首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 957 毫秒
1.
The objective of this study was to evaluate the influences of detritus from the leaves of different species, and of exposure time on invertebrate colonization of leaves in a shaded Cerrado stream. We hypothesized that the exposure time is the main factor that influences the colonization of leaves by invertebrates. We used leaves of five tree species native to the Brazilian Cerrado: Protium heptaphyllum and Protium brasiliense (Burseraceae), Ocotea sp. (Lauraceae), Myrcia guyanensis (Myrtaceae), and Miconia chartacea (Melastomataceae), which are characterized by their toughness and low-nutritional quality. Litter bags, each containing leaves from one species, were placed in a headwater stream and removed after 7, 15, 30, 60, 90, and 120 days. The dominant taxon was Chironomidae, which comprised ca. 52% of all organisms and ca. 20% of the total biomass. The taxonomic richness of colonizing organisms did not vary among the leaf species. However, the density and biomass of the associated organisms varied differently among the kinds of detritus during the course of the incubation. The collector-gatherers and shredders reached higher densities in the detritus that decomposed more rapidly (Ocotea sp. and M. guyanensis), principally in the more advanced stages of colonization. The collector-filterers reached higher densities in the detritus that decomposed more slowly (P. heptaphyllum, P. brasiliense, and M. chartacea), principally in the initial stages of incubation. A cluster analysis divided the detritus samples of different leaf species according to the exposure time (initial phase: up to 7 days; intermediate phase: 7–30 days; advanced phase: 30–120 days), suggesting some succession in invertebrate colonization, with differences in taxon composition (indicator taxa analysis). These results suggest that regardless of the leaf-detritus species, exposure time was the main factor that influenced the colonization process of aquatic invertebrates.  相似文献   

2.
The dynamics of leaf breakdown in a headwater Colombian stream were evaluated for the native tree species Myrsine guianensis, Cupania latifolia and Nectandra lineatifolia using coarse and fine mesh litter bags. Ten bags of each species (five of each mesh size) were retrieved from the stream at 1, 8, 15, 30, 60 and 120 days. k values ranged from 0.0008 to 0.0058 day–1 and density of macroinvertebrates from 35 to 55 individuals per leaf bag, peaking at day 8. Myrsine guianensis degraded more rapidly than the other species for both coarse and fine mesh bags. This species and Nectandra lineatifolia presented differences in k values between coarse and fine mesh bags, suggesting that macroinvertebrates influenced the decay rate. Despite the low densities of macroinvertebrates found, shredders represented 12.7% of individuals and 50 to 68% of the invertebrate biomass in bags, indicating that this functional feeding group was an important component of fauna associated with litter breakdown in this first order tropical stream. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
Previous work in terrestrial and aquatic ecosystems has suggested that the relationship between breakdown rates of leaf litter and plant species richness may change unpredictability due to non‐additive effects mediated by the presence of key‐species. By using single‐ and mixed‐species leaf bags (7 possible combinations of three litter species differing in toughness; common alder [Alnus glutinosa ], sweet chestnut [Castanea sativa ], and Spanish oak [Quercus ilex ilex ]), I tested whether leaf species diversity, measured as richness and composition, affects breakdown dynamics and macroinvertebrate colonization (abundance, richness and composition) during 90 days incubation in a stream. Decomposition rates were additive, i.e., observed decomposition rates were not different from expected ones. However, decomposition rates of individual leaf species were affected by the mixture, i.e., there were species‐specific responses to mixing litter. The invertebrate communities colonizing the mixtures were not richer and more diverse in mixtures than in single‐species leaf bags. On the opposite, mixing leaf species had a negative, non‐additive effect on rates of shredder and taxa colonization and on macroinvertebrate diversity. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
We conducted a decomposition experiment using green and senescent maple and alder leaves in a coastal headwater stream in Hokkaido, northern Japan, during June and July 2000. We estimated whether shredder colonization on the leaves and leaf breakdown differed between green and senescent leaves during the experimental period. Late-instar Lepidostoma complicatum (Trichoptera) and Sternomoera rhyaca (Amphipoda) were the predominant shredder taxa among the macroinvertebrates that colonized litterbags. There was no significant difference in shredder colonization between green and senescent leaves although we found a significant difference between maple and alder leaves. The colonization patterns of large individuals of L. complicatum and S. rhyaca differed from those of small individuals. All decomposition coefficients of green and senescent leaves were high. During the experiment, decomposition was significantly faster in maple than in alder leaves, although no significant difference was found between green and senescent leaves. However, the fragmented nitrogen portion was higher in green leaves than in senescent leaves during the experiment. Higher nitrogen release (2–2.5 times more) as particulate organic matter in green than in senescent leaves indicates that green leaves may be a potentially valuable food resource for other macroinvertebrate collector–gatherer species.  相似文献   

