首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Two highly similar plastidic NADP-malic enzymes (NADP-MEs) are found in the C(4) species maize (Zea mays); one exclusively expressed in the bundle sheath cells (BSCs) and involved in C(4) photosynthesis (ZmC(4)-NADP-ME); and the other (ZmnonC(4)-NADP-ME) with housekeeping roles. In the present work, these two NADP-MEs were analyzed regarding their redox-dependent activity modulation. The results clearly show that ZmC(4)-NADP-ME is the only one modulated by redox status, and that its oxidation produces a conformational change limiting the catalytic process, although inducing higher affinity binding of the substrates. The reversal of ZmC(4)-NADP-ME oxidation by chemical reductants suggests the presence of thiol groups able to form disulfide bonds. In order to identify the cysteine residues involved in the activity modulation, site-directed mutagenesis and MALDI-TOF (matrix-assisted laser desorption ionization-time of flight) analysis of ZmC(4)-NADP-ME were performed. The results obtained allowed the identification of Cys192, Cys246 (not conserved in ZmnonC(4)-NADP-ME), Cys270 and Cys410 as directly or indirectly implicated in ZmC(4)-NADP-ME redox modulation. These residues may be involved in forming disulfide bridge(s) or in the modulation of the oxidation of critical residues. Overall, the results indicate that, besides having acquired a high level of expression and localization in BSCs, ZmC(4)-NADP-ME displays a particular redox modulation, which may be required to accomplish the C(4) photosynthetic metabolism. Therefore, the present work could provide new insights into the regulatory mechanisms potentially involved in the recruitment of genes for the C(4) pathway during evolution.  相似文献   

3.
In plants, the NADP malic enzymes (NADP-MEs) are encoded by small gene families. These NADP-ME gene families are relatively well described in C4 plants but not well studied in C3 plants. In this study, we investigated the NADP-ME gene family in a model C3 monocot plant (rice, Oryza sativa) based on its recently released genomic DNA sequence. We found that the rice NADP-ME family is composed of four members, one plastidic NADP-ME and three cytosolic versions. Although the rice NADP-ME genes identified share a high degree of similarity with one another, one cytosolic NADP-ME (OscytME3) contains several unique amino acid substitutions within highly conserved amino acid regions. Phylogenetic analysis showed that OscytME3 might be derived from a different evolutionary branch than the other three rice genes. Expression analysis of the four rice NADP-ME genes indicated that each had a different tissue-specific and developmental profile, although all four responded to stress stimuli.  相似文献   

4.
The Arabidopsis (Arabidopsis thaliana) genome contains four genes encoding putative NADP-malic enzymes (MEs; AtNADP-ME1-ME4). NADP-ME4 is localized to plastids, whereas the other three isoforms do not possess any predicted organellar targeting sequence and are therefore expected to be cytosolic. The plant NADP-MEs can be classified into four groups: groups I and II comprising cytosolic and plastidic isoforms from dicots, respectively; group III containing isoforms from monocots; and group IV composed of both monocots and dicots, including AtNADP-ME1. AtNADP-MEs contained all conserved motifs common to plant NADP-MEs and the recombinant isozymes showed different kinetic and structural properties. NADP-ME2 exhibits the highest specific activity, while NADP-ME3 and NADP-ME4 present the highest catalytic efficiency for NADP and malate, respectively. NADP-ME4 exists in equilibrium of active dimers and tetramers, while the cytosolic counterparts are present as hexamers or octamers. Characterization of T-DNA insertion mutant and promoter activity studies indicates that NADP-ME2 is responsible for the major part of NADP-ME activity in mature tissues of Arabidopsis. Whereas NADP-ME2 and -ME4 are constitutively expressed, the expression of NADP-ME1 and NADP-ME3 is restricted by both developmental and cell-specific signals. These isoforms may play specific roles at particular developmental stages of the plant rather than being involved in primary metabolism.  相似文献   

