fluorophilic chains into the esterifying moiety of light-harvesting bacteriochlorophyll (BChl) c. Exogenous 1H,1H,2H,2H-heptadecafluoro-1-decanol was successfully attached to the 172-carboxy group of bacteriochlorophyllide (BChlide) c in vivo: the relative ratio of the unnatural BChl c esterified with this perfluoroalcohol over the total BChl c was 10.3%. Heat treatment of the liquid medium containing 1H,1H,2H,2H-heptadecafluoro-1-decanol with β-cyclodextrin before inoculation increased the relative ratio of the BChl c derivative esterified with this alcohol in the total BChl c in Cba. tepidum. In a while, 1H,1H-nonadecafluoro-1-decanol was not attached to BChlide c in Cba. tepidum, which was grown by its supplementation. These results suggest that the rigidity close to the hydroxy group of the esterifying alcohol is not suitable for the recognition by the BChl c synthase called BchK in Cba. tepidum. The unnatural BChl c esterified with 1H,1H,2H,2H-heptadecafluoro-1-decanol participated in BChl c self-aggregates in chlorosomes.  相似文献   

3.
Chlorobaculum (Cba) tepidum is a green sulfur bacterium that oxidizes sulfide, elemental sulfur, and thiosulfate for photosynthetic growth. As other anoxygenic green photosynthetic bacteria, Cba tepidum synthesizes bacteriochlorophylls for the assembly of a large light-harvesting antenna structure, the chlorosome. Chlorosomes are sac-like structures that are connected to the reaction centers in the cytoplasmic membrane through the BChl α-containing Fenna–Matthews–Olson protein. Most components of the photosynthetic machinery are known on a biophysical level, however, the structural integration of light harvesting with charge separation is still not fully understood. Despite over two decades of research, gaps in our understanding of cellular architecture exist. Here we present an in-depth analysis of the cellular architecture of the thermophilic photosynthetic green sulfur bacterium of Cba tepidum by cryo-electron tomography. We examined whole hydrated cells grown under different electron donor conditions. Our results reveal the distribution of chlorosomes in 3D in an unperturbed cell, connecting elements between chlorosomes and the cytoplasmic membrane and the distribution of reaction centers in the cytoplasmic membrane.  相似文献   

4.
Green sulfur bacteria (GSB) rely on the chlorosome, a light-harvesting apparatus comprised almost entirely of self-organizing arrays of bacteriochlorophyll (BChl) molecules, to harvest light energy and pass it to the reaction center. In Chlorobaculum tepidum, over 97% of the total BChl is made up of a mixture of four BChl c homologs in the chlorosome that differ in the number and identity of alkyl side chains attached to the chlorin ring. C. tepidum has been reported to vary the distribution of BChl c homologs with growth light intensity, with the highest degree of BChl c alkylation observed under low-light conditions. Here, we provide evidence that this functional response at the level of the chlorosome can be induced not only by light intensity, but also by temperature and a mutation that prevents phototrophic thiosulfate oxidation. Furthermore, we show that in conjunction with these functional adjustments, the fraction of cellular volume occupied by chlorosomes was altered in response to environmental conditions that perturb the balance between energy absorbed by the light-harvesting apparatus and energy utilized by downstream metabolic reactions.  相似文献   

5.
《BBA》2013,1827(10):1235-1244
Chlorosomes, the major antenna complexes in green sulphur bacteria, filamentous anoxygenic phototrophs, and phototrophic acidobacteria, are attached to the cytoplasmic side of the inner cell membrane and contain thousands of bacteriochlorophyll (BChl) molecules that harvest light and channel the energy to membrane-bound reaction centres. Chlorosomes from phototrophs representing three different phyla, Chloroflexus (Cfx.) aurantiacus, Chlorobaculum (Cba.) tepidum and the newly discovered “Candidatus (Ca.) Chloracidobacterium (Cab.) thermophilum” were analysed using PeakForce Tapping atomic force microscopy (PFT-AFM). Gentle PFT-AFM imaging in buffered solutions that maintained the chlorosomes in a near-native state revealed ellipsoids of variable size, with surface bumps and undulations that differ between individual chlorosomes. Cba. tepidum chlorosomes were the largest (133 × 57 × 36 nm; 141,000 nm3 volume), compared with chlorosomes from Cfx. aurantiacus (120 × 44 × 30 nm; 84,000 nm3) and Ca. Cab. thermophilum (99 × 40 × 31 nm; 65,000 nm3). Reflecting the contributions of thousands of pigment–pigment stacking interactions to the stability of these supramolecular assemblies, analysis by nanomechanical mapping shows that chlorosomes are highly stable and that their integrity is disrupted only by very strong forces of 1000–2000 pN. AFM topographs of Ca. Cab. thermophilum chlorosomes that had retained their attachment to the cytoplasmic membrane showed that this membrane dynamically changes shape and is composed of protrusions of up to 30 nm wide and 6 nm above the mica support, possibly representing different protein domains. Spectral imaging revealed significant heterogeneity in the fluorescence emission of individual chlorosomes, likely reflecting the variations in BChl c homolog composition and internal arrangements of the stacked BChls within each chlorosome.  相似文献   

