首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Forest fragmentation is a component of global change, with substantial impact on biodiversity and ecosystem functioning. Despite extensive evidence of forest fragmentation effects on above‐ground ecological processes, little is understood about its below‐ground effects. Abundance and richness of leaf litter fauna can be affected by forest fragmentation, and this can have cascading effects on the decomposition process. Here, we examine how fragmentation of a subtropical dry forest affects aspects of ecosystem structure and functioning, by unravel area and edge effects on leaf litter fauna and decomposition rates and testing whether changes in abundance or richness of litter fauna mediated fragment area and edge effects on litter decomposition. We incubated litterbags filled with a common substrate, at the edge and interior of 12 fragments of Chaco Serrano forest in Central Argentina, for 180 days. We found that invertebrate abundance was higher at the forest edge but independent of fragment area, whereas decomposition declined with fragment size independently of edge or interior location. According to our results, the effect of forest size on decomposition was not mediated by changes in abundance or richness of leaf litter fauna, suggesting independent changes in ecosystem structure and functioning.  相似文献   

2.
Land‐use changes such as conversion of natural forest to rural and urban areas have been considered as main drivers of ecosystem functions decline, and a large variety of indicators has been used to investigate these effects. Here, we used a replicated litter‐bag experiment to investigate the effects of land‐use changes on the leaf‐litter breakdown process and leaf‐associated invertebrates along the forest–pasture–urban gradient located in a subtropical island (Florianópolis, SC, Brazil). We identified the invertebrates and measured the litter breakdown rates using the litter bags approach. Litter bags containing 3 g of dry leaf of Alchornea triplinervia were deployed on forest rural and urban streams. Principal component analysis, based on physico‐chemical variables which, confirmed a gradient of degradation from forest to urban streams with intermediate values in rural areas. In accordance, shredder richness and abundance were lower in rural and urban than in forest streams. The land‐use changes led also to the dominance of tolerant generalist taxa (Chironomidae and Oligochaeta) reducing the taxonomic and functional diversity in these sites. Leaf‐litter breakdown rates decreased from forest to rural and finally to urban areas and were associated with changes in pH, water velocity, dissolved oxygen and abundance of leaf‐shredding invertebrates, although global decomposition rates did not differ between rural and urban streams. Overall, this study showed that land‐use changes, namely to rural and urban areas, have a strong impact on tropical streams ecosystems, in both processes and communities composition and structure. Despite of being apparently a smaller transformation of landscape, rural land use is comparable to urbanisation in terms of impact in stream functioning. It is thus critical to carefully plan urban development and maintain forest areas in the island of Florianópolis in order to preserve its natural biodiversity and aquatic ecosystems functioning.  相似文献   

3.
1. Although stream–catchment interactions have been analysed in some detail in temperate environments, little is known about the effects of land‐use changes in the tropics. Here, we analyse differences in benthic communities (macroinvertebrates and fungi) under two contrasting land uses (mature secondary forest and pasture) in montane streams in north‐western Ecuador and their influence on the rates of litter processing. 2. Between 2005 and 2006, we used a combination of coarse and fine mesh bags to study the relative contribution of macroinvertebrates and fungi to processing of two types of litter, Alnus acuminata and Inga spectabilis, in three‐first‐order streams running through mature secondary montane forests and adjacent downstream reaches running through pastures. At the same time, we characterised the assemblages of shreddering macroinvertebrates and fungi communities and the litter processing rates in stream reaches under both vegetation types. 3. Litter processing rates attributable to invertebrate feeding (coarse mesh bags) were significantly slower in streams running through pastures. Nevertheless, shredder diversity and richness were similar between pasture and forest sections, while shredder abundance was significantly higher in forest streams (mainly Phylloicus sp. :Trichoptera). Fungal reproductive activity and litter processing rates were low (fine mesh bags) and did not differ significantly between pasture and forest stream reaches. 4. Phylloicus sp. abundance was the best predictor of the percentage of litter remaining in coarse mesh bags across pasture and forest sites. Neither shredder diversity nor their species richness was a significant predictor of mass loss, as most of the decomposition was performed by a single keystone species. Although litter decomposition by microbial decomposers was low, fungal biomass (but not diversity) was the best variable explaining the percentage of litter remaining in fine mesh bags. 5. Our data suggest that, in these Neotropical montane streams, land use can have a significant impact on the rates of critical ecosystem processes, such as litter decomposition. In this study, this effect was not mediated by a major shift in the structure of the benthos, but by a decrease in the abundance and relative representation of a single species whose life history makes it critical to litter processing. 6. This study highlights the significant role that macroinvertebrate fauna can have in the processing of litter in Neotropical streams and the predominant role that single species can have in terms of controlling stream ecosystem‐level processes. Understanding the extent to which these patterns affect the long‐term and large‐scale functioning of stream ecosystems still needs further research and will become increasingly important in terms of managing lotic ecosystems in the context of rapid land‐use change.  相似文献   