5.
NADP-malic enzyme (NADP-ME, EC 1.1.1.40), a key enzyme in C4 photosynthesis, provides CO2 to the bundle-sheath chloroplasts, where it is fixed by ribulose-1,5-bisphosphate carboxylase/oxygenase. We characterized the isoform pattern of NADP-ME in different photosynthetic species of Flaveria (C3, C3-C4 intermediate, C4-like, C4) based on sucrose density gradient centrifugation and isoelectric focusing of the native protein, western-blot analysis of the denatured protein, and in situ immunolocalization with antibody against the 62-kD C4 isoform of maize. A 72-kD isoform, present to varying degrees in all species examined, is predominant in leaves of C3 Flaveria spp. and is also present in stem and root tissue. By immunolabeling, NADP-ME was found to be mostly localized in the upper palisade mesophyll chloroplasts of C3 photosynthetic tissue. Two other isoforms of the enzyme, with molecular masses of 62 and 64 kD, occur in leaves of certain intermediates having C4 cycle activity. The 62-kD isoform, which is the predominant highly active form in the C4 species, is localized in bundle-sheath chloroplasts. Among Flaveria spp. there is a 72-kD constitutive form, a 64-kD form that may have appeared during evolution of C4 metabolism, and a 62-kD form that is necessary for the complete functioning of C4 photosynthesis.  相似文献   

6.
7.
Among the different isoforms of NADP-malic enzyme (NADP-ME) involved in a wide range of metabolic pathways in plants, the NADP-ME that participates in C4-photosynthesis is the most studied. In the present work, the expression in E. coli of a cDNA encoding for a maize non-photosynthetic NADP-ME is presented. The recombinant NADP-ME thus obtained presents kinetic and structural properties different from the enzyme previously purified from etiolated leaves and roots. Moreover, the recombinant non-photosynthetic NADP-ME presents very high intrinsic NADP-ME activity, which is unexpected for a non-C4 NADP-ME. Using antibodies against this recombinant enzyme, an immunoreactive band of 66 kDa is detected in different maize tissues indicating that the 66 kDa-NADP-ME is in fact a protein expressed invivo. The recombinant NADP-ME assembles as a dimer, although the results obtained indicate that a higher molecular mass oligomeric state of the enzyme is found in maize roots in vivo. In this way, maize presents at least three NADP-ME isoforms: a 72 kDa constitutive form (previously characterized); the novel non-photosynthetic 66 kDa isoform characterized in this work (which is the product of the ZmChlMe2gene and the likely precursor to the evolution of the photosynthetic C4 NADP-ME) and the 62 kDa isoform (implicated in C4 photosynthesis). The contribution of the present work anticipates further studies concerning the equilibrium between the oligomeric states of the NADP-ME isoforms and the evolution towards the C4 isoenzyme in maize.  相似文献   

8.
The copper membrane monooxygenases (CuMMOs) are an important group of enzymes in environmental science and biotechnology. Areas of relevance include the development of green chemistry for sustainable exploitation of methane (CH4) reserves, remediation of chlorinated hydrocarbon contamination and monitoring human impact in the biogeochemical cycles of CH4 and nitrogen. Challenges for all these applications are that many aspects of the ecology, physiology and structure–function relationships in the CuMMOs are inadequately understood. Here, we describe genetic and physiological characterization of a novel member of the CuMMO family that has an unusual physiological substrate range (C2–C4 alkanes) and a distinctive bacterial host (Mycobacterium). The Mycobacterial CuMMO genes (designated hmoCAB) were amenable to heterologous expression in M. smegmatis—this is the first example of recombinant expression of a complete and highly active CuMMO enzyme. The apparent specific activity of recombinant cells containing hmoCAB ranged from 2 to 3 nmol min–1 per mg protein on ethane, propane and butane as substrates, and the recombinants could also attack ethene, cis-dichloroethene and 1,2-dichloroethane. No detectable activity of recombinants or wild-type strains was seen with methane. The specific inhibitor allylthiourea strongly inhibited growth of wild-type cells on C2–C4 alkanes, and omission of copper from the medium had a similar effect, confirming the physiological role of the CuMMO for growth on alkanes. The hydrocarbon monooxygenase provides a new model for studying this important enzyme family, and the recombinant expression system will enable biochemical and molecular biological experiments (for example, site-directed mutagenesis) that were previously not possible.  相似文献   