6.
Bacteriochlorophyll (BChl) c in whole cells of Chlorobium tepidum grown at 46 °C changed into bacteriopheophytin (BPhe) c within 10 days after reaching full growth. When a small amount of C. tepidum cells in which BChl c had been completely pheophytinized were transferred to a new culture medium, normal growth was observed after a short lag phase, and the absorption spectrum of the growing cells showed the presence of a normal amount of BChl c. During the growth of C. tepidum in the new culture, the BChl c concentration was nearly proportional to the cell density measured by turbidity (OD640). These results indicate that C. tepidum can survive even when BChl c has been completely pheophytinized and that BChl c is newly synthesized in such cells when transferred to a new culture medium. In partly pheophytinized cells, upon excitation of BPhe c at 550 nm the fluorescence emission spectrum showed maxima at 775 and 810 nm, which correspond to emissions from BChl c and BChl a, respectively. This indicates energy transfer from BPhe c to BChl c and BChl a. In cells in which BChl c was completely pheophytinized, fluorescence measurements were indicative of direct energy transfer from BPhe c to baseplate BChl a. These findings suggest that when BChl c in C. tepidum cells is pheophytinized, the product (BPhe c) remains in the chlorosomes and continues to work as a light-harvesting pigment. Received: 2 October 1998 / Accepted: 22 April 1999  相似文献   

7.
Whole cells and isolated chlorosomes (antenna complex) of the green photosynthetic bacterium Chloroflexus aurantiacus have been studied by absorption spectroscopy (77 K and room temperature), fluorescence spectroscopy, circular dichroism, linear dichroism and electron spin resonance spectroscopy. The chlorosome absorption spectrum has maxima at 450 (contributed by carotenoids and bacteriochlorophyll (BChl) a Soret), 742 (BChl c) and 792 nm (BChl a) with intensity ratios of 20:25. The fluorescence emission spectrum has peaks at 748 and 802 nm when excitation is into either the 742 or 450 nm absorption bands, respectively. Whole cells have fluorescence peaks identical to those in chlorosomes with the addition of a major peak observed at 867 nm. The CD spectrum of isolated chlorosomes has an asymmetric-derivative-shaped CD centered at 739 nm suggestive of exciton interaction at least on the level of dimers. Linear dichroism of oriented chlorosomes shows preferential absorption at 742 nm of light polarized parallel to the long axis of the chlorosome. This implies that the transition dipoles are also oriented more or less parallel to the long axis of the chlorosome. Treatment with ferricyanide results in the appearance of a 2.3 G wide ESR spectrum at g 2.002. Whole cells grown under different light conditions exhibit different fluorescence behavior when absorption is normalized at 742 nm. Cells grown under low light conditions have higher fluorescence intensity at 748 nm and lower intensity at 802 nm than cells grown under high light conditions. These results indicate that the BChl c in chlorosomes is highly organized, and transfers energy from BChl c (742 nm) to a connector of baseplate BChl B792 (BChl a) presumably located in the chlorosome baseplate adjacent to the cytoplasmic membrane.  相似文献   