4.
5.
Human disturbances both decrease the number of species in ecosystems and change their relative abundances. Here we present field evidence demonstrating that shifts in species abundances can have effects on ecosystem functioning that are as great as those from shifts in species richness. We investigated spatial and temporal variability of leaf decomposition rates and community metrics of leaf‐eating invertebrates (shredders) in streams. The shredder community composition dramatically influenced the diversity–function relationship; decomposition was much higher for a given species richness at sites with high species dominance than at sites where dominance was low. Decomposition rates also markedly depended on the identity of the dominant species. Further, dominance effects on decomposition varied seasonally and the number of species required for maintaining decomposition increased with increasing evenness. These findings reveal important but less obvious aspects of the biodiversity–ecosystem functioning relationship.  相似文献   

6.
1. Human land‐use has altered catchments on a large scale in most parts of the world, with one of the most profound changes relevant for streams and rivers being the widespread clearance of woody riparian vegetation to make way for livestock grazing pasture. Increasingly, environmental legislation, such as the EU Water Framework Directive (EU WFD), calls for bioassessment tools that can detect such anthropogenic impacts on ecosystem functioning. 2. We conducted a large‐scale field experiment in 30 European streams to quantify leaf‐litter breakdown, a key ecosystem process, in streams whose riparian zones and catchments had been cleared for pasture compared with those in native deciduous woodland. The study encompassed a west–east gradient, from Ireland to Switzerland to Romania, with each of the three countries representing a distinct region. We used coarse‐mesh and fine‐mesh litter bags (10 and 0.5 mm, respectively) to assess total, microbial and, by difference, macroinvertebrate‐mediated breakdown. 3. Overall, total breakdown rates did not differ between land‐use categories, but in some regions macroinvertebrate‐mediated breakdown was higher in deciduous woodland streams, whereas microbial breakdown was higher in pasture streams. This result suggests that overall ecosystem functioning is maintained by compensatory increases in microbial activity in pasture streams. 4. We suggest that simple coefficients of breakdown rates on their own often might not be powerful enough as a bioassessment tool for detecting differences related to land‐use such as riparian vegetation removal. However, shifts in the relative contributions to breakdown by microbial decomposers versus invertebrate detritivores, as revealed by the ratios of their associated breakdown rate coefficients, showed clear responses to land‐use.  相似文献   