9.
10.
NADP-malic enzyme (NADP-ME) is a widely distributed enzyme that catalyzes the oxidative decarboxylation of L-malate. Photosynthetic NADP-MEs are found in C4 bundle sheath chloroplasts and in the cytosol of CAM plants, while non-photosynthetic NADP-MEs are either plastidic or cytosolic in various plants. We propose a classification of plant NADP-MEs based on their physiological function and localization and we describe recent advances in the characterization of each isoform. Based on the alignment of amino acid sequences of plant NADP-MEs, we identify putative binding sites for the substrates and analyze the phylogenetic origin of each isoform, revealing several features of the molecular evolution of this ubiquitous enzyme.  相似文献   

11.
Takeuchi Y  Akagi H  Kamasawa N  Osumi M  Honda H 《Planta》2000,211(2):265-274
 NADP-dependent malic enzyme (NADP-ME) is a major decarboxylating enzyme in NADP-ME-type C4 species such as maize and Flaveria. In this study, chloroplastic NADP-ME was transferred to rice (Oryza sativa L.) using a chimeric gene composed of maize NADP-ME cDNA under the control of rice light-harvesting chlorophyll-a/b-binding protein (Cab) promoter. There was a 20- to 70-fold increase in the NADP-ME activity in leaves of transgenic rice compared to that in wild-type rice plants. Immunocytochemical studies by electron microscopy showed that maize NADP-ME was mostly localized in chloroplasts in transgenic rice plants, and that the chloroplasts were agranal without thylakoid stacking. Chlorophyll content and photosystem II activity were inversely correlated with the level of NADP-ME activity. These results suggest that aberrant chloroplasts in transgenic plants may be caused by excessive NADP-ME activity. Based on these results and the known fact that only bundle sheath cells of NADP-ME species, among all three C4 subgroups, have agranal chloroplasts, we postulate that a high level of chloroplastic NADP-ME activity could strongly affect the development of chloroplasts. Received: 27 January 1999 / Accepted: 20 January 2000  相似文献   

12.
C4 photosynthesis is a complex trait that has a high degree of natural variation, involving anatomical and biochemical changes relative to the ancestral C3 state. It has evolved at least 66 times across a variety of lineages and the evolutionary route from C3 to C4 is likely conserved but not necessarily genetically identical. As such, a variety of C4 species are needed to identify what is fundamental to the C4 evolutionary process in a global context. In order to identify the genetic components of C4 form and function, a number of species are used as genetic models. These include Zea mays (maize), Sorghum bicolor (sorghum), Setaria viridis (Setaria), Flaveria bidentis, and Cleome gynandra. Each of these species has different benefits and challenges associated with its use as a model organism. Here, we propose that RNA profiling of a large sampling of C4, C3–C4, and C3 species, from as many lineages as possible, will allow identification of candidate genes necessary and sufficient to confer C4 anatomy and/or biochemistry. Furthermore, C4 model species will play a critical role in the functional characterization of these candidate genes and identification of their regulatory elements, by providing a platform for transformation and through the use of gene expression profiles in mesophyll and bundle sheath cells and along the leaf developmental gradient. Efforts should be made to sequence the genomes of F. bidentis and C. gynandra and to develop congeneric C3 species as genetic models for comparative studies. In combination, such resources would facilitate discovery of common and unique C4 regulatory mechanisms across genera.  相似文献   

13.
Primary structure of the maize NADP-dependent malic enzyme   总被引:15,自引:0,他引:15  
Chloroplast-localized NADP-dependent malic enzyme (EC 1.1.1.40) (NADP-ME) provides a key activity for the carbon 4 fixation pathway. In maize, nuclear encoded NADP-ME is synthesized in the cytoplasm as a precursor with a transit peptide that is removed upon transport into the chloroplast stroma. We present here the complete nucleotide sequence for a 2184-base pair full-length maize NADP-ME cDNA. The predicted precursor protein is 636 amino acids long with a Mr of 69,800. There is a strong codon bias found in the amino-terminal portion of NADP-ME that is present in genes for the other enzymes of the C-4 photosynthetic pathway. The NADP-ME transit peptide has general features common to other known chloroplast stroma transit peptides. Comparison of mature maize NADP-ME to the amino acid sequences of known malic enzymes shows two conserved dinucleotide-binding sites. There is a third highly conserved region of unknown function. On the basis of amino acid sequence similarity, the maize chloroplastic enzyme is more closely related to eukaryotic cytosolic isoforms of malic enzyme than to prokaryotic isoforms. We discuss the functional and evolutionary relationship between the chloroplastic and cytosolic forms of NADP-ME.  相似文献   

