首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Myelin isolated from goldfish brain shows a multilamellar structure with a major dense line and two intraperiod lines. Sodium dodecyl sulfate gel electrophoresis revealed that the protein profile of goldfish brain myelin is distinctly different from that of rat brain myelin. No protein migrating to the position of proteolipid protein or DM-20 was seen in goldfish myelin. Goldfish acclimated to 5 degrees, 15 degrees, and 30 degrees C showed no qualitative differences in myelin proteins. The 13.5 kD protein in goldfish brain myelin and brain homogenate was intensely immunostained with the antiserum to human basic protein by the immunoblot technique. In contrast, none of the proteins of goldfish myelin were immunostained with antiproteolipid protein serum; however, both proteolipid protein and DM-20 of rat brain myelin were immunostained. The significance of the synthesis of myelin proteins by astrocytes in the goldfish brain is discussed.  相似文献   

2.
Degradation of myelin basic protein (MBP) in human man myelin was monitored by electroimmunoblotting. Problems of variation between, as well as within, electroimmunoblots were overcome by the introduction of an internal standard in each sample, thus allowing reproducible quantification of MBP. The Ca2+-dependent protease acting on MBP was active at endogenous levels of Ca2+ (congruent to 300 micrograms/g myelin) and was inhibited in the presence of Ca2+ chelators. Extensive degradation of MBP occurred rapidly in the presence of added Ca2+, reaching a plateau after a 1 h incubation (80-85% degradation). The proteolytic activity was not enhanced in the presence of 2-mercaptoethanol. It was most active at neutral pH and at temperatures approaching physiological conditions. No difference was observed between proteolytic activities of control and multiple sclerotic myelin. It is suggested that fluctuations in the accessibility of free Ca2+ to the protease may lead to the regulation of Ca2+-activated myelinolysis.  相似文献   

3.
This paper proposes a tentative amino acid sequence of guinea pig myelin basic protein obtained by comparison of peptide fragments of the guinea pig and bovine proteins. Analyses of the tryptic peptides confirmed the known sequence differences in the NH2-terminal half of the molecule and showed that in the COOH-terminal half of the guinea pig protein Ser131 was missing, Ala136 - His137 was deleted, Leu140 was replaced by Phe, and an extra Ala was inserted somewhere within sequence 142-151 (tryptic peptide T23 ). Sequence determination of guinea pig tryptic peptides corresponding to residues 130-134 ( T20 ), 135-138 ( T21 ), and 142-151 ( T23 ) of the bovine protein confirmed the above sequence changes and placed the extra Ala between Gly142 and His143 . The sequence of the region corresponding to bovine residues 130-143 is thus Ala-Asp-Tyr-Lys-Ser-Lys-Gly-Phe-Lys-Gly-Ala-His. No species differences were observed in the amino acid compositions of the remaining tryptic peptides obtained from the COOH-terminal half of the molecule. Based upon these results, the guinea pig basic protein contains 167 amino acid residues and has a molecular weight of 18,256.  相似文献   

4.
Abstract: An enzyme immunoassay using a double-antibody solid-phase technique for myelin basic protein (MBP) has been developed. Antisera were prepared by immunizing rabbits with the purified MBP from chick brain. The conjugation of MBP with horseradish peroxidase was performed by the periodate oxidation method in triethanolamine-acetate buffer (pH 8.5). The sample, antiserum, and conjugate were incubated at 4°C for 16 h, after which the insoluble second antibody was added and the reaction mixture was incubated at 4°C for 3 h. The peroxidase activity of the insoluble conjugate was assayed fluorometrically with hydrogen peroxide and 3-( p -hydroxyphenyl)propionic acid as substrates. The method had an analytical range from 50 pg to 1 ng (from 2.3 × 10−15 to 4.5 × 10−14 mol). The within-assay coefficient of variation (CV) was between 4 and 11% and the between-assay CV for 200 and 400 pg of MBP was 5.5 and 7.1%, respectively. A weak cross-reactivity was observed between chick MBP and bovine MBP, while no reactivity was shown with calf thymus histone. The MBP content of the brain during development increased markedly from the 3rd embryonic week to the 3rd post-hatch week (from 0.01 to 2.4 mg/g of fresh tissue), and the adult level was 3.2 mg/g of fresh tissue.  相似文献   

