首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Over the past two to three decades, developmental biology has demonstrated that all multicellular organisms in the animal kingdom share many of the same molecular building blocks and many of the same regulatory genetic pathways. Yet we still do not understand how the various organisms use these molecules and pathways to assume all the forms we know today. Evolutionary developmental biology tackles this problem by comparing the development of one organism to another and comparing the genes involved and gene functions to understand what makes one organism different from another. In this review, we revisit a set of seven concepts defined by Lewis Wolpert (fate maps, asymmetric division, induction, competence, positional information, determination, and lateral inhibition) that describe the characters of many developmental systems and supplement them with three additional concepts (developmental genomics, genetic redundancy, and genetic networks). We will discuss examples of comparative developmental studies where these concepts have guided observations on the advent of a developmental novelty. Finally, we identify a set of evolutionary frameworks, such as developmental constraints, cooption, duplication, parallel and convergent evolution, and homoplasy, to adequately describe the evolutionary properties of developmental systems.  相似文献   

2.
Developmental system drift and flexibility in evolutionary trajectories   总被引:9,自引:0,他引:9  
SUMMARY The comparative analysis of homologous characters is a staple of evolutionary developmental biology and often involves extrapolating from experimental data in model organisms to infer developmental events in non-model organisms. In order to determine the general importance of data obtained in model organisms, it is critical to know how often and to what degree similar phenotypes expressed in different taxa are formed by divergent developmental processes. Both comparative studies of distantly related species and genetic analysis of closely related species indicate that many characters known to be homologous between taxa have diverged in their morphogenetic or gene regulatory underpinnings. This process, which we call "developmental system drift" (DSD), is apparently ubiquitous and has significant implications for the flexibility of developmental evolution of both conserved and evolving characters. Current data on the population genetics and molecular mechanisms of DSD illustrate how the details of developmental processes are constantly changing within evolutionary lineages, indicating that developmental systems may possess a great deal of plasticity in their responses to natural selection.  相似文献   

3.
Discussions about evolutionary change in developmental processes or morphological structures are predicated on specific quantitative genetic models whose parameters predict whether evolutionary change can occur, its relative rate and direction, and if correlated change will occur in other related and unrelated structures. The appropriate genetic model should reflect the relevant genetical and developmental biology of the organisms, yet be simple enough in its parameters so that deductions can be made and hypotheses tested. As a consequence, the choice of the most appropriate genetic model for polygenically controlled traits is a complex tissue and the eventual choice of model is often a compromise between completeness of the model and computational expediency. Herein, we discuss several developmental quantitative genetic models for the evolution of development and morphology. The models range from the classical direct effects model to complex epigenetic models. Further, we demonstrate the algebraic equivalency of the Cowley and Atchley epigenetic model and Wagner's developmental mapping model. Finally, we propose a new multivariate model for continuous growth trajectories. The relative efficacy of these various models for understanding evolutionary change in developmental and morphological traits is discussed. © 1994 Wiley-Liss, Inc.  相似文献   

4.
In quantitative genetics, the effects of developmental relationships among traits on microevolution are generally represented by the contribution of pleiotropy to additive genetic covariances. Pleiotropic additive genetic covariances arise only from the average effects of alleles on multiple traits, and therefore the evolutionary importance of nonlinearities in development is generally neglected in quantitative genetic views on evolution. However, nonlinearities in relationships among traits at the level of whole organisms are undeniably important to biology in general, and therefore critical to understanding evolution. I outline a system for characterizing key quantitative parameters in nonlinear developmental systems, which yields expressions for quantities such as trait means and phenotypic and genetic covariance matrices. I then develop a system for quantitative prediction of evolution in nonlinear developmental systems. I apply the system to generating a new hypothesis for why direct stabilizing selection is rarely observed. Other uses will include separation of purely correlative from direct and indirect causal effects in studying mechanisms of selection, generation of predictions of medium‐term evolutionary trajectories rather than immediate predictions of evolutionary change over single generation time‐steps, and the development of efficient and biologically motivated models for separating additive from epistatic genetic variances and covariances.  相似文献   