8.
We determined the concentrations of bacteriochlorophylls (BChl) in the light-harvesting antennae of Oscillochloris trichoides (of the family Oscillochloridaceae belonging to green filamentous mesophilic bacteria) cultivated either with gabaculine, an inhibitor of the C-5 pathway of BChl biosynthesis in a number of bacteria, or at various illumination intensities. We determined the BChl c: BChl a molar ratios in intact cells, in chlorosome-membrane complexes, and in isolated chlorosomes. We revealed that BChl c synthesis in Osc. trichoides was more gabaculine-sensitive than BChl a synthesis. Accordingly, an increase in gabaculine concentrations in the medium resulted in a decrease in the BChl c: BChl a ratio in the tested samples. We suggest that BChl synthesis in Osc. trichoides proceeds via the C-5 pathway, similar to representatives of other families of green bacteria (Chlorobium limicola and Chloroflexus aurantiacus). We demonstrated that the BChl c: BChl a ratio in the chlorosomes varied from 55: 1 to 110: 1, depending on light intensity. This ratio is, therefore, closer to that of Chlorobiaceae, and it significantly exceeds the BChl c: BChl a ratio in Chloroflexaceae.  相似文献   

9.
The gene named bciD, which encodes the enzyme involved in C7-formylation in bacteriochlorophyll e biosynthesis, was found and investigated by insertional inactivation in the brown-colored green sulfur bacterium Chlorobaculum limnaeum (previously called Chlorobium phaeobacteroides). The bciD mutant cells were green in color, and accumulated bacteriochlorophyll c homologs bearing the 7-methyl group, compared to C7-formylated BChl e homologs in the wild type. BChl-c homolog compositions in the mutant were further different from those in Chlorobaculum tepidum which originally produced BChl c: (31 S)-8-isobutyl-12-ethyl-BChl c was unusually predominant.  相似文献   

10.
Bacteriochlorophyll (BChl) c pigments in the aggregated state are responsible for efficient light harvesting in chlorosomes of the filamentous anoxygenic photosynthetic bacterium, Chloroflexus (Cfx.) aurantiacus. Absorption of light creates excited states in the BChl c aggregates. After subpicosecond intrachlorosomal energy transfer, redistribution and relaxation, the excitation is transferred to the BChl a complexes and further to reaction centers on the picosecond time scale. In this work, the femtosecond excited state dynamics within BChl c oligomers of isolated Cfx. aurantiacus chlorosomes was studied by double difference pump‐probe spectroscopy at room temperature. Difference (Alight ? Adark) spectra corresponding to excitation at 725 nm (blue side of the BChl c absorption band) were compared with those corresponding to excitation at 750 nm (red side of the BChl c absorption band). A very fast (time constant 70 ± 10 fs) rise kinetic component was found in the stimulated emission (SE) upon excitation at 725 nm. This component was absent at 750‐nm excitation. These data were explained by the dynamical red shift of the SE due to excited state relaxation. The nature and mechanisms of the ultrafast excited state dynamics in chlorosomal BChl c aggregates are discussed.  相似文献   

11.
The mutant lacking enzymes BciA and BchU, that catalyzed reduction of the C8-vinyl group and methylation at the C20 position of bacteriochlorophyll (BChl) c, respectively, in the green sulfur bacterium Chlorobaculum tepidum, were constructed. This mutant accumulated C8-vinyl-BChl d derivatives, and a molecular structure of the major pigment was fully characterized by its NMR, mass, and circular dichroism spectra, as well as by chemical modification: (31 R)-8-vinyl-12-ethyl-(R[V,E])BChl d was confirmed as a new BChl d species in the cells. In vitro chlorosome-like self-aggregates of this pigment were prepared in an aqueous micellar solution, and formed more rapidly than those of (31 R)-8,12-diethyl-(R[E,E])BChl d isolated from the green sulfur bacterium Chlorobaculum parvum NCIB8327d synthesizing BChl d homologs. Their red-shifted Q y absorption bands were almost the same at 761 nm, and the value was larger than those of in vitro self-aggregates of R[E,E]BChl c (737 nm) and R[V,E]BChl c (726 nm), while the monomeric states of the former gave Q y bands at shorter wavelengths than those of the latter. Red shifts by self-aggregation of the two BChl d species were estimated to be 110 nm and much larger than those by BChls c (75 nm for [E,E] and 64 nm for [V,E]).  相似文献   