7.
1. If species disproportionately influence ecosystem functioning and also differ in their sensitivities to environmental conditions, the selective removal of species by anthropogenic stressors may lead to strong effects on ecosystem processes. We evaluated whether these circumstances held for several Colorado, U.S.A. streams stressed by Zn. 2. Benthic invertebrates and chemistry were sampled in five second–third order streams for 1 year. Study streams differed in dissolved metal concentrations, but were otherwise similar in chemical and physical characteristics. Secondary production of leaf‐shredding insects was estimated using the increment summation and size‐frequency methods. Leaf litter breakdown rates were estimated by retrieving litter‐bags over a 171 day period. Microbial activity on leaf litter was measured in the laboratory using changes in oxygen concentration over a 48 h incubation period. 3. Dissolved Zn concentrations varied eightfold among two reference and three polluted streams. Total secondary production of shredders was negatively associated with metal contamination. Secondary production in reference streams was dominated by Taenionema pallidum. Results of previous studies and the current investigation demonstrate that this shredder is highly sensitive to metals in Colorado headwater streams. Leaf litter breakdown rates were similar between reference streams and declined significantly in the polluted streams. Microbial respiration at the most contaminated site was significantly lower than at reference sites. 4. Our results supported the hypothesis that some shredder species contribute disproportionately to leaf litter breakdown. Furthermore, the functionally dominant taxon was also the most sensitive to metal contamination. We conclude that leaf litter breakdown in our study streams lacked functional redundancy and was therefore highly sensitive to contaminant‐induced alterations in community structure. We argue for the necessity of simultaneously measuring community structure and ecosystem function in anthropogenically stressed ecosystems.  相似文献   

8.
Greater biodiversity is often associated with increased ecosystem process rates, and is expected to enhance the stability of ecosystem functioning under abiotic stress. However, these relationships might themselves be altered by environmental factors, complicating prediction of the effects of species loss in ecosystems subjected to abiotic stress. In boreal streams, we investigated effects of biodiversity and two abiotic perturbations on three related indices of ecosystem functioning: leaf decomposition, detritivore leaf processing efficiency (LPE) and detritivore growth. Replicate field enclosures containing leaves and detritivore assemblages were exposed to liming and nutrient enrichment, raising pH and nutrient levels. Both treatments constitute perturbations for our naturally acidic and nutrient-poor streams. We also varied detritivore species richness and density. The effects of the abiotic and diversity manipulations were similar in magnitude, but whereas leaf decomposition increased by 18% and 8% following liming and nutrient enrichment, respectively, increased detritivore richness reduced leaf decomposition (6%), detritivore LPE (19%) and detritivore growth (12%). The detritivore richness effect on growth was associated with negative trait-independent complementarity, indicating interspecific interference competition. These interactions were apparently alleviated in both enriched and limed enclosures, as trait-independent complementarity became less negative. LPE increased with detritivore density in the monocultures, indicating benefits of intra-specific aggregation that outweighed the costs of intra-specific competition, and dilution of these benefits probably contributed to lowered leaf decomposition in the species mixtures. Finally, the effects of liming were reduced in most species mixtures relative to the monocultures. These results demonstrate how environmental changes might regulate the consequences of species loss for functioning in anthropogenically perturbed ecosystems, and highlight potential influences of biodiversity on functional stability. Additionally, the negative effects of richness and positive effects of density in our field study were opposite to previous laboratory observations, further illustrating the importance of environmental context for biodiversity–ecosystem functioning relationships.  相似文献   

