首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Background: There is growing evidence that stroke survivors can adapt and improve step length symmetry in the context of split-belt treadmill (SBT) walking. However, less knowledge exists about the strategies involved for such adaptations. This study analyzed lower limb muscle activity in individuals post-stroke related to SBT-induced changes in step length. Methods: Step length and surface EMG activity of six lower limb muscles were evaluated in individuals post-stroke (n = 16) during (adaptation) and after (after-effects) walking at unequal belt speeds. Results: During adaptation, significant increases in EMG activity were mainly found in proximal muscles (p  0.023), whereas after-effects were observed particularly in the distal muscles. The plantarflexor EMG increased after walking on the slow belt (p  0.023) and the dorsiflexors predominantly after walking on the fast belt (p  0.017) for both, non-paretic and paretic-fast conditions. Correlation analysis revealed that after-effects in step length were mainly associated with changes in distal paretic muscle activity (0.522  r  0.663) but not with functional deficits. Based on our results, SBT walking could be relevant for training individuals post-stroke who present shorter paretic step length combined with dorsiflexor weakness, or individuals with shorter nonparetic step length and plantarflexor weakness.  相似文献   

3.
Although the effects of caffeine ingestion on athletic performance in men have been studied extensively, there is limited previous research examining caffeine's effects on women of average fitness levels participating in common modes of physical activity. The purpose of this study was to determine the effect of 2 levels of caffeine dosage on the metabolic and cardiorespiratory responses to treadmill walking in women. Subjects were 20 women (19-28 years of age) of average fitness, not habituated to caffeine. Each subject was assigned randomly a 3-mg x kg(-1) dose of caffeine, 6-mg x kg(-1) dose of caffeine, and placebo for 3 trials of moderate steady-state treadmill walking at 94 m x min(-1) (3.5 mph). Steady-state rating of perceived exertion (RPE), heart rate (HR), respiratory exchange ratio (RER), weight-relative VO2, %VO2max reserve (%VO2R), and rate of energy expenditure (REE) were measured during each trial. Repeated measures analysis of variance revealed that a 6-mg x kg(-1), but not a 3-mg x kg(-1) dose of caffeine increased VO2 (p = 0.04), REE (p = 0.03), and %VO2R (p = 0.03), when compared to the placebo. Caffeine had no effect on RPE, HR, or RER. No significant differences were observed between the placebo trials and the 3-mg x kg(-1) dose trials. Although a 6-mg x kg(-1) dose of caffeine significantly increased REE during exercise, the observed increase (approximately 0.23 kcal x min(-1)) would not noticeably affect weight loss. Because caffeine had no effect on RPE, it would not be prudent for a trainer to recommend caffeine in order to increase a woman's energy expenditure or to decrease perception of effort during mild exercise. These data also demonstrate that caffeine intake should not interfere with monitoring walking intensity by tracking exercise heart rate in women.  相似文献   

4.
To evaluate the characteristics of stereo-typed movement of the lower limb during treadmill walking, the step length and duration of 200 steps were monitored consecutively and calculated by means of a computerized system, consisting of a position sensor, shoes with foot switches and a minicomputer. Eleven male and 10 female subjects walked at various constant speeds ranging from 60-130 m.min-1. Mean, standard deviation (SD) and coefficient of variation (CV) of the time-distance component at each speed were utilized for the assessment of stereotyped movement. When compared with males, females had a tendency to increase their speed by increasing their cadence. The difference of the walking pattern was specifically related to their height. The SD and CV of the time-distance component at a given speed were significantly greater in females than in males. Regression analyses revealed that in the relationship between the walking speeds and the SDs or CVs of the time-distance component, the significant quadratic equations could be fitted. The speed, at which the SD of step length was minimum, was estimated to be about 90 m.min-1 in both males and females. This was regarded as the free walking speed or as the walking speed resulting from a mechanically efficient step length which suited the subject's body size.  相似文献   