14.
Compared to the large number of studies focused on the factors controlling C3 photosynthesis efficiency, there are relatively fewer studies of the factors controlling photosynthetic efficiency in C4 leaves. Here, we used a dynamic systems model of C4 photosynthesis based on maize (Zea mays) to identify features associated with high photosynthetic efficiency in NADP-malic enzyme (NADP-ME) type C4 photosynthesis. We found that two additional factors related to coordination between C4 shuttle metabolism and C3 metabolism are required for efficient C4 photosynthesis: (1) accumulating a high concentration of phosphoenolpyruvate through maintaining a large PGA concentration in the mesophyll cell chloroplast and (2) maintaining a suitable oxidized status in bundle sheath cell chloroplasts. These identified mechanisms are in line with the current cellular location of enzymes/proteins involved in the starch synthesis, the Calvin–Benson cycle and photosystem II of NADP-ME type C4 photosynthesis. These findings suggested potential strategies for improving C4 photosynthesis and engineering C4 rice.

High levels of PGA and PEP in mesophyll cell chloroplasts and a suitable oxidation state in bundle sheath cell chloroplasts are the requirements for efficient C4 photosynthesis.  相似文献   

15.
Hydrilla verticillata has a facultative single-cell system that changes from C3 to C4 photosynthesis. A NADP+-dependent malic enzyme (NADP-ME) provides a high [CO2] for Rubisco fixation in the C4 leaf chloroplasts. Of three NADP-ME genes identified, only hvme1 was up-regulated in the C4 leaf, during the light period, and it possessed a putative transit peptide. Unlike obligate C4 species, H. verticillata exhibited only one plastidic isoform that may perform housekeeping functions, but is up-regulated as the photosynthetic decarboxylase. Of the two cytosolic forms, hvme2 and hvme3, the latter exhibited the greatest expression, but was not light-regulated. The mature isoform of hvme1 had a pI of 6.0 and a molecular mass of 64 kD, as did the recombinant rHVME1m, and it formed a tetramer in the chloroplast. The recombinant photosynthetic isoform showed intermediate characteristics between isoforms in terrestrial C3 and C4 species. The catalytic efficiency of rHVME1m was four-fold higher than the cytosolic rHVME3 and two-fold higher than recombinant cytosolic isoforms of rice, but lower than plastidic forms of maize. The K m (malate) of 0.6 mM for rHVME1 was higher than maize plastid isoforms, but four-fold lower than found with rice. A comprehensive phylogenetic analysis of 25 taxa suggested that chloroplastic NADP-ME isoforms arose from four duplication events, and hvme1 was derived from cytosolic hvme3. The chloroplastic eudicot sequences were a monophyletic group derived from a cytosolic clade after the eudicot and monocot lineages separated, while the monocots formed a polyphyletic group. The findings support the hypothesis that a NADP-ME isoform with specific and unusual regulatory properties facilitates the functioning of the single-cell C4 system in H. verticillata. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

16.
C(4) photosynthetic NADP-malic enzyme (ME) has evolved from non-C(4) isoforms and gained unique kinetic and structural properties during this process. To identify the domains responsible for the structural and kinetic differences between maize C(4) and non-C(4)-NADP-ME several chimeras between these isoforms were constructed and analyzed. By using this approach, we found that the region flanked by amino acid residues 102 and 247 is critical for the tetrameric state of C(4)-NADP-ME. In this way, the oligomerization strategy of these NADP-ME isoforms differs markedly from the one that present non-plant NADP-ME with known crystal structures. On the other hand, the region from residue 248 to the C-terminal end of the C(4) isoform is involved in the inhibition by high malate concentrations at pH 7.0. The inhibition pattern of the C(4)-NADP-ME and some of the chimeras suggested an allosteric site responsible for such behavior. This pH-dependent inhibition could be important for regulation of the C(4) isoform in vivo, with the enzyme presenting maximum activity while photosynthesis is in progress.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号