9.
Atmospheric acid deposition affects many streams worldwide, leading to decreases in pH and in base cations concentrations and increases in aluminum (Al) concentration. These changes in water chemistry induce profound changes in the diversity, structure and activity of biological communities and in ecosystem processes. However, monitoring programs rely only on chemical and structural indicators to assess stream integrity. Nevertheless, the ability of ecosystems to provide services rely on their functional integrity and thus ecosystem processes should be considered in monitoring programs. We assessed the potential for leaf litter decomposition, a fundamental ecosystem process in forest streams, to be used as a bioassessment tool of acidification effects on stream ecosystem functioning. In a field study in the Vosges Mountains (North-eastern France), using three leaf litter species (Alnus glutinosa, Acer pesudoplatanus and Fagus sylvatica) enclosed in fine and coarse mesh bags and incubated in streams flowing over granite or sandstone bedrock along an acidification gradient, we assessed if the response of litter decomposition to acidification depended on litter species, mesh size, parent lithology and acidification level. In a meta-analysis of 17 primary studies on the effect of acidification on leaf litter decomposition, reporting 67 acidified – reference stream comparisons, we assessed the consistency in the response of litter decomposition to acidification cross studies and the robustness of litter decomposition to be used as a bioassessment tool. Both the field study and meta-analysis revealed an overall strong inhibition (>60%) of leaf litter decomposition in acidified streams likely resulting from previously well described altered decomposer community structure and activity. No effect of leaf species was found in the field study, while in the meta-analysis inhibition of leaf litter decomposition in acidified streams was stronger for Fagus than for Acer, Quercus and Liriodendron. However, differences among leaf species in the meta-analysis might have been confounded by other differences among studies. The response of leaf litter decomposition to acidification was stronger in coarse than in fine mesh bags, indicating strong impairment of detritivore community structure and activity. The magnitude of inhibition also depended on parent lithology, but this is likely related to differences in the degree of acidification. Indeed, the magnitude of the inhibition of leaf litter decomposition increases with increases in H+ in Al concentration. Litter decomposition has the potential to be used as a bioassessment tool of acidification effects in streams since it shows consistent response to acidification across regions and is robust to experimental choices.  相似文献   

10.
1. Terrestrial leaf‐litter is the dominant energy input to many headwater streams and consequently the nature of the riparian vegetation can have profound effects on in‐stream processes. The impact of conifer plantations on community structure and ecosystem functioning (litter breakdown) was investigated in field experiments in three countries (Britain, Ireland, Poland), each representing a distinct European ecoregion. Twenty‐six streams were used in the trial: half were bordered with broadleaved and the other half with conifer riparian vegetation. 2. In a leaf breakdown study using litter bags, two leaf types (oak and alder) were used to assess the impact of resource quality and two mesh sizes (10 and 0.5 mm aperture) were used to gauge the relative importance of invertebrate detritivores and microbial decomposers respectively. Comparisons were made between vegetation types and among regions; pH varied among individual streams but, unlike many previous studies, it was not confounded with vegetation type, enabling us to isolate the effect of vegetation more effectively. 3. Overall, riparian vegetation type did not affect breakdown rates but strong regional differences were observed. There was also a significant interaction between these two variables, but this disappeared after fitting pH as a covariable, demonstrating its importance in determining breakdown rates and raising the possibility that in previous studies the impacts of conifer plantations might have been confounded with pH. 4. Shredder species composition differed between vegetation types. Small stoneflies were most strongly associated with conifer streams; broadleaved streams generally had a higher proportion of larger taxa, such as limnephilid caddisflies and gammarid shrimps, although the latter were excluded from sites with low pH. However, breakdown rates were maintained irrespective of shredder community composition, suggesting a high degree of functional redundancy in these communities. Similar processing rates were observed between streams with high numbers of nemourids and those with only a few limnephilids or gammarids, suggesting that density compensation among consumers might stabilise process rates. 5. Our results suggest that leaf‐litter breakdown can be an effective proxy for assessing stream ecosystem functioning, as rates differed significantly across spatial scales, from between streams to across regions and responded to an environmental gradient (pH). The litter bag technique can also complement traditional assessment methods by providing valuable information on the composition of consumer guilds, thereby providing an important link between structure and function that is needed to help inform management practices.  相似文献   