5.
Although numerous studies have investigated the effects of load carriage on gait mechanics, most have been conducted on active military men. It remains unknown whether men and women adapt differently to carrying load. The purpose of this study was to compare the effects of load carriage on gait mechanics, muscle activation patterns, and metabolic cost between men and women walking at their preferred, unloaded walking speed. We measured whole body motion, ground reaction forces, muscle activity, and metabolic cost from 17 men and 12 women. Subjects completed four walking trials on an instrumented treadmill, each five minutes in duration, while carrying no load or an additional 10%, 20%, or 30% of body weight. Women were shorter (p<0.01), had lower body mass (p=0.01), and had lower fat-free mass (p=0.02) compared to men. No significant differences between men and women were observed for any measured gait parameter or muscle activation pattern. As load increased, so did net metabolic cost, the duration of stance phase, peak stance phase hip, knee, and ankle flexion angles, and all peak joint extension moments. The increase in the peak vertical ground reaction force was less than the carried load (e.g. ground force increased approximately 6% with each 10% increase in load). Integrated muscle activity of the soleus, medial gastrocnemius, lateral hamstrings, vastus medialis, vastus lateralis, and rectus femoris increased with load. We conclude that, despite differences in anthropometry, men and women adopt similar gait adaptations when carrying load, adjusted as a percentage of body weight.  相似文献   

6.
The purpose of this study was to characterize responses in oxygen uptake ( V·O2), heart rate (HR), perceived exertion (OMNI scale) and integrated electromyogram (iEMG) readings during incremental Nordic walking (NW) and level walking (LW) on a treadmill. Ten healthy adults (four men, six women), who regularly engaged in physical activity in their daily lives, were enrolled in the study. All subjects were familiar with NW. Each subject began walking at 60 m/min for 3 minutes, with incremental increases of 10 m/min every 2 minutes up to 120 m/min V·O2 , V·E and HR were measured every 30 seconds, and the OMNI scale was used during the final 15 seconds of each exercise. EMG readings were recorded from the triceps brachii, vastus lateralis, biceps femoris, gastrocnemius, and tibialis anterior muscles. V·O2 was significantly higher during NW than during LW, with the exception of the speed of 70 m/min (P < 0.01). V·E and HR were higher during NW than LW at all walking speeds (P < 0.05 to 0.001). OMNI scale of the upper extremities was significantly higher during NW than during LW at all speeds (P < 0.05). Furthermore, the iEMG reading for the VL was lower during NW than during LW at all walking speeds, while the iEMG reading for the BF and GA muscles were significantly lower during NW than LW at some speeds. These data suggest that the use of poles in NW attenuates muscle activity in the lower extremities during the stance and push-off phases, and decreases that of the lower extremities and increase energy expenditure of the upper body and respiratory system at certain walking speeds.  相似文献   

7.
8.
9.
10.
The relation between changes in potential and kinetic energy in a seven-segment model of the human body and the work of m. triceps surae was investigated in four subjects walking on a treadmill at speeds between 0.5 and 2.0 m/s. Segment energy levels were determined by means of tachometers attached with strings to various points on the subject's body. Muscle work was assessed by electromyogram to force processing. M. triceps surae is active during stance, first doing negative (eccentric) work and ending with a short period of positive (concentric) work at “push-off”. It turned out that in normal walking these muscles provide the major part of positive work for the initiation of swing at push-off. Only at large step lengths, when push-off starts well before contralateral heel contact, is there a minor pushing forward of the trunk. In the negative work phase, m. triceps surae seem to check the forward speed of the trunk. A related decrease of trunk kinetic energy is not present, however, but this may be obscured by the simultaneous action of m. quadriceps femoris and, in a later stage, by a transfer of energy from the decelerating contralateral (swing) leg to the trunk. Energy of the trunk segment shows a sharp decline in double stance and a more gradual increase in the first half of single stance. Evidence is given that this effect is due to quadriceps action in the knee flexion-extension movement during stance. The presented results are incorporated in a general picture of energy flows in human walking.  相似文献   