5.
ADP-Ribosylation of Human Myelin Basic Protein   总被引:2,自引:0,他引:2  
Abstract: When isolated myelin membranes were ADP-ribosylated by [32P]NAD+ either in the absence of toxin (by the membrane ADP-ribosyltransferase) or in the presence of cholera toxin, the same proteins were ADP-ribosylated in both cases and myelin basic protein (MBP) was the major radioactive product. Therefore, cholera toxin was considered a good model for ADP-ribosylation of myelin proteins. Although purified human MBP migrates as a single band on sodium dodecyl sulfate-polyacrylamide gel electrophoresis with a molecular mass of 20 kDa, the microheterogeneity that is masked under these conditions can be clearly demonstrated on alkaline-urea gels at pH 10.6. At this pH, MBP is resolved into several components that differ one from the other by a single charge (charge isomers). These charge isomers can be resolved on CM52 columns at pH 10.6, and several can be ADP-ribosylated. Component 1 (C-1), the most cationic charge isomer, incorporated 1.79 mol of ADP-ribose/mol of protein. C-2 and C-3 (which differ from C-1 by the loss of one and two positive charges, respectively) incorporated slightly less at 1.67 and 1.63 mol of ADP-ribose/mol of protein, respectively, whereas C-8, the least cationic, incorporated less than 0.11 mol/mol of protein. In the presence of neutral hydroxylamine, the ADP-ribosyl bond was shown to have a half-life of about 80 min, suggesting an N-glycosidic linkage between ADP-ribose and an arginyl residue of the protein. As MBP contains several components that are ADP-ribosylated to different specific activities, the use of MBP, ADP-ribosylated in the natural membrane, to identify the sites involved would yield a mixture of peptides difficult to resolve. Therefore, to identify the sites ADP-ribosylated, an endoproteinase Lys-C digest of C-1 ADP-ribosylated by cholera toxin was prepared. Two radioactive peptides were isolated by reversed-phase HPLC. Amino acid and sequence analyses identified the radioactive peptides as residues 5–13 and 54–58 of the human sequence (sp. act., 0.89 and 0.62 nmol of ADP-ribose/nmol of peptide, respectively). The ADP-ribosylated residues were identified as Arg9 and Arg54 by automated and manual Edman sequencing. Taken together with our previous observation that MBP binds GTP at a single site, these data suggest that MBP functions as part of a signal transduction system in myelin.  相似文献   

6.
Direct treatment of brain myelin with freezing/thawing in 0.2 M 2-mercaptoethanol stimulated the endogenous myelin phosphatase activity manyfold when 32P-labeled phosphorylase a was used as a substrate, a result indicating that an endogenous myelin phosphatase is a latent protein phosphatase. When myelin was treated with Triton X-100, this endogenous latent phosphatase activity was further stimulated 2.5-fold. Diethylaminoethyl-cellulose and Sephadex G-200 chromatography of solubilized myelin revealed a pronounced peak of protein phosphatase activity stimulated by freezing/thawing in 0.2 M 2-mercaptoethanol and with a molecular weight of 350,000, which is characteristic of latent phosphatase 2, as previously reported. Moreover, endogenous phosphorylation of myelin basic protein (MBP) in brain myelin was completely reversed by a homogeneous preparation of exogenous latent phosphatase 2. By contrast, under the same conditions, endogenous phosphorylation of brain myelin was entirely unaffected by ATP X Mg-dependent phosphatase and latent phosphatase 1, although both enzymes are potent MBP phosphatases. Together, these findings clearly indicate that a high-molecular-weight latent phosphatase, termed latent phosphatase 2, is the most predominant phosphatase responsible for dephosphorylation of brain myelin.  相似文献   

7.
In Vivo Methylation of an Arginine in Chicken Myelin Basic Protein   总被引:2,自引:0,他引:2  
Abstract: The amino acid sequence around the sole methylarginine residue in chicken myelin basic protein was determined and was found to be similar to that previously reported for mammalian myelin basic protein. The ratio N G, N 'G-dimethylarginine: N G-monomethylarginine:arginine was approximately 1.3:0.9:1.0. No N G, N G-dimethylarginine was detected in the protein. The in vivo incorporation of methyl groups from [methyl-3H]methionine into methylarginines in myelin was found to occur readily in 2-day-old chickens. Radioactively labelled N G, N 'G-dimeth-ylarginine and N G-monomethylarginine in myelin were derived solely from myelin basic protein. Radioactivity was also incorporated into N G, N G-dimeth-ylarginine, although this was not derived from myelin basic protein. As N G-monomethylarginine was easily separated from the dimethylarginines, and as it was derived from myelin basic protein, it may be a good marker for myelin basic protein turnover in vivo. A time course study of the incorporation showed that radioactivity was incorporated into N G-monomethylarginine up to 6 h after injection, and decayed slowly, with an apparent half-life of about 40 days.  相似文献   