5.
Functional processes in freshwater ecosystems are highly influenced by acidic conditions. Foodwebs are affected and macroinvertebrate species diversity is decreased. This study aims to investigate leaf decomposition at very low pH in the acidic Banyupahit–Banyuputih river originating from the acidic crater lake Kawah Ijen in Indonesia. Leaf decomposition experiments were carried out for 200 days in the acidic river at pHs of approximately 0.7, 2.3 and 3.0 and in the neutral Kali Sengon river, using leaves from teak, Tectona grandis, and bamboo, Bambusa sp. Two different types of leaf packs were used: fine mesh size packs were used to exclude macroinvertebrates and coarse mesh size packs allowed macroinvertebrate colonization. Clear differences in decomposition rate were observed between the neutral Kali Sengon and the acidic Banyupahit–Banyuputih river with decomposition in the Kali Sengon river proceeding significantly faster for both leaf types. In the Kali Sengon k values (d−1) over 46 days were 0.0202 for fine teak, 0.0236 for coarse teak, 0.0114 for fine bamboo and 0.0151 for coarse bamboo. No significant differences were observed between the three sites in the acidic Banyupahit–Banyuputih river with k values of 0.0034–0.0066 for fine teak, 0.0002–0.0057 for coarse teak, 0.0029–0.0054 for fine bamboo and 0.0000–0.0068 for coarse bamboo. Moreover, no clear adaptation of macroinvertebrates or microbes to low pH conditions could be detected. The coarse mesh leaf packs in the neutral Kali Sengon river revealed that macroinvertebrates are important in the breakdown process. Fine mesh packs revealed that microbial activity is depressed under acidic conditions. Based on this evidence, we conclude that the toxicity at low pH conditions, and probably also the precipitation of metals on the leaf material, seriously affects leaf decomposition.  相似文献   

6.
7.
One of the most important sources of energy in aquatic ecosystems is the allochthonous input of detritus. Replacement of native tree species by exotic ones affects the quality of detritus entering freshwater ecosystems. This replacement can alter nutrient cycles and community structure in aquatic ecosystems. The aims of our study were (1) to compare leaf litter decomposition of two widely distributed exotic species (Ailanthus altissima and Robinia pseudoacacia) with the native species they coexist with (Ulmus minor and Fraxinus angustifolia), and (2) to compare macroinvertebrate colonization among litters of the invasive and native species. Litter bags of the four tree species were placed in the water and collected every 2, 25, 39, 71, and 95 days in a lentic ecosystem. Additionally, the macroinvertebrate community on litter bags was monitored after 25, 39, and 95 days. Several leaf chemistry traits were measured at the beginning (% lignin; lignin:N, C:N, LMA) and during the study (leaf total nitrogen). We detected variable rates of decomposition among species (k values of 0.009, 0.008, 0.008, and 0.005 for F. angustifolia, U. minor, A. altissima and R. pseudoacacia, respectively), but we did not detect an effect of litter source (from native/exotic). In spite of its low decay, the highest leaf nitrogen was found in R. pseudoacacia litter. Macroinvertebrate communities colonizing litter bags were similar across species. Most of them were collectors (i.e., they feed on fine particulate organic matter), suggesting that leaf material of either invasive or native trees was used as substrate both for the animals and for the organic matter they feed on. Our results suggest that