11.
The purpose of the study was to evaluate the electromyographic (EMG) activity of muscles in curl-up exercises depending on the position of the upper and lower extremities. From the perspective of biomechanics, different positions of the extremities result in shifting the center of gravity and changing muscular loads in abdominal strength exercises. The subjects of the research were 3 healthy students (body mass 53-56 kg and height 163-165 cm) with no history of low back pain or abdominal surgery. Subjects completed 18 trials for each of the 9 exercises (static curl-up with 3 positions of the upper and 3 position of the lower extremities). The same experiment with the same subjects was conducted on the next day. The EMG activity of rectus abdominis (RA), erector spinae (ES), and quadriceps femoris-long head (rectus femoris [RF]) was examined during the exercises. The surface electrical activity was recorded for the right and left sides of each muscle. The raw data for each muscle were rectified and integrated. The statistical analysis showed that changing the position of upper extremities in the examined exercises affects the EMG activity of RA and ES but does not significantly affect the EMG activity of RF. Additionally, it was found that curl-up exercises with the upper extremities extended behind the head and the lower extremities flexed at 90° in the hip and knee joints involve RA with the greatest intensity, whereas curl-up exercises with the upper extremities extended along the trunk and the lower extremities flexed at 90° in the hip and knee joints involve RA with the lowest intensity.  相似文献   

12.
This study aimed to examine whether walking in water produces age-related differences in muscle activity, stride frequency (SF), and heart rate (HR) response. Surface electromyography (EMG) was used to evaluate muscle activities in six older and six young subjects while they walked in water immersed to the level of the xiphoid process. The trials in water utilized the Flowmill which consists of a treadmill at the base of a water flume. The measurement of maximal voluntary contraction (MVC) of each muscle was made prior to the gait analysis. The %MVCs, which refer to the surface EMG measures, from the gastrocnemius of the older subjects were significantly lower than those of the young subjects, in every experimental condition (P<0.05). In contrast, the %MVCs from the rectus femoris (P<0.05) and the biceps femoris (P<0.001) of older subjects were significantly greater than those of young subjects in every experimental condition. Moreover, the SFs of older subjects were also significantly greater than those of young subjects (P<0.05), while the HR responses of older and young subjects were similar. In conclusion, the older subjects had increased hip musculature activity and decreased ankle plantar flexor activity while walking in water, compared with the young subjects.  相似文献   

13.
The purpose of the present study was to determine whether or not the exercise intensity of water-walking for elderly women could be accurately prescribed by heart rate data obtained during treadmill exercise on land. Six healthy female volunteers, with a mean age of 62.2 +/- 4.2 years, took part in this study. Walking on land was performed on a treadmill. Each subject completed three consecutive 4-minute walks at a progressively increasing velocity (40, 60 and 80 m.min-1), with a 1-minute rest after both the first and second walks. The room temperature and relative humidity were 24.5 +/- 0.2 degrees C and 54.8 +/- 4.0%, respectively. Walking in water was performed in a Flowmill, which is a treadmill positioned at the base of a water flume. Each subject completed three consecutive 4-minute walks at a progressively increasing belt and water-flow velocity (20, 30 and 40 m.min-1), with a 1-minute rest after both the first and second walks. The water depth was at the level of the xiphoid process of each subject. The water temperature was 30.7 +/- 0.1 degrees C. The exercise intensity at the highest workrate was equivalent to 44.2 +/- 10.3% of the heart rate reserve (HRR) during water-walking and 38.4 +/- 4.7% of the HRR during land-walking. There was a highly significant linear relationship between heart rate (HR) and oxygen uptake (VO2) during both water-walking and land-walking. The relationship between HR and VO2 in both exercise modes was similar. Thus, the relationship of HR to VO2 derived from a treadmill-graded walking test on land may be used to prescribe exercise intensity for water-walking in thermoneutral water.  相似文献   