12.
Chlorosomes are the light-harvesting organelles in photosynthetic green bacteria and typically contain large amounts of bacteriochlorophyll (BChl) c in addition to smaller amounts of BChl a, carotenoids, and several protein species. We have isolated vestigial chlorosomes, denoted carotenosomes, from a BChl c-less, bchK mutant of the green sulfur bacterium Chlorobium tepidum. The physical shape of the carotenosomes (86 ± 17 nm × 66 ± 13 nm × 4.3 ± 0.8 nm on average) was reminiscent of a flattened chlorosome. The carotenosomes contained carotenoids, BChl a, and the proteins CsmA and CsmD in ratios to each other comparable to their ratios in wild-type chlorosomes, but all other chlorosome proteins normally found in wild-type chlorosomes were found only in trace amounts or were not detected. Similar to wild-type chlorosomes, the CsmA protein in the carotenosomes formed oligomers at least up to homo-octamers as shown by chemical cross-linking and immunoblotting. The absorption spectrum of BChl a in the carotenosomes was also indistinguishable from that in wild-type chlorosomes. Energy transfer from the bulk carotenoids to BChl a in carotenosomes was poor. The results indicate that the carotenosomes have an intact baseplate made of remarkably stable oligomeric CsmA–BChl a complexes but are flattened in structure due to the absence of BChl c. Carotenosomes thus provide a valuable material for studying the biogenesis, structure, and function of the photosynthetic antennae in green bacteria.  相似文献   

13.
Green photosynthetic bacteria adjust the structure and functionality of the chlorosome—the light-absorbing antenna complex—in response to environmental stress factors. The chlorosome is a natural self-assembled aggregate of bacteriochlorophyll (BChl) molecules. In this study, we report the regulation of the biogenesis of the Chlorobaculum tepidum chlorosome by carbon assimilation in conjunction with temperature changes. Our studies indicate that the carbon source and thermal stress culture of C. tepidum grows slower and incorporates fewer BChl c in the chlorosome. Compared with the chlorosome from other cultural conditions we investigated, the chlorosome from the carbon source and thermal stress culture displays (a) smaller cross-sectional radius and overall size, (b) simplified BChl c homologs with smaller side chains, (c) blue-shifted Qy absorption maxima, and (d) a sigmoid-shaped circular dichroism spectra. Using a theoretical model, we analyze how the observed spectral modifications can be associated with structural changes of BChl aggregates inside the chlorosome. Our report suggests a mechanism of metabolic regulation for chlorosome biogenesis.  相似文献   

14.
We have used measurements of fluorescence and circular dichroism (CD) to compare chlorosome-membrane preparations derived from the green filamentous bacterium Chloroflexus aurantiacus grown in continuous culture at two different light-intensities. The cells grown under low light (6 mol m–2 s–1) had a higher ratio of bacteriochlorophyll (BChl) c to BChl a than cells grown at a tenfold higher light intensity; the high-light-grown cells had much more carotenoid per bacteriochlorophyll.The anisotropy of the QY band of BChl c was calculated from steady-state fluorescence excitation and emission spectra with polarized light. The results showed that the BChl c in the chlorosomes derived from cells grown under high light has a higher structural order than BChl c in chlorosomes from low-light-grown cells. In the central part of the BChl c fluorescence emission band, the average angles between the transition dipole moments for BChl c molecules and the symmetry axis of the chlorosome rod element were estimated as 25° and 17° in chlorosomes obtained from the low- and high-light-grown cells, respectively.This difference in BChl organization was confirmed by the decay associated spectra of the two samples obtained using picosecond single-photon-counting experiments and global analysis of the fluorescence decays. The shortest decay component obtained, which probably represents energy-transfer from the chlorosome bacteriochlorophylls to the BChl a in the baseplate, was 15 ps in the chlorosomes from high-light-grown cell but only 7 ps in the preparation from low-light grown cells. The CD spectra of the two preparations were very different: chlorosomes from low-light-grown cells had a type II spectrum, while those from high-light-grown cells was of type I (Griebenow et al. (1991) Biochim Biophys Acta 1058: 194–202). The different shapes of the CD spectra confirm the existence of a qualitatively different organization of the BChl c in the two types of chlorosome.Abbreviations BChl bacteriochlorophyll - CD circular dichroism - DAS decay associated spectrum - PMSF phenylmethylsulfonyl fluoride  相似文献   