8.
9.
A rapid procedure for purification of myelin basic protein has been developed. White matter is delipidated with 2-butanol, and the residue is extracted at pH 7.5 and 8.5. Myelin basic protein is solubilized by extraction in acetate buffer, pH 4.5. The entire procedure requires less than 4 h, and gives homogeneous protein essentially free of protease activity. This procedure can be scaled down to process milligram amounts of white matter; thus it can be very useful for purification of myelin basic protein from very limited amounts of human white matter obtained during surgery.  相似文献   

10.
Tsang  D.  Tsang  Y. S.  Ho  W. K. K.  Wong  R. N. S. 《Neurochemical research》1997,22(7):811-819
The zinc-binding proteins (ZnBPs) in porcine brain were characterized by the radioactive zinc-blot technique. Three ZnBPs of molecular weights about 53 kDa, 42 kDa, and 21 kDa were identified. The 53 kDa and 42 kDa ZnBPs were found in all subcellular fractions while the 21 kDa ZnBP was mainly associated with particulate fractions. This 21 kDa ZnBP was identified by internal protein sequence data as the myelin basic protein. Further characterization of its electrophoretic properties and cyanogen bromide cleavage pattern with the authentic protein confirmed its identity. The zinc binding properties of myelin basic protein are metal specific, concentration dependent and pH dependent. The zinc binding property is conferred by the histidine residues since modification of these residues by diethyl-pyrocarbonate would abolish this activity. Furthermore, zinc ion was found to potentiate myelin basic protein-induced phospholipid vesicle aggregation. It is likely that zinc plays an important role in myelin compaction by interacting with myelin basic protein.  相似文献   

11.
Myelin basic protein (MBP) dissociated from brain myelin membranes when they were incubated (37 degrees C; pH 7.4) at physiological ionic strength. Zinc ions inhibited, and calcium promoted, this process. Protease activity in the membrane preparations cleaved the dissociated MBP into both small (less than 4 kilodaltons) and large (greater than 8 kilodaltons) fragments. The latter were detected, together with intact MBP, by gel electrophoresis of incubation media. Zinc ions appeared to act in two distinct processes. In the presence or absence of added CaCl2, zinc ions in the range 0.1-1 mM inhibited MBP-membrane dissociation. This process was relatively insensitive to heat and Zn2+ could be substituted by either copper (II) or cobalt (II) ions. A second effect was evident only in the presence of added calcium ions, when lower concentrations of Zn2+ (less than 0.1 mM) inhibited MBP-membrane dissociation and the accumulation of intact MBP in incubation media. This process was heat sensitive and only copper (II), but not cobalt (II), ions could replace Zn2+. To determine whether endogenous zinc in myelin membranes is bound to MBP, preparations were solubilised in buffers containing Triton X-100/2 mM CaCl2 and subjected to gel filtration. Endogenous zinc, as indicated by a dithizone-binding method, eluted with fractions containing both MBP and proteolipid protein (PLP). Thus, one means whereby zinc stabilises association of MBP with brain myelin membranes may be by promoting its binding to PLP.  相似文献   

12.
Abstract: An immunosorbent column specific for the myelin basic protein (BP) was prepared by coupling purified anti-BP antibodies to cyanogen bromide (BrCN)-activated Sepharose 4B. The BP-immunosorbent column bound BP between pH 4.5 and pH 6.8. In its working range the column bound approximately 400-475 μg of BP at pH 6.8 and 250 μg at pH 4.5 with recoveries of 72-77%. The BP-immunosorbent column could effectively separate BP from simple mixtures of BP and proteins of similar size and charge and from acid extracts of bovine brain. The results indicate that the BP-immunosorbent column can be used to isolate BP from a mixture of proteins and may be adapted for use in the small-scale purification of the myelin basic proteins involving a minimum number of steps.  相似文献   