14.
The purpose of this investigation was to associate the force produced by the cat medial gastrocnemius (MG) during unrestrained treadmill locomotion with the corresponding myoelectric signals (MES's). An intervention analysis based on the autoregressive-integrated moving average (ARIMA) process was performed on records obtained at treadmill speeds of 0.67 ms-1 and 2.24 ms-1. Results indicate that the pattern of MG myoelectric activity during a single step cycle may be divided into two parts. The primary burst (E1 burst) of activity occurs before foot contact and represents an energy build up which is related to a major part of the MG force monitored at the tendon. During stance, a second burst of activity is depicted by an almost critically damped second order system, and is responsible for the residual tension observed. Thus in vivo forces can be linked to MES's provided that phase differences between electrical and mechanical responses are taken into account.  相似文献   

15.
This study investigated the effect of prolonged load carriage on lower limb muscle activity displayed by female recreational hikers. Electromyography (EMG) signals from vastus lateralis (VL), biceps femoris (BF), semitendinosus (ST), tibialis anterior (TA) and gastrocnemius (GM) were recorded for fifteen female hikers carrying four loads (0%, 20%, 30% and 40% body weight (BW)) over 8 km. Muscle burst duration, muscle burst onset relative to initial contact and integrated EMG signals (iEMG) were calculated to evaluate muscle activity, whereas the shift in mean power frequency (MPF) was used to evaluate muscle fatigue. Increased walking distance significantly decreased the MPF of TA; decreased the iEMG for VL, ST and GM; and shortened VL muscle burst duration. Furthermore, carrying 20–40% BW loads significantly increased VL and GM iEMG and increased BF muscle burst duration, whereas a 40% BW load caused a later VL muscle burst onset. The differences observed in muscle activity with increased load mass seem to be adjustments aimed at maintaining balance and attenuating the increased loads placed on the lower limbs during gait. Based on the changes in muscle activity, a backpack load limit of 30% BW may reduce the risk of lower limb injury for female hikers during prolonged walking.  相似文献   

16.
The study compares the timing and frequency changes of surface EMGs recorded from osteoarthritis patients with previous traumatic ankle injury and normal subjects during level walking. EMG intensity (power) was obtained by a wavelet analysis. There were intensity values for each frequency characterized by the wavelets for every time point. The intensities were compounded into Multi Muscle Patterns (MMP) simultaneously showing the time and spectral aspects of the lower leg muscle activity.The aim of the study was to test the hypothesis that the differences between the group of the MMPs from the affected leg (AFL) and the not affected leg (NAL) allow detecting whether a newly measured MMP results from an AFL or NAL. This hypothesis was tested by a spherical classification procedure yielding the correctly classified MMPs thus indicating the significance of the differences between the MMPs of the AFL and NAL. The hypothesis was supported (not falsified) by the results. Thus there were common features of muscle activity in the AFL of most osteoarthritis patients that allowed detecting whether the MMP of a new patient was of the kind seen in most other osteoarthritis patients. The spectral, timing and intensity factors in the MMP that allowed this classification were visualized in the mean MMPs of the patients and the control group. The comparison revealed where on average the relative timing and spectral differences of the muscle activation of osteoarthritis patients and control subjects occurred.  相似文献   

17.
18.
19.
To compare the activity of lower extremity muscles during land walking (LW), water walking (WW), and deep-water running (DWR), 9 healthy young subjects were tested at self-selected low, moderate, and high intensities for 8 sec with two repetitions. Surface EMG electrodes were placed on the tibialis anterior (TA), soleus (SOL), medial gastrocnemius (GAS), rectus femoris (RF), and biceps femoris (BF). During DWR, the SOL and GAS activities were lower than LW and WW. The BF activities were higher during DWR than LW and WW. It was considered that the lower activity of SOL and GAS depended on water depth, and higher activity of BF occurred by greater flexion of the knee joint or extension of the hip joint during exercise.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号