5.
Molecular genetic analysis of phenotypic variation has revealed many examples of evolutionary change in the developmental pathways that control plant and animal morphology. A major challenge is to integrate the information from diverse organisms and traits to understand the general patterns of developmental evolution. This integration can be facilitated by evolutionary metamodels—traits that have undergone multiple independent changes in different species and whose development is controlled by well-studied regulatory pathways. The metamodel approach provides the comparative equivalent of experimental replication, allowing us to test whether the evolution of each developmental pathway follows a consistent pattern, and whether different pathways are predisposed to different modes of evolution by their intrinsic organization. A review of several metamodels suggests that the structure of developmental pathways may bias the genetic basis of phenotypic evolution, and highlights phylogenetic replication as a value-added approach that produces deeper insights into the mechanisms of evolution than single-species analyses.  相似文献   

6.
To understand how morphological characters change during evolution, we need insight into the evolution of developmental processes. Comparative developmental approaches that make use of our fundamental understanding of development in certain model organisms have been initiated for different animal systems and flowering plants. Nematodes provide a useful experimental system with which to investigate the genetic and molecular alterations underlying evolutionary changes of cell fate specification in development, by comparing different species to the genetic model system Caenorhabditis elegans. In this review, I will first discuss the different types of evolutionary alterations seen at the cellular level by focusing mainly on the analysis of vulva development in different species. The observed alterations involve changes in cell lineage, cell migration and cell death, as well as induction and cell competence. I then describe a genetic approach in the nematode Pristionchus pacificus that might identify those genetic and molecular processes that cause evolutionary changes of cell fate specification.  相似文献   

7.
The origin and diversification of evolutionary novelties-lineage-specific traits of new adaptive value-is one of the key issues in evolutionary developmental biology. However, comparative analysis of the genetic and developmental bases of such traits can be difficult when they have no obvious homologue in model organisms. The finding that the evolution of morphological novelties often involves the recruitment of pre-existing genes and/or gene networks offers the potential to overcome this challenge. Knowledge about shared developmental processes obtained from extensive studies in model organisms can then be used to understand the origin and diversification of lineage-specific structures. Here, we illustrate this approach in relation to eyespots on the wings of Bicyclus anynana butterflies. A number of spontaneous mutations isolated in the laboratory affect eyespots, lepidopteran-specific features, and also processes that are shared by most insects. We discuss how eyespot mutants with disturbed embryonic development may help elucidate the genetic pathways involved in eyespot formation, and how venation mutants with altered eyespot patterns might shed light on mechanisms of eyespot development.  相似文献   

8.
进化新征的起源和分化是进化发育生物学研究的核心问题。通过对多细胞生物早期发育调控机制的比较分析,发现亲缘关系较远的生物所共有的一些形态特征受保守的发育调控程序调节(深同源性)。许多创新性状的发生是基于对预先存在的基因或发育调控模块的重复利用和整合。发育基因调控网络在结构和功能上高度模块化,因此不仅可以通过模块拆分和重复征用改变发育程式,而且也增强了调控网络自身的进化力。研究基因调控网络和发育系统的进化动态将有助于更深入地认识生物演化过程中创新性状发生和表型进化的分子机制。  相似文献   

9.
A major focus of evolutionary developmental (evo-devo) studies is to determine the genetic basis of variation in organismal form and function, both of which are fundamental to biological diversification. Pioneering work on metazoan and flowering plant systems has revealed conserved sets of genes that underlie the bauplan of organisms derived from a common ancestor. However, the extent to which variation in the developmental genetic toolkit mirrors variation at the phenotypic level is an active area of research. Here we explore evidence from the angiosperm evo-devo literature supporting the frugal use of genes and genetic pathways in the evolution of developmental patterning. In particular, these examples highlight the importance of genetic pleiotropy in different developmental modules, thus reducing the number of genes required in growth and development, and the reuse of particular genes in the parallel evolution of ecologically important traits.  相似文献   

10.
The generation of mutants in model organisms by geneticists and developmental biologists over the last century has occasionally produced phenotypes that are startlingly reminiscent of those seen in other species. Such extreme mutations have generally been dismissed by evolutionary geneticists since the "modern synthesis" as irrelevant to adaptation and speciation. But only in recent years has information on the molecular bases of mutant phenotypes become widely available, and thus work on testing the relevance of such extreme mutations to the generation of phylogenetic diversity has just begun. Here we evaluate whether evolutionary mimics are, in fact, useful for pinpointing the genetic differences that distinguish morphological variants generated during evolution. Examples come from both plants and animals, and range from intraspecific to interordinal taxonomic ranges. The use of mutationally defined candidate genes to predict evolutionary mechanisms has so far been most fruitful in explaining intraspecific variants, where it has been effective in both plants and animals. In several cases these efforts were facilitated or supported by parallel results from quantitative trait loci studies, in which natural alleles controlling continuous variation in developmental model organisms were mapped to mutationally defined genes. However, despite these successes the approach's utility seems to rapidly decay as a function of phylogenetic distance. This suggests that the divergence of developmental genetic systems is great even in closely related organisms and may become intractable at larger distances. We discuss this result in the context of what it teaches us about development, the future prospects of the candidate gene approach, and the historical debate over process in micro- and macroevolution.  相似文献   