11.
1. Rates of whole‐system metabolism (production and respiration) are fundamental indicators of ecosystem structure and function. Although first‐order, proximal controls are well understood, assessments of the interactions between proximal controls and distal controls, such as land use and geographic region, are lacking. Thus, the influence of land use on stream metabolism across geographic regions is unknown. Further, there is limited understanding of how land use may alter variability in ecosystem metabolism across regions. 2. Stream metabolism was measured in nine streams in each of eight regions (n = 72) across the United States and Puerto Rico. In each region, three streams were selected from a range of three land uses: agriculturally influenced, urban‐influenced, and reference streams. Stream metabolism was estimated from diel changes in dissolved oxygen concentrations in each stream reach with correction for reaeration and groundwater input. 3. Gross primary production (GPP) was highest in regions with little riparian vegetation (sagebrush steppe in Wyoming, desert shrub in Arizona/New Mexico) and lowest in forested regions (North Carolina, Oregon). In contrast, ecosystem respiration (ER) varied both within and among regions. Reference streams had significantly lower rates of GPP than urban or agriculturally influenced streams. 4. GPP was positively correlated with photosynthetically active radiation and autotrophic biomass. Multiple regression models compared using Akaike’s information criterion (AIC) indicated GPP increased with water column ammonium and the fraction of the catchment in urban and reference land‐use categories. Multiple regression models also identified velocity, temperature, nitrate, ammonium, dissolved organic carbon, GPP, coarse benthic organic matter, fine benthic organic matter and the fraction of all land‐use categories in the catchment as regulators of ER. 5. Structural equation modelling indicated significant distal as well as proximal control pathways including a direct effect of land‐use on GPP as well as SRP, DIN, and PAR effects on GPP; GPP effects on autotrophic biomass, organic matter, and ER; and organic matter effects on ER. 6. Overall, consideration of the data separated by land‐use categories showed reduced inter‐regional variability in rates of metabolism, indicating that the influence of agricultural and urban land use can obscure regional differences in stream metabolism.  相似文献   

12.
Eutrophication is a major threat to freshwater ecosystems worldwide that affects aquatic biota and compromises ecosystem functioning. In this study, we assessed the potential use of leaf decomposition and associated decomposer communities to predict stream eutrophication. Because leaf quality is expected to affect leaf decomposition, we used five leaf species, differing in their initial nitrogen concentration. Leaves of alder, chestnut, plane, oak and eucalyptus were placed in coarse-mesh bags and immersed in six streams along an eutrophication gradient to assess leaf decomposition and the structure of associated decomposer communities. A hump-shaped relationship was established between leaf decomposition and the eutrophication gradient for all leaf species, except for eucalyptus. Invertebrate biomass and density as well as fungal biomass and sporulation were lowest at the extremes of the gradient. Leaf-associated invertebrate and fungal assemblages were mainly structured by stream eutrophication. The percentage of shredders on leaves decreased, whereas the percentage of oligochaeta increased along the eutrophication gradient. The Iberian Biological Monitoring Working Party Index (IBMWP) applied to benthic invertebrates increased from oligotrophic to moderately eutrophic streams and then dropped sharply at highly and hypertrophic streams. Overall, leaf decomposition was a valuable tool to assess changes in stream water quality, and it allowed the discrimination of sites classified by the IBMWP within class I and class IV. Moreover, decomposition of most leaf species responded in a similar way to eutrophication when decomposition was normalized by the quality of leaves.  相似文献   

13.
Tropical montane ecosystems of the Andes are critically threatened by a rapid land‐use change which can potentially affect stream variables, aquatic communities, and ecosystem processes such as leaf litter breakdown. However, these effects have not been sufficiently investigated in the Andean region and at high altitude locations in general. Here, we studied the influence of land use (forest–pasture–urban) on stream physico‐chemical variables (e.g., water temperature, nutrient concentration, and pH), aquatic communities (macroinvertebrates and aquatic fungi) and leaf litter breakdown rates in Andean streams (southern Ecuador), and how variation in those stream physico‐chemical variables affect macroinvertebrates and fungi related to leaf litter breakdown. We found that pH, water temperature, and nutrient concentration increased along the land‐use gradient. Macroinvertebrate communities were significantly different between land uses. Shredder richness and abundance were lower in pasture than forest sites and totally absent in urban sites, and fungal richness and biomass were higher in forest sites than in pasture and urban sites. Leaf litter breakdown rates became slower as riparian land use changed from natural to anthropogenically disturbed conditions and were largely determined by pH, water temperature, phosphate concentration, fungal activity, and single species of leaf‐shredding invertebrates. Our findings provide evidence that leaf litter breakdown in Andean streams is sensitive to riparian land‐use change, with urban streams being the most affected. In addition, this study highlights the role of fungal biomass and shredder species (Phylloicus; Trichoptera and Anchytarsus; Coleoptera) on leaf litter breakdown in Andean streams and the contribution of aquatic fungi in supporting this ecosystem process when shredders are absent or present low abundance in streams affected by urbanization. Finally, we summarize important implications in terms of managing of native vegetation and riparian buffers to promote ecological integrity and functioning of tropical Andean stream ecosystems.  相似文献   