13.
Electron microscopic immunocytochemical studies were carried out to localize myelin basic protein and myelin proteolipid protein during the active period of myelination in the developing rat brain using antisera to purified rat brain myelin proteolipid protein and large basic protein. The anti-large basic protein serum was shown by the immunoblot technique to cross-react with all five forms of basic protein present in the myelin of 8-day-old rat brain. Basic protein was localized diffusely in oligodendrocytes and their processes at very early stages in myelination. The immunostaining for basic protein was not specifically associated with any subcellular structures or organelles. The ultrastructural localization of basic protein suggests that it may be involved in fusion of the cytoplasmic faces of the oligodendrocyte processes during compaction of myelin. Immunoreactivity in the oligodendrocyte and myelin due to proteolipid protein appeared at a later stage of myelination than did that due to basic protein. Staining for proteolipid protein in the oligodendrocyte was restricted to the membranes of the rough endoplasmic reticulum, the Golgi apparatus, and apparent Golgi vesicles. The early, uncompacted periaxonal wrappings of oligodendrocyte processes were well stained with antiserum to large basic protein whereas staining for proteolipid protein was visible only after the compaction of myelin sheaths had begun. Our evidence indicates that basic protein and proteolipid protein are processed differently by the oligodendrocytes with regard to their subcellular localization and their time of appearance in the developing myelin sheath.  相似文献   

14.
Abstract: Although the specificity of multiple sclerosis (MS) brain immunoglobulins (lgs) remains unknown, the incubation of these lgs with human myelin can lead to myelin basic protein (MBP) degradation mediated by neutral proteases. In this study, we demonstrate that monoclonal antibodies (mAbs) specific to myelin components such as the CNS-specific myelin oligodendrocyte glycoprotein (MOG) and galactocerebroside (GalC) are found to induce a significant loss of MBP mediated by neutral proteases in myelin. By contrast, antibodies to periaxonal and structural components of myelin, such as MBP and myelin-associated glycoprotein, are ineffective in inducing such MBP degradation. Among the 11 different anti-MOG mAbs directed to externally located epitopes of MOG, only two were found to induce a significant degradation of MBP, suggesting that antibody-induced MBP degradation is not only antigen specific but also epitope specific. Based on the inhibition of MBP degradation in the presence of EGTA and the analysis of the degradation products obtained following incubation of myelin with mAbs to GalC and MOG (8-18C5), the neutral protease involved in this antibody-induced degradation of MBP could be calcium-activated neutral protease. Taken together, these results suggest that antibodies to GalC and MOG can play a major role in destabilizing myelin through MBP breakdown mediated by neutral proteases and thus have an important role to play in the pathogenesis of MS.  相似文献   

15.
Expression of the myelin proteolipid protein (PLP) was examined in the nuclei and polysomes of 12-27-day-old quaking, jimpy, and shiverer mouse brains and in 2-27-day-old normal brains and compared with expression of the myelin basic proteins (MBPs). Northern blots showed the presence of multiple mouse PLP RNAs, the developmental expression of which coincided with myelination. Two major mouse PLP RNAs, 3.5 and 2.6 kilobases in length, were observed in both cytoplasmic polyribosomes and nuclei, and, in addition, a larger 4.6-kilobase PLP RNA was observed in nuclei. Quantitative measurements with slot blot analyses showed that the levels of PLP and MBP RNAs peaked simultaneously at 18 days in nuclei but that maximal levels of PLP RNA lagged behind MBP RNA by several days in the polysomes. The developmental expression of both major classes of myelin protein mRNAs was affected in all three mutants. In shiverer brains, the levels of PLP mRNA in polysomes and nuclei were only 30-55% of control levels after 15 days. Thus, the deletion of a portion of the MBP gene appeared to have a major effect on the expression of the PLP gene in this mutant. In jimpy mice, where the mutation has been shown to involve the PLP gene, expression of MBP mRNA was also severely reduced, to less than 25% of control values. In quaking brains, the expression of each gene followed its own developmental course, different from each other and different from the normal mouse. The extent to which the expression of PLP and MBP was affected by the quaking mutation depended on the age at which it was examined.  相似文献   

16.
Myelin basic protein (MBP) and two peptides derived from MBP (MBP1–44 and MBP152–167) stimulated Schwann cell (SC) proliferation in a cAMP-mediated process. The two mitogenic regions of MBP did not compete with one another for binding to SC suggesting a distinctive SC receptor for each mitogenic peptide. Neutralizing antibodies to the fibroblast growth factor receptor blocked the mitogenic effect of the myelin-related SC mitogen found in the supernatant of myelin-fed macrophages. The binding of 125I-MBP to Schwann cells was specifically inhibited by basic fibroblast growth factor (bFGF) and conversely the binding of 125I-bFGF was competitively inhibited by MBP. These data suggested that the mitogenic effect of one MBP peptide was mediated by a bFGF receptor. The binding of MBP to ganglioside GM1 and the ability of MBP peptides containing homology to the B subunit of cholera toxin (which binds ganglioside GM1) to compete for the binding of a mitogenic peptide (MBP1–44) to SC, identified ganglioside GM1 as a second SC receptor. Based on these results, we conclude that MBP1–44 and MBP152–167 associate with ganglioside GM1 and the bFGF receptor respectively to stimulate SC mitosis.  相似文献   