11.
One of the surprising insights gained from research in evolutionary developmental biology (evo-devo) is that increasing diversity in body plans and morphology in organisms across animal phyla are not reflected in similarly dramatic changes at the level of gene composition of their genomes. For instance, simplicity at the tissue level of organization often contrasts with a high degree of genetic complexity. Also intriguing is the observation that the coding regions of several genes of invertebrates show high sequence similarity to those in humans. This lack of change (conservation) indicates that evolutionary novelties may arise more frequently through combinatorial processes, such as changes in gene regulation and the recruitment of novel genes into existing regulatory gene networks (co-option), and less often through adaptive evolutionary processes in the coding portions of a gene. As a consequence, it is of great interest to examine whether the widespread conservation of the genetic machinery implies the same developmental function in a last common ancestor, or whether homologous genes acquired new developmental roles in structures of independent phylogenetic origin. To distinguish between these two possibilities one must refer to current concepts of phylogeny reconstruction and carefully investigate homology relationships. Particularly problematic in terms of homology decisions is the use of gene expression patterns of a given structure. In the future, research on more organisms other than the typical model systems will be required since these can provide insights that are not easily obtained from comparisons among only a few distantly related model species.  相似文献   

12.
The developmental mechanisms by which the environment may alterthe phenotype during development are reviewed. Developmentalplasticity may be of two forms: developmental conversion orphenotypic modulation. In developmental conversion, organismsuse specific environmental cues to activate alternative geneticprograms controlling development. These alternative programsmay either lead to alternative morphs, or may lead to the decisionto activate a developmental arrest. In phenotypic modulation,nonspecific phenotypic variation results from environmentalinfluences on rates or degrees of expression of the developmentalprogram, but the genetic programs controlling development arenot altered. Modulation, which is not necessarily adaptive,is probably the common form of environmentally induced phenotypicvariation in higher organisms, and adaptiveness of phenotypicplasticity therefore cannot be assumed unless specific geneticmechanisms can be demonstrated. The genetic mechanisms by whichdevelopmental plasticity may evolve are reviewed, and the relationshipbetween developmental plasticity and evolutionary plasticityare examined.  相似文献   

13.
The non-bilaterian animals comprise organisms in the phyla Porifera, Cnidaria, Ctenophora and Placozoa. These early-diverging phyla are pivotal to understanding the evolution of bilaterian animals. After the exponential increase in research in evolutionary development (evo-devo) in the last two decades, these organisms are again in the spotlight of evolutionary biology. In this work, I briefly review some aspects of the developmental biology of nonbilaterians that contribute to understanding the evolution of development and of the metazoans. The evolution of the developmental genetic toolkit, embryonic polarization, the origin of gastrulation and mesodermal cells, and the origin of neural cells are discussed. The possibility that germline and stem cell lineages have the same origin is also examined. Although a considerable number of non-bilaterian species are already being investigated, the use of species belonging to different branches of non-bilaterian lineages and functional experimentation with gene manipulation in the majority of the non-bilaterian lineages will be necessary for further progress in this field.  相似文献   

14.
Evolutionary developmental biology of primates will be driven largely by the developmental biology of the house mouse. Inferences from how known developmental perturbations produce phenotypic effects in model organisms, such as mice, to how the same perturbations would affect craniofacial form in primates must be informed by comparisons of phenotypic variation and variability in mice and the primate species of interest. We use morphometric methods to compare patterns of cranial variability in homologous datasets obtained for two strains of laboratory mice and rhesus macaques. C57BL/6J represents a common genetic background for transgenic models. A/WySnJ mice exhibit altered facial morphology which results from reduction in the growth of the maxillary process during formation of the face. This is relevant to evolutionary changes in facial prognathism in nonhuman primate and human evolution. Rhesus macaques represent a nonhuman primate about which a great deal of phenotypic and genetic information is available. We find significant similarities in covariation patterns between the C57BL/6J mice and macaques. Among-trait variation in genetic and phenotypic variances are fairly concordant among the three groups, but among-trait variation in developmental stability is not. Finally, analysis of modularity based on phenotypic and genetic correlations did not reveal a consistent pattern in the three groups. We discuss the implications of these results for the study of evolutionary developmental biology of primates and outline a research strategy for integrating mouse genomics and developmental biology into this emerging field.  相似文献   