14.
Ongoing climate change is increasing the occurrence and intensity of drought episodes worldwide, including in boreal regions not previously regarded as drought prone, and where the impacts of drought remain poorly understood. Ecological connectivity is one factor that might influence community structure and ecosystem functioning post‐drought, by facilitating the recovery of sensitive species via dispersal at both local (e.g. a nearby habitat patch) and regional (from other systems within the same region) scales. In an outdoor mesocosm experiment, we investigated how impacts of drought on boreal stream ecosystems are altered by the spatial arrangement of local habitat patches within stream channels, and variation in ecological connectivity with a regional species pool. We measured basal ecosystem processes underlying carbon and nutrient cycling: (a) algal biomass accrual; (b) microbial respiration; and (c) decomposition of organic matter, and sampled communities of aquatic fungi and benthic invertebrates. An 8‐day drought event had strong impacts on both community structure and ecosystem functioning, including algal accrual, leaf decomposition and microbial respiration, with many of these impacts persisting even after water levels had been restored for 3.5 weeks. Enhanced connectivity with the regional species pool and increased aggregation of habitat patches also affected multiple response variables, especially those associated with microbes, and in some cases reduced the effects of drought to a small extent. This indicates that spatial processes might play a role in the resilience of communities and ecosystem functioning, given enough time. These effects were however insufficient to facilitate significant recovery in algal growth before seasonal dieback began in autumn. The limited resilience of ecosystem functioning in our experiment suggests that even short‐term droughts can have extended consequences for stream ecosystems in the world's vast boreal region, and especially on the ecosystem processes and services mediated by algal biofilms.  相似文献   

15.
Coarse particulate organic matter is often broken down by specialist shredder invertebrates in temperate streams. In some tropical streams, larger, non-specialist, omnivorous fauna, (macroconsumers), particularly decapod shrimps and crabs, have been found to process coarse particulate matter. Larger shrimps and fish may also prey on or inhibit smaller invertebrates. Depending on the relative importance of larger and smaller fauna in leaf processing and in predatory interactions, we could expect that exclusion of larger fauna could either result in a decrease in leaf processing (if they were important in shredding or bioturbation) or increase in leaf processing if they negatively affected smaller shredders. We tested this by excluding fauna of different sizes from leaf peaks using bags with different sizes of mesh –0.2 mm (exclusion of most fauna), 2 mm (exclusion of larger fauna), and 10 mm (access to most fauna). Bag effect on leaf processing was minimized by constructing the bags of the same, fine, material, and sewing a relatively small window of the required mesh size. The experiment was conducted on two occasions in three streams of the urban forest of Parque Estadual da Pedra Branca, city of Rio de Janeiro. The three streams differed in larger fauna of shrimps (Macrobrachium potiuna), crabs, tadpoles, and fish. Packs were incubated for six time intervals and the rate of leaf processing calculated as the exponential rate of loss of leaf material. Rate of leaf processing was faster in bags with the largest mesh size; the rates in the other two mesh sizes were not statistically different. Rates varied between experiments and among streams. We could not attribute the faster leaf processing to any particular component of the larger fauna; the patterns of differences among streams and between experiments were not associated with particular taxa. There was no general trend of fewer smaller fauna in the presence of macroconsumers; the few smaller taxa that were different between mesh sizes were variously less and more abundant in the 10-mm mesh bags compared to the 2-mm. Known shredders were rare in the smaller fauna; the mining chironomid Stenochironomus was common, but was apparently not affected by larger fauna and apparently did not increase leaf processing. We conclude that macroconsumers and not smaller fauna had a positive effect on leaf processing, and this confirms a pattern observed in some other coastal Neotropical streams.  相似文献   