17.
Rabbit myelin basic protein (BP) contains several Arg-X bonds with differing susceptibilities to thrombic cleavage as measured by the yields of the various cleavage products obtained under three different conditions. Under conditions where the thrombin-to-substrate ratio was very low (1 NIH unit/mg BP), the concentration of substrate was relatively low (4 mg BP/ml), and the incubation time was short (2 h), the rabbit BP was cleaved essentially completely and specifically at a single site, the Arg(95)-Thr(96) bond. The BPs of other species (beef, pig, guinea pig, rat) were similarly cleaved, no doubt because all have the same amino acid sequence in this region of the protein. Under conditions in which the enzyme-to-substrate ratio and the substrate concentration were higher (2 NIH units/mg BP, 8 mg BP/ml) and the incubation time was long (24 h), additional, partial cleavages occurred, principally at the Arg(43)-Phe(44) and Arg(128)-Ala(129) bonds, but with some cleavage at the Arg(31)-His(32) and Arg(63)-Thr(64) bonds as well. Under conditions in which all three variables were elevated (5 NIH units/mg peptide, 20 mg peptide/ml, 24 h), more extensive cleavage occurred at the above sites. In peptide (96-168), which we examined in detail, nearly complete cleavage of the Arg(128)-Ala(129) bond occurred, with partial cleavage at the unmethylated Arg(105)-Gly(106), Arg(111)-Phe(112), Arg(150)-Leu(151), and Arg(160)-Ser(161) bonds. The susceptibilities to cleavage of the Arg-X bonds in the BP can be explained with varying degrees of success in terms of the known specificity of thrombin. Cleavage of two of the bonds, Arg(128)-Ala(129) and Arg(160)-Ser(161), suggests the occurrence of a chain reversal or beta-turn in the sequence preceding the scissile bonds. Most cleavages of the BP with thrombin do not occur in the more hydrophobic regions; in particular, the hydrophobic region in the center of the molecule that includes the Phe-Phe(87-88) sequence is left intact.  相似文献   

18.
19.
Myelin basic protein (MBP) is a major constituent in the myelin of the CNS. In mice, five forms of MBPs (14 kDa, two types of 17 kDa, 18.5 kDa, and 21.5 kDa) encoded by separate mRNAs have been identified based on cDNA cloning studies. These mRNAs are considered to be produced by alternative splicing from a single gene composed of seven exons. Here we report the existence of two novel MBP mRNAs encoding 19.7-kDa and 21-kDa MBPs identified by cDNA cloning using the polymerase chain reaction. Both of these MBPs contain a sequence of a previously unidentified exon of 66 nucleotides, which was mapped to be just 5' of exon 5 in the MBP gene. MBP mRNAs containing this novel exon (exon 5a) belong to a minor population in the whole brain and PNS and are somewhat enriched in the spinal cord. Exon 5a encodes a very hydrophobic segment rich in valine residues, which presumably forms a beta-pleated sheet.  相似文献   

20.
A New Form of Myelin Basic Protein Found in Human Brain   总被引:2,自引:0,他引:2  
Human myelin basic protein was subjected to ion-exchange chromatography at high pH to separate the differently charged components. Polyacrylamide gel electrophoretic patterns of the fractions showed that the less basic fractions 3, 4, and 5 contained significant amounts of a protein somewhat smaller than the more common 18.5-kDa form. Fraction 3 consisted of approximately equal amounts of this smaller polypeptide and component 3, the 18.5-kDa form found in other mammalian myelin basic protein preparations. The two proteins in fraction 3 were separated by fast protein liquid chromatography. Both have blocked N termini and identical C termini (-Met-Ala-Arg-Arg). When the tryptic digests of the two proteins were fractionated by HPLC, the elution profiles were similar, except that four peaks found in the chromatogram of the larger protein were missing from the chromatogram of the smaller one. In addition, an extra peak was found in the elution pattern of the latter chromatogram. Amino acid analysis of the individual tryptic peptides indicated that the smaller protein lacked residues 106-116 (-Gly-Arg-Gly-Leu-Ser-Leu-Ser-Arg-Phe-Ser-Trp-). The deleted portion corresponds exactly to the amino acid sequence encoded by exon 5 of the mouse basic protein gene. This new form of myelin basic protein has a molecular weight of 17,200, calculated from its amino acid composition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号