15.
Positive and negative bands in previously measured circular dichroism (CD) spectra of Chlorobium limicola chlorosomes appeared to be sign-reversed relative to those of Chloroflexus aurantiacus chlorosomes in the 740–750 nm spectral region where bacteriochlorophyll (BChl) c absorbs maximally. It was not clear, however, whether this difference was intrinsic to the chlorosomes or was due to differences in the procedures used to prepare them. We therefore repeated the CD measurements using chlorosomes isolated from both Cb. limicola f. thiosulfatophilum and Cf. aurantiacus using the method of Gerola and Olson (1986, Biochim. Biophys. Acta 848: 69–76). Contrary to the earlier results, both types of chlorosomes had very similar CD spectra, suggesting that both have similar arrangements of BChl c molecules. The previously reported difference between the CD spectra of Chlorobium and Chloroflexus chlorosomes is due to the instability of Chlorobium chlorosomes, which can undergo a hypsochromic shift in their near infrared absorption maximum accompanied by an apparent inversion in their near infrared CD spectrum during isolation. Treating isolated chlorosomes with the strong ionic detergent sodium dodecylsulfate, which removes BChl a, does not alter the arrangement of BChl c molecules in either Chloroflexus or Chlorobium chlorosomes, as indicated by the lack of an effect on their CD spectra.Abbreviations BChl bacteriochlorophyll - Cb. Chlorobium - CD circular dichroism - Cf. Chloroflexus - NIR near infrared  相似文献   

16.
Candidatus Chlorothrix halophila” is a recently described halophilic, filamentous, anoxygenic photoautotroph (J. A. Klappenbach and B. K. Pierson, Arch. Microbiol. 181:17-25, 2004) that was enriched from the hypersaline microbial mats at Guerrero Negro, Mexico. Analysis of the photosynthetic apparatus by negative staining, spectroscopy, and sodium dodecyl sulfate-polyacrylamide gel electrophoresis indicated that the photosynthetic apparatus in this organism has similarities to the photosynthetic apparatus in both the Chloroflexi and Chlorobi phyla of green photosynthetic bacteria. The chlorosomes were found to be ellipsoidal and of various sizes, characteristics that are comparable to characteristics of chlorosomes in other species of green photosynthetic bacteria. The absorption spectrum of whole cells was dominated by the chlorosome bacteriochlorophyll c (BChl c) peak at 759 nm, with fluorescence emission at 760 nm. A second fluorescence emission band was observed at 870 nm and was tentatively attributed to a membrane-bound antenna complex. Fluorescence emission spectra obtained at 77 K revealed another complex that fluoresced at 820 nm, which probably resulted from the chlorosome baseplate complex. All of these results suggest that BChl c is present in the chlorosomes of “Ca. Chlorothrix halophila,” that BChl a is present in the baseplate, and that there is a membrane-bound antenna complex. Analysis of the proteins in the chlorosomes revealed an ~6-kDa band, which was found to be related to the BChl c binding protein CsmA found in other green bacteria. Overall, the absorbance and fluorescence spectra of “Ca. Chlorothrix halophila” revealed an interesting mixture of photosynthetic characteristics that seemed to have properties similar to properties of both phyla of green bacteria when they were compared to the photosynthetic characteristics of Chlorobium tepidum and Chloroflexus aurantiacus.  相似文献   

17.
Chemical oxidation of the chlorosomes from Chloroflexus aurantiacus and Chlorobium tepidum green bacteria produces bacteriochlorophyll radicals, which are characterized by an anomalously narrow EPR signal compared to in vitro monomeric BChl c .+ [Van Noort PI, Zhu Y, LoBrutto R and Blankenship RE (1997) Biophys J 72: 316–325]. We have performed oxidant concentration and temperature-dependent X-band EPR measurements in order to elucidate the line narrowing mechanism. The linewidth decreases as the oxidant concentration is increased only for Chloroflexus indicating that for this system Heisenberg spin exchange is at least partially responsible for the EPR spectra narrowing. For both species the linewidth is decreasing on increasing the temperature. This indicates that temperature-activated electron transfer is the main narrowing mechanism for BChl radicals in chlorosomes. The extent of the electron transfer process among different BChl molecules has been evaluated and a comparison between the two species representative of the two green bacteria families has been made. In parallel, high frequency EPR experiments have been performed on the oxidized chlorosomes of Chloroflexus and Chlorobium at 110 and 330 GHz in the full temperature range investigated at X-band. The g-tensor components obtained from the simulation of the 330 GHz EPR spectrum from Chlorobium show the same anisotropy as those of monomeric Chl a .+ [Bratt PJ, Poluektov OG, Thurnauer MC, Krzystek J, Brunel LC, Schrier J, Hsiao YW, Zerner M and Angerhofer A (2000) J Phys Chem B 104: 6973–6977]. The spectrum of Chloroflexus has a nearly axial g-tensor with reduced anisotropy compared to Chlorobium and monomeric Chl a in vitro. g-tensor values and temperature dependence of the linewidth have been discussed in terms of the differences in the local structure of the chlorosomes of the two families.This revised version was published online in October 2005 with corrections to the Cover Date.  相似文献   