15.
As developmental biologists come closer to understanding at the molecular and genetic levels how a zygote becomes an adult, it is easy to forget that the very phenomenon that gives them an occupation remains a vexing problem to evolutionary biologists: why do unicellular stages persist in life histories of multicellular organisms? There are two explanatory hypotheses. One is that a unicellular stage purges multicellular organisms of deleterious mutations by exposing offspring that are each uniformly of one genotype to selection. Another is that a one-cell stage reduces conflicts of interest among genetically different replicators within an organism.  相似文献   

16.
Greater understanding of ape comparative anatomy and evolutionary history has brought a general appreciation that the hominoid radiation is characterized by substantial homoplasy.1–4 However, little consensus has been reached regarding which features result from repeated evolution. This has important implications for reconstructing ancestral states throughout hominoid evolution, including the nature of the Pan‐Homo last common ancestor (LCA). Advances from evolutionary developmental biology (evo‐devo) have expanded the diversity of model organisms available for uncovering the morphogenetic mechanisms underlying instances of repeated phenotypic change. Of particular relevance to hominoids are data from adaptive radiations of birds, fish, and even flies demonstrating that parallel phenotypic changes often use similar genetic and developmental mechanisms. The frequent reuse of a limited set of genes and pathways underlying phenotypic homoplasy suggests that the conserved nature of the genetic and developmental architecture of animals can influence evolutionary outcomes. Such biases are particularly likely to be shared by closely related taxa that reside in similar ecological niches and face common selective pressures. Consideration of these developmental and ecological factors provides a strong theoretical justification for the substantial homoplasy observed in the evolution of complex characters and the remarkable parallel similarities that can occur in closely related taxa. Thus, as in other branches of the hominoid radiation, repeated phenotypic evolution within African apes is also a distinct possibility. If so, the availability of complete genomes for each of the hominoid genera makes them another model to explore the genetic basis of repeated evolution.  相似文献   

17.
The emerging field of evolutionary developmental biology (evo-devo) continues to operate largely under a single paradigm. In this paradigm developmental regulatory genes and processes are compared among a collection of "model organisms" selected primarily on the basis of their historical utility in the study of development. This approach has proven to be extremely informative, revealing an unexpected deep evolutionary conservation among developmental genes and genetic systems. Despite its success, concern has been expressed regarding its limitations. We discuss the "model organism" paradigm in evo-devo research. Based on our interpretation of its limitations, we propose a separate but complementary approach that is centered on "model groups." These groups are selected on the basis of their taxonomic affinity and their relevance to questions of interest to evo-devo biologists. We further discuss the Tetraodontiformes (Teleostei, Pisces) as an example of a "model group" for the evo-devo study of vertebrate skeletal elements.  相似文献   

18.
Abstract During the past two decades, the fields of molecular biology and genetics have enabled study of far broader and more detailed aspects of evolutionary change than were possible when the evolutionary synthesis was elaborated in the mid‐twentieth century. The capacity for complete sequencing of both genes and proteins of all groups of organisms provide, simultaneously, the means to determine both the patterns and processes of evolution throughout the history of life. Increased knowledge of the genome documents the changing nature of its composition, mode of transmission, and the nature of the units of selection. Advances in evolutionary developmental biology demonstrate the conservation of genetic elements throughout multicellular organisms, and explain how control of the timing, position and nature of their expression has produced the extraordinary diversity of living plants and animals. The next generation of evolutionary biologists will benefit greatly from the increased integration of these new fields of research with those that are currently emphasized in the standard textbooks and journals.  相似文献   

19.
20.
Understanding the developmental and genetic underpinnings of particular evolutionary changes has been hindered by inadequate databases of evolutionary anatomy and by the lack of a computational approach to identify underlying candidate genes and regulators. By contrast, model organism studies have been enhanced by ontologies shared among genomic databases. Here, we suggest that evolutionary and genomics databases can be developed to exchange and use information through shared phenotype and anatomy ontologies. This would facilitate computing on evolutionary questions pertaining to the genetic basis of evolutionary change, the genetic and developmental bases of correlated characters and independent evolution, biomedical parallels to evolutionary change, and the ecological and paleontological correlates of particular types of change in genes, gene networks and developmental pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号