首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Summary The TFS1 gene of Saccharomyces cerevisiae is a dosage-dependent suppressor of cdc25 mutations. Overexpression of TFS1 does not alleviate defects of temperature-sensitive adenylyl cyclase (cdc35) or ras2 disruption mutations. The ability of TFS1 to suppress cdc25 is allele specific: the temperature-sensitive cdc25-1 mutation is suppressed efficiently but the cdc25-5 mutation and two disruption mutations are only partially suppressed. TFS1 maps to a previously undefined locus on chromosome XII between RDN1 and CDC42. The DNA sequence of TFS1 contains a single long open reading frame encoding a 219 amino acid polypeptide that is similar in sequence to two mammalian brain proteins. Insertion and deletion mutations in TFS1 are haploviable, indicating that TFS1 is not essential for growth.  相似文献   

4.
5.
6.
A mutant allele of RAS1 that dominantly interferes with the wild-type Ras function in the yeast Saccharomyces cerevisiae was discovered during screening of mutants that suppress an ira2 disruption mutation. A single amino acid substitution, serine for glycine at position 22, was found to cause the mutant phenotype. The inhibitory effect of the RAS1 Ser22 gene could be overcome either by overexpression of CDC25 or by the ira2 disruption mutation. These results suggest that the RAS1Ser22 gene product interferes with the normal interaction of Ras with Cdc25 by forming a dead-end complex between Ras1Ser22 and Cdc25 proteins.  相似文献   

7.
8.
酿酒酵母ScRCH1是白念珠菌CaRCH1的同功基因,作为人体溶质转运蛋白SLC10A7的同源蛋白,两者都是细胞质膜上钙离子内流的抑制因子。为了研究酿酒酵母RCH1与基因组中其他基因之间的遗传互作,利用合成遗传阵列(Synthetic Genetic Array,SGA)方法构建了RCH1分别与其他非必需基因之间的双基因缺失株文库。钙离子表型筛选表明RCH1与17个基因之间存在遗传互作,其中4个基因BUD9、THR1、RAS2和CPR7在钙离子敏感性方面的功能以前没有报道过。这些结果为深入研究Rch1对钙离子稳态的调控提供了参考。  相似文献   

9.
10.
11.
12.
CRISPR/Cas9基因编辑技术已经被广泛应用于工程酿酒酵母的基因插入、基因替换和基因敲除,通过使用选择标记进行基因编辑具有简单高效的特点。前期利用CRISPR/Cas9系统敲除青蒿酸生产菌株酿酒酵母(Saccharomyces cerevisiae) 1211半乳糖代谢负调控基因GAL80,获得菌株S. cerevisiae 1211-2,在不添加半乳糖诱导的情况下,青蒿酸摇瓶发酵产量达到了740 mg/L。但在50 L中试发酵实验中,S. cerevisiae 1211-2很难利用对青蒿酸积累起到决定性作用的碳源-乙醇,青蒿酸的产量仅为亲本菌株S.cerevisiae 1211的20%–25%。我们推测因遗传操作所需的筛选标记URA3突变,影响了其生长及青蒿酸产量。随后我们使用重组质粒pML104-KanMx4-u连同90 bp供体DNA成功恢复了URA3基因,获得了工程菌株S. cerevisiae 1211-3。S. cerevisiae 1211-3能够在葡萄糖和乙醇分批补料的发酵罐中正常生长,其青蒿酸产量超过20g/L,与亲本菌株产量相当。研究不但获得了不加半乳糖诱导的青...  相似文献   

13.
14.
The Saccharomyces cerevisiae DIS2S1/GLC7 gene encodes a type 1 protein phosphatase indispensable for cell proliferation. We found that introduction of a multicopy DIS2S1 plasmid impaired growth of cells with reduced activity of the cAMP-dependent protein kinase. In order to understand further the interaction between the two enzymes, a temperature-sensitive mutation in the DIS2S1 gene was isolated. The mutant accumulated less glycogen than wild type at the permissive temperature, indicating that activity of the Dis2s1 protein phosphatase is attenuated by the mutation. Furthermore, the dis2s1 ts mutation was shown to be suppressed by a multicopy plasmid harboring PDE2, a gene for cAMP phosphodiesterase. These results indicate that the Ras-cAMP pathway interacts genetically with the DIS2S1/GLC7 gene.  相似文献   

15.
Summary A mutant plasmid, pX, derived from the 1453 base pair small plasmid, YARp1 (or TRP1 RI circle), consists of 849 base pairs of DNA bearing the TRP1 gene and the ARS1 sequence of Saccharomyces cerevisiae and, unlike YARp1 and other commonly used yeast plasmids, highly multimerizes in a S. cerevisiae host. The multimerization of pX was dependent on RAD52, which is known to be necessary for homologous recombination in S. cerevisiae. Based upon this observation, a regulated system of multimerization of pX with GAL1 promoter-driven RAD52 has been developed. We conclude that the regulated multimerization of pX could provide a useful model system to study genetic recombination in the eukaryotic cell, in particular to investigate recombination intermediates and the effects of various trans-acting mutations on the multimerization and recombination of plasmids.  相似文献   