18.
Chlorosomes of photosynthetic green bacteria are unique molecular assemblies providing efficient light harvesting followed by multi-step transfer of excitation energy to reaction centers. In each chlorosome, 104–105 bacteriochlorophyll (BChl) c/d/e molecules are organized by self-assembly into high-ordered aggregates. We studied the early-time dynamics of the excitation energy flow and energy conversion in chlorosomes isolated from Chloroflexus (Cfx.) aurantiacus bacteria by pump-probe spectroscopy with 30-fs temporal resolution at room temperature. Both the S2 state of carotenoids (Cars) and the Soret states of BChl c were excited at ~490 nm, and absorption changes were probed at 400–900 nm. A global analysis of spectroscopy data revealed that the excitation energy transfer (EET) from Cars to BChl c aggregates occurred within ~100 fs, and the Soret → Q energy conversion in BChl c occurred faster within ~40 fs. This conclusion was confirmed by a detailed comparison of the early exciton dynamics in chlorosomes with different content of Cars. These processes are accompanied by excitonic and vibrational relaxation within 100–270 fs. The well-known EET from BChl c to the baseplate BChl a proceeded on a ps time-scale. We showed that the S1 state of Cars does not participate in EET. We discussed the possible presence (or absence) of an intermediate state that might mediates the Soret → Qy internal conversion in chlorosomal BChl c. We discussed a possible relationship between the observed exciton dynamics and the structural heterogeneity of chlorosomes.  相似文献   

19.
Green photosynthetic bacteria adjust the structure and functionality of the chlorosome—the light-absorbing antenna complex—in response to environmental stress factors. The chlorosome is a natural self-assembled aggregate of bacteriochlorophyll (BChl) molecules. In this study, we report the regulation of the biogenesis of the Chlorobaculum tepidum chlorosome by carbon assimilation in conjunction with temperature changes. Our studies indicate that the carbon source and thermal stress culture of C. tepidum grows slower and incorporates fewer BChl c in the chlorosome. Compared with the chlorosome from other cultural conditions we investigated, the chlorosome from the carbon source and thermal stress culture displays (a) smaller cross-sectional radius and overall size, (b) simplified BChl c homologs with smaller side chains, (c) blue-shifted Qy absorption maxima, and (d) a sigmoid-shaped circular dichroism spectra. Using a theoretical model, we analyze how the observed spectral modifications can be associated with structural changes of BChl aggregates inside the chlorosome. Our report suggests a mechanism of metabolic regulation for chlorosome biogenesis.  相似文献   

20.
Green sulfur photosynthetic bacteria optimize their antennas, chlorosomes, especially for harvesting weak light by organizing bacteriochlorophyll (BChl) assembly without any support of proteins. As it is difficult to crystallize the organelles, a high-resolution structure of the light-harvesting devices in the chlorosomes has not been clarified. We have determined the structure of BChl c assembly in the intact chlorosomes from Chlorobium limicola on the basis of 13C dipolar spin-diffusion solid-state NMR analysis of uniformly 13C-labeled chlorosomes. About 90 intermolecular C–C distances were obtained by the simultaneous assignment of distance correlations and the structure optimization preceded by the polarization-transfer matrix analysis. An atomic structure was obtained, using these distance constraints. The determined structure of the chlorosomal BChl c assembly is built with the parallel layers of piggyback-dimers. This supramolecular structure would provide insights into the mechanism of weak-light capturing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号