16.
Decomposition is a vital ecosystem process, increasingly modified by human activity. Theoretical frameworks and empirical studies that aim to understand the interplay between human land‐use, macro‐fauna and decomposition processes have primarily focused on leaf and wood litter. For a whole‐plant understanding of how land‐use and macro‐fauna influence decomposition, investigating root litter is required. Using litterbags, we quantified rates of root decomposition across contrasting tropical savanna land‐uses, namely wildlife and fire‐dominated protected areas and livestock pastureland without fire. By scanning litterbags for termite intrusion, we differentiated termite and microbial driven decomposition. Root litter was buried underneath different tree canopies (leguminous and non‐leguminous trees) and outside canopies to account for savanna landscape effects. Additionally, we established a termite cafeteria‐style experiment and common garden to explore termite selectivity of root litter and root trait relationships, respectively. After one year, we found no significant differences in root litter mass loss between wildlife dominated areas and pastureland. Instead, we found consistent species differences in root litter mass loss across land‐uses and additive and non‐additive effects of termites on root decomposition across plant species. Termite selectivity for root litter species occurred for both root and leaf litter buried near termite mounds, but was not explained by root traits measured in the common garden. Termite foraging was greater under leguminous tree canopies than other canopies; however, this did not influence rates of root decomposition. Our study suggests that land‐use has a weak direct effect on belowground processes in savannas. Instead, changes in herbaceous species composition and termite foraging have stronger impacts on belowground decomposition. Moreover, termites were not generalist decomposers of root litter, but their impact varies depending on plant species identity and likely associated root traits. This root litter selectivity by termites is likely to be an important contributor to spatial heterogeneity in savanna nutrient cycling.  相似文献   

17.
Lecerf A  Dobson M  Dang CK  Chauvet E 《Oecologia》2005,146(3):432-442
Riparian vegetation is closely connected to stream food webs through input of leaf detritus as a primary energy supply, and therefore, any alteration of plant diversity may influence aquatic ecosystem functioning. We measured leaf litter breakdown rate and associated biological parameters in mesh bags in eight headwater streams bordered either with mixed deciduous forest or with beech forest. The variety of leaf litter types in mixed forest results in higher food quality for large-particle invertebrate detritivores (‘shredders’) than in beech forest, which is dominated by a single leaf species of low quality. Breakdown rate of low quality (oak) leaf litter in coarse mesh bags was lower in beech forest streams than in mixed forest streams, a consequence of lower shredder biomass. In contrast, high quality (alder) leaf litter broke down at similar rates in both stream categories as a result of similar shredder biomass in coarse mesh bags. Microbial breakdown rate of oak and alder leaves, determined in fine mesh bags, did not differ between the stream categories. We found however aquatic hyphomycete species richness on leaf litter to positively co-vary with riparian plant species richness. Fungal species richness may enhance leaf litter breakdown rate through positive effects on resource quality for shredders. A feeding experiment established a positive relationship between fungal species richness per se and leaf litter consumption rate by an amphipod shredder (Gammarus fossarum). Our results show therefore that plant species richness may indirectly govern ecosystem functioning through complex trophic interactions. Integrating microbial diversity and trophic dynamics would considerably improve the prediction of the consequences of species loss.  相似文献   