16.
The spectrum of mutations induced by the carcinogen N-2-acetylaminofluorene (AAF) was analysed in Saccharomyces cerevisiae using a forward mutation assay, namely the inactivation of the URA3 gene. The URA3 gene, carried on a yeast/bacterial shuttle vector, was randomly modified in vitro using N-acetoxy-N-2-acetylaminofluorene (N-AcO-AAF) as a model reactive metabolite of the carcinogen AAF. The binding spectrum of AAF to the URA3 gene was determined and found to be essentially random, as all guanine residues reacted about equally well with N-AcO-AAF. Independent Ura mutants were selected in vivo after transformation of the modified plasmid into a ura3 yeast strain. Plasmid survival decreased as a function of AAF modification, leading to one lethal hit (37% relative survival) for an average of 50 AAF adducts per plasmid molecule. At this level of modification the mutation frequency was equal to 70 × 10–4, i.e. 50-fold above the background mutation frequency. UV irradiation of the yeast cells did not further stimulate the mutagenic response, indicating the lack of an SOS-like mutagenic response in yeast. Sequence analysis of the URA3 mutants revealed 48% frameshifts, 44% base substitutions and 8 % complex events. While most base substitutions (74%) were found to be targeted at G residues where AAF is known to form covalent C8 adducts, frameshift mutations were observed at GC base pairs in only 24% of cases. Indeed, more than 60% of frameshift events occurred at sequences such as 5-(A/T)nG-3 where a short (n = 2 or 3) monotonous run of As or Ts is located on the 5' side of a guanine residue. We refer to these mutations as semi-targeted events and present a potential mechanism that explains their occurrence.  相似文献   

17.
Summary The smp2 mutant of Saccharomyces cerevisiae shows increased stability of the heterologous plasmid pSR1 and YRp plasmids. A DNA fragment bearing the SMP2 gene was cloned by its ability to complement the slow growth of the smp2 smp3 double mutant (smp3 is another mutation conferring increased stability of plasmid pSR1). The nucleotide sequence of SMP2 indicated that it encodes a highly charged 95 kDa protein. Disruption of the genomic SMP2 gene resulted in a respiration-deficient phenotype, although the cells retained mitochondrial DNA, and showed increased stability of pSR1 like the original smp2 mutant. The fact that the smp2 mutant is not always respiration deficient and shows increased pSR1 stability even in a rho 0 strain lacking mitochondrial DNA suggested that the function of the Smp2 protein in plasmid maintenance is independent of respiration. The SMP2 locus was mapped at a site 71 cM from lys7 and 21 cM from ilv2/SMR1 on the right arm of chromosome XIII.  相似文献   

18.
Using a genetic system of haploid strains of Saccharomyces cerevisiae carrying a duplication of the his4 region on chromosome III, the pso3-1 mutation was shown to decrease the rate of spontaneous mitotic intrachromosomal recombination 2- to 13-fold. As previously found for the rad52-1 mutant, the pso3-1 mutant is specifically affected in mitotic gene conversion. Moreover, both mutations reduce the frequency of spontaneous recombination. However, the two mutations differ in the extent to which they affect recombination between either proximally or distally located markers on the two his4 heteroalleles. In addition, amplifications of the his4 region were detected in the pso3-1 mutant. We suggest that the appearance of these amplifications is a consequence of the inability of the pso3-1 mutant to perform mitotic gene conversion.  相似文献   

19.
Summary cyrl-2 is a temperature-sensitive mutation of the yeast adenylate cyclase structural gene, CYR1. The cyrl-2 mutation has been suggested to be a UGA mutation since a UGA suppressor SUP201 has been isolated as a suppressor of the cyrl-2 mutation. Construction of chimeric genes restricted the region containing the cyrl-2 mutation, and the cyrl-2 UGA mutation was identified at codon 1282, which lies upstream of the region coding for the catalytic domain of adenylate cyclase. Alterations in the region upstream of the cyrl-2 mutation site result in null mutations. The complete open reading frame of the cyrl-2 gene expressed under the control of the GAL1 promoter complemented cyrl-dl in a galactose-dependent manner. These results suggest that at the permissive temperature weak readthrough occurs at the cyrl-2 mutation site to produce low levels of active adenylate cyclase. An endogenous suppressor in yeast cells is assumed to be responsible for this readthrough.  相似文献   

20.
The expression of theSRS2 gene, which encodes a DNA helicase involved in DNA repair inSaccharomyces cerevisiae, was studied using anSRS2-lacZ fusion integrated at the chromosomalSRS2 locus. It is shown here that this gene is expressed at a low level and is tightly regulated. It is cell-cycle regulated, with induction probably being coordinated with that of the DNA-synthesis genes, which are transcribed at the G1-S boundary. It is also induced by DNA-damaging agents, but only during the G2 phase of the cell cycle; this distinguishes it from a number of other repair genes, which are inducible throughout the cycle. During meiosis, the expression ofSRS2 rises at a time nearly coincident with commitment to recombination. Sincesrs2 null mutants are radiation sensitive essentially when treated in G1, the mitotic regulation pattern described here leads us to postulate that either secondary regulatory events limit Srs2 activity to G1 cells or Srs2 functions in a repair mechanism associated with replication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号