首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In Blaberus discoidalis and Gromphadorhina portentosa, the distribution of motor axons to the muscles which control movements of the spiracular valves at both respiratory and non-respiratory spiracles is identical. Both fast and slowly contracting heads of the opener muscles are innervated by an excitatory motor axon. Physiological properties of the opener excitor axon correlate with valve function. The slowly contracting head of the opener muscle is, in addition, innervated by a common inhibitor which also occasionally innervates closer muscle fibers. Activation of the common inhibitor terminates contraction of slowly contracting opener muscle fibres and initiates a rapid relaxation of these fibres.  相似文献   

2.
Mechanisms for regulating the degree of opening of its spiracles are present in Thermobia. That of the mesothoracic spiracle is of the external type with a flap-like hood guarding the spiracular aperture. Contraction of muscles open the spiracle by raising the hood. Closure is brought about by muscular relaxation and elastic cuticular recoil. Opening is either partial, with small-scale oscillatory movements ('fluttering'), or complete ('wide-opening'). Wide-opening follows bouts of muscular activity. Carbon dioxide anaesthesia relaxes the opener muscles causing the spiracles to close by elastic recoil. This explains continued low tracheal water loss during anaesthesia, and also in death. The control mechanisms of the metathoracic and 8 pairs of abdominal spiracles are of the internal type, with a crypt-like atrium leading into the slit-like neck region of the spiracular pit, one side of which has an elastic cuticular rod running along it. Muscles inserted on the opposite side widen the aperture. As with the mesothoracic spiracle, closure is brought about by muscular relaxation and elastic cuticular recoil.  相似文献   

3.
Activity patterns of motoneurones which innervate spiracular muscles in two blaberid cockroaches, Blaberus discoidalis and Gromphadorhina portentosa, have been monitored during two homologous behaviour patterns: respiratory and non-respiratory tracheal ventilation. Based upon the activity of spiracular motoneurones during these two activities, the abdominal spiracles have been divided into three functional groups: vestigial, respiratory and non-respiratory. In Blaberus discoidalis spiracle 3 is vestigial, spiracles 6, 7, 8 and 10 are respiratory, and spiracles 4, 5 and 9 are non-respiratory. In Gromphadorhina portentosa spiracles 3 and 10 are vestigial, spiracle 4 is non-respiratory and spiracles 5–9 are respiratory.Respiratory spiracles in both species are characterized by activity patterns of their motoneurones during respiratory tracheal ventilation: low frequency firing at irregular intervals during the respiratory pause and a higher frequency burst synchronous with the expiratory abdominal compression. Non-respiratory spiracles are characterized by complete inactivity of their opener motoneurones during respiratory tracheal ventilation. These motoneurones are activated by mechanical stimulation in both species, which simultaneously suppresses activity in respiratory opener motoneurones. In Blaberus discoidalis, there are no differences between activity patterns of respiratory and non-respiratory closer motoneurones. In Gromphadorhina portentosa, not only do respiratory and non-respiratory closer motoneurones have different activity patterns, but the activity pattern of respiratory closer motoneurones is different during respiratory and non-respiratory tracheal ventilation. The functional implications of these several spiracular motoneurone activity patterns are discussed.  相似文献   

4.

The larvae of Costelytra zealandica have cribriform spiracles with a smooth spiracular plate pierced by aeropyles measuring about 5×0.2 μm. The contact angle of water on the sclerotised cuticle of the spiracular plate is sufficiently high to prevent the aeropyles from filling with water even under the wettest conditions. The spiracles have no closing apparatus, but this has little effect on transpiration rate.  相似文献   

5.
Characters of immatures are potentially useful in identifying taxa, but few immatures of Pentatomidae were described. The objectives here are to describe the egg and five nymphal instars of Caonabo pseudoscylax (Bergroth) under light and scanning electron microscopy. Adults, eggs, and nymphs were collected on Homolepsis glutinosa during 2008, in Criciúma (Santa Catarina, Brazil). The egg of C. pseudoscylax is subcylindrical, chorion reddish brown, slightly translucent, and with granulate surface. Aero-micropylar processes translucent, spongy, and strongly clavate. Nymphs without punctures, spiracles placed near the lateral abdominal margin. The dorsal abdominal gland has rounded ostioles bearing cuticular valve; spout peritreme smooth, directed anteriorly; evaporatorium network-shaped; and microsculpture poorly ornamented. Humeral angles of the pronotum were produced from fourth instar. The almost marginal placement of abdominal spiracles may diagnose the nymphs of C. pseudoscylax from first instar to adulthood.  相似文献   

6.
Summary In the crickets, Gryllus campestris and Gryllus bimaculatus, the innervation of the dorso-ventral neck muscles M62, M57, and M59 was examined using cobalt staining via peripheral nerves and electrophysiological methods. M62 and M57 are each innervated by two motoneurons in the suboesophageal ganglion. The four motoneurons project into the median nerve to bifurcate into the transverse nerves of both sides. M62 and M57 are the only neck muscles innervated via this route. These bifurcating axon-projections are identical to those of the spiracular motoneurons in the prothoracic ganglion innervating the opener and closer muscle of the first thoracic spiracle in the cricket. The morphology of their branching pattern is described. The neck muscle M57 and the opener muscle of the first thoracic spiracle are additionally innervated by one mesothoracic motoneuron each, with similar morphology. These results suggest, that in crickets, the neck muscles M57 and M62 are homologous to spiracular muscles in the thoracic segments. The two neck muscles M62 and M59 (the posterior neighbour of M57) receive projections from a prothoracic dorsal unpaired median (DUM) neuron that also innervates dorsal-longitudinal neck muscles but not M57. In addition, one or two mesothoracic DUM neurons send axon collaterals intersegmentally to M59. This is the first demonstration of the innervation of neck muscles by DUM neurons.  相似文献   

7.
The first data on blood-sucking ectoparasitic larvae of Neottiophilum praeustum (Meig.) which develop in bird nests are presented in Russia, with the fieldfare Turdus pilaris L. as a host example. Larval development takes not more than 10–12 days but no puparia are formed until late autumn. The larvae of Neottiophilum resemble those of calliphorid flies both in body structure and life mode. The main diagnostic characters of Neottiophilum larvae distinguishing them from calliphorid ones are the spiracular disk of the posterior spiracles being positioned dorsal rather than ventral to the stigmal plate and lying outside rather than inside its peritreme. In addition, the anterior spiracles have 14–15, rather than 3–8 spiracular chambers.  相似文献   

8.
The insect tracheal system is a unique respiratory system, designed for maximum oxygen delivery at high metabolic demands, e.g. during activity and at high ambient temperatures. Therefore, large safety margins are required for tracheal and spiracular conductance. Spiracles are the entry to the tracheal system and play an important role in controlling discontinuous gas exchange (DGC) between tracheal system and atmosphere in moth pupae. We investigated the effect of modulated metabolic rate (by changing ambient temperature) and modulated spiracular conductance (by blocking all except one spiracles) on gas exchange patterns in Samia pupae. Both, spiracle blocking and metabolic rates, affected respiratory behavior in Samia cynthia pupae. While animals showed discontinuous gas exchange cycles at lower temperatures with unblocked spiracles, the respiratory patterns were cyclic at higher temperatures, with partly blocked spiracles or a combination of these two factors. The threshold for the transition from a discontinuous (DGC) to a cyclic gas exchange (cycGE) was significantly higher in animals with unblocked spiracles (18.7 nmol g−1 min−1 vs. 7.9 nmol g−1 min−1). These findings indicate an important influence of spiracle conductance on the DGC, which may occur mostly in insects showing high spiracular conductances and low metabolic rates.  相似文献   

9.
Scanning electron microscopy documentation of first instar Calliphora vicina Robineau-Desvoidy, Phormia regina (Meigen) and Lucilia illustris (Meigen) (Diptera: Calliphoridae) is presented for the first time, and the following morphological structures are documented: pseudocephalon; antenna; maxillary palpus; facial mask; labial lobe; thoracic and abdominal spinulation; spiracular field; posterior spiracles, and anal pad. Light microscopy documentation and illustrations are provided for the cephaloskeleton in lateral and ventral views. New diagnostic features are revealed in the configuration of the facial mask, cephaloskeleton and posterior spiracles. The first instar morphology of C. vicina, Ph. regina and L. illustris is discussed in the light of existing knowledge about early instars of blowflies.  相似文献   

10.
The Drosophila respiratory system consists of two connected organs, the tracheae and the spiracles. Together they ensure the efficient delivery of air-borne oxygen to all tissues. The posterior spiracles consist internally of the spiracular chamber, an invaginated tube with filtering properties that connects the main tracheal branch to the environment, and externally of the stigmatophore, an extensible epidermal structure that covers the spiracular chamber. The primordia of both components are first specified in the plane of the epidermis and subsequently the spiracular chamber is internalized through the process of invagination accompanied by apical cell constriction. It has become clear that invagination processes do not always or only rely on apical constriction. We show here that in mutants for the src-like kinase Btk29A spiracle cells constrict apically but do not complete invagination, giving rise to shorter spiracular chambers. This defect can be rescued by using different GAL4 drivers to express Btk29A throughout the ectoderm, in cells of posterior segments only, or in the stigmatophore pointing to a non cell-autonomous role for Btk29A. Our analysis suggests that complete invagination of the spiracular chamber requires Btk29A-dependent planar cell rearrangements of adjacent non-invaginating cells of the stigmatophore. These results highlight the complex physical interactions that take place among organ components during morphogenesis, which contribute to their final form and function.  相似文献   

11.
Knowledge of the neuroanatomy of the sucking pump of Manduca sexta (Sphingidae) is valuable for studies of olfactory learning, pattern generators, and postembryonic modification of motor circuitry. The pump comprises a cibarial valve, a buccal pump, and an esophageal sphincter valve. Cibarial opener and closer muscles control the cibarial valve. Six pairs of dilator muscles and a compressor muscle operate the buccal pump. The cibarial opener and one pair of buccal dilator muscles are innervated by paired neurons in the tritocerebrum, and the cibarial opener has double, bilateral innervation. Their tritocerebral innervation indicates that these muscles evolved from labro-clypeal muscles. The remaining paired buccal dilator muscles each are innervated by an unpaired motor neuron in the frontal ganglion. These motor neurons project bilaterally through the frontal connectives to dendritic arborizations in the tritocerebrum. These projections also have a series of dendritic-like arborizations in the connectives. The cibarial closer and buccal compressor muscles are also innervated by motor neurons in the frontal ganglion, but only the closer muscle neuron projects bilaterally to the tritocerebrum. The innervation of the pump muscles indicates that they are associated with the stomodaeum, and, therefore, the buccal pump evolved from the anterior stomodaeum rather than from the cibarium.  相似文献   

12.
This study examines the external and internal anatomy of the polypneustic (respiratory) lobes in 8 species of tsetse larvae (Diptera: Glossinidae). In the more primitive fusca group, the respiratory lobes are either ring-like (Glossina longipennis) or partially divided into 2 lobes (G. brevipalpis). Two distinctly separated lobes are present in the palpalis group (G. palpalis, G. tachinoides, G. fuscipes) and in the morsitans group (G. morsitans, G. pallidipes, G. austeni). Air enters the polypneustic lobes through narrow slits (stigmata) on the tips of numerous small spiracular papillae that are arranged in rows on both the outer and inner surfaces of the polypneustic lobes. The openings on the spiracular papillae connect to an air tube that is sculptured with septa and pegs. The air tubes connect to an outer air chamber that is likewise replete with a network of pegged septa. The outer air chamber is connected to a felt chamber containing a dense network of filamentous septa (spicules) that appear to function as an air filter. The felt chamber opens into a large, sculptured inner air chamber that connects directly to the regular tracheal trunk. The polypneustic lobes are unusually hard and brittle due to strong sclerotization of the cuticle and are permeated with numerous cuticular pores. There is no evidence that trichomes or other structures present on the respiratory lobes are innervated.  相似文献   

13.
The morphology of all larval instars of Fannia canicularis (Linnaeus) (Diptera: Fanniidae) is documented using a combination of light and scanning electron microscopy. The following structures are documented for all instars: antennal complex; maxillary palpus; facial mask; cephaloskeleton; ventral organ; anterior spiracle; Keilin's organ; posterior spiracle; fleshy processes, and anal pad. Structures reported for the first time for all instars include: two pairs of lateral prominences on the prothoracic segment; additional ventrolateral prominences on the second thoracic segment, and a papilla at the base of the posterior spiracle. Other structures reported for the first time are anterior spiracles in the first instar and a serrated tip on the mouthhook in the second instar. A trichoid sensillum on the posterior spiracular plate, representing a sensory organ otherwise unknown in the Calyptratae, is described in the second and third instars. Results are discussed and compared with existing knowledge on dipteran larval morphology.  相似文献   

14.
15.
The main morphological features of the cephalic region of the larva of Haematobia irritans (L.) are the oral grooves, tripartite labium and the antennomaxillary protuberances that have the dorsal, terminal and ventral sensory organs. The total number of sensilla that are found on the terminal organ differs from other cyclorrhaphous-fly larvae. The fan-shaped anterior spiracles usually consist of seven bulbous digits that are unequal in length. The creeping welts consist of notched, convex plates that split into two separate plates as they approach the midline of the venter. This characteristic has not been described previously for this species or other, higher, dipterous larvae. There are two posterior spiracles with an ecdysial scar, four fan-shaped and branching spiracular hairs and irregularly-shaped spiracular openings. The longitudinal anal opening is situated in the cuticular band that is known as the anal organ.  相似文献   

16.
After decades of intensive research, the actual mechanism behind discontinuous gas exchange in insects has not been fully understood. One open question concerns the actual way (closed, flutter, and open) of how spiracles respond to tracheal gas concentrations. As the results of a classic paper [Burkett, B.N., Schneiderman, H.A., 1974. Roles of oxygen and carbon dioxide in the control of spiracular function in cecropia pupae. Biological Bulletin 147, 274-293] allow ambiguous interpretation, we thus reexamined the behavior of the spiracles in response to fixed, controlled endotracheal gas concentrations.The tracheal system of diapausing pupae of Attacus atlas (Saturniidae, Lepidoptera) was flushed with gas mixtures varying in PO2 and PCO2 while the behavior of the spiracles was monitored using changes in the pressure signal. This novel pressure based technique proved to be superior to classic visual observation of single spiracles. A two-dimensional map of the spiracle behavior in response to endotracheal PO2 and PCO2 was established. Typically, it contained two distinct regions only, corresponding to “closed” and “open” spiracles. A separate “flutter” region was missing. Because fluttering is commonly observed in moth pupae, we suggest that the intermittent spiracle opening during a flutter phase is an effect of non-steady-state conditions within the tracheal system. For low PCO2 the minimum PO2 resulting in open spiracles was linearly dependent upon PCO2. Above a threshold of 1-1.5 kPa CO2 the spiracles were open irrespective of PO2. We propose a hypothetical spiracular control model, which is simple and explains the time course of endotracheal partial pressures during all phases of discontinuous gas exchange.  相似文献   

17.
18.
19.
20.
Nymphs and adults of the burrower bug Scaptocoris carvalhoi Becker feed on vegetal sap of their host plants through the roots, and little is known on the morphology and biology of its immature stage. Therefore, we aimed to characterize the immatures of S. carvalhoi by describing the egg and the morphology of each instar. Eggs of S. carvalhoi have a smooth chorion surface without visible micropylar processes. The presence of five instars was confirmed by the coefficient of determination (R 2?>?0.95) and by the growth constant (K between 1.2 and 1.6). Nymphs have an elliptical body and fossorial scythe-like forelegs. The tarsi are absent as in adults, and the prototarsal insertion region becomes visible only in the fourth instar. Nymphs from first to fourth instar of S. carvalhoi showed the presence of 1?+?1 trichobothria in urosternites III to VII, close to the anterior margin and inside the spiracles; besides these trichobothria, fifth instars presented 1?+?1 pre-trichobothria in urosternites III to V located posteriorly, almost in the row of spiracles close to the posterior margin of the urosternites. This is the first detailed morphological record of immatures belonging to Scaptocoris.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号