18.
Invasion by exotic trees into riparian areas has the potential to impact aquatic systems. We examined the effects of the exotic Salix fragilis (crack willow) on the structure and functioning of small streams in northern Patagonian Andes via a field survey of benthic invertebrates and leaf litter and an in situ experiment. We compared leaf decomposition of the native Ochetophila trinervis (chacay) and S. fragilis in reaches dominated by native vegetation versus reaches dominated by crack willow. We hypothesized that S. fragilis affects the quality of leaf litter entering the streams, changing the aquatic biota composition and litter decomposition. Our study showed that crack willow leaves decomposed slower than chacay, likely related to leaf properties (i.e., leaf toughness). Benthic leaf litter mass was similar between the two riparian vegetation types, though in stream reaches dominated by crack willow, leaves of this species represented 82% of the total leaf litter. Benthic invertebrate abundance and diversity were similar between reaches but species composition differed. Our study found little evidence for strong impacts of crack willow on those small streams. Further studies on other aspects of ecosystem functioning, such as primary production, would enhance our understanding of the impacts of crack willow on Patagonian streams.  相似文献   

19.
Recent theoretical advances in food web ecology emphasize the importance of body size disparities among species for the structure, stability and functions of ecosystems. Experimental confirmations of the functional importance of large species, independent of their trophic position, are scarce. We specifically examine the multiple ecological roles of large invertebrates from two distinct trophic levels in headwater streams. We experimentally manipulated the presence of large predatory invertebrates (two Perlid stoneflies) or detritivores (a limnephilid caddisfly and a Pteronarcys stonefly) in a two‐by‐two design in stream channels open to immigration/emigration of smaller biota. We assessed treatment effects on the trophic structure of the benthic invertebrate community, dynamics of basal resources (benthic algae and leaf litter of cedar and alder), and stability of litter decomposition rates against an experimental pulse perturbation (fine sediment input). The presence of the large invertebrates was associated with a ten‐fold decrease in the biomass of invertebrate filterers whereas other trophic groups were unaffected by the large species. The biomass of benthic algae was lower and the rate of mass loss of alder litter was higher in channels lacking the large predators, thus revealing trophic cascades operating along both algal‐based and detritus‐based food chains. The large predators had no detectable effect on the decomposition of cedar whereas both cedar and alder disappeared faster in the presence of the large detritivores. Furthermore, the large predators and large detritivores interactively influenced the decomposition of the cedar–alder mixture through a litter diversity effect and the variability of the rate of alder decomposition after a pulse of fine sediment. Because the large invertebrates affected multiple ecosystem properties, and as their absence was not rapidly compensated for by small immigrant species, our findings support the notion that large species could be critically important in controlling ecosystem structure and functioning.  相似文献   

20.
Many ecosystem services are sustained by the combined action of microscopic and macroscopic organisms, and shaped by interactions between the two. However, studies tend to focus on only one of these two components. We combined the two by investigating the impact of macrofauna on microbial community composition and functioning in the context of a major ecosystem process: the decomposition of dung. We compared bacterial communities of pasture soil and experimental dung pats inhabited by one (Aphodius), two (Aphodius and Geotrupes), or no dung beetle genera. Overall, we found distinct microbial communities in soil and dung samples, and that the communities converged over the course of the experiment. Characterising the soil microbial communities underlying the dung pats revealed a significant interactive effect between the microflora and macrofauna, where the diversity and composition of microbial communities was significantly affected by the presence or absence of dung beetles. The specific identity of the beetles had no detectable impact, but the microbial evenness was lower in the presence of both Aphodius and Geotrupes than in the presence of Aphodius alone. Differences in microbial community composition were associated with differences in substrate usage as measured by Ecoplates. Moreover, microbial communities with similar compositions showed more similar substrate usage. Our study suggests that the presence of macrofauna (dung beetles) will modify the microflora (bacteria) of both dung pats and pasture soil, including community diversity and functioning. In particular, the presence of dung beetles promotes the transfer of bacteria across the soil–dung interface, resulting in increased similarity in community structure and functioning. The results demonstrate that to understand how microbes contribute to the ecosystem process of dung decomposition, there is a need to understand their interactions with larger co‐occurring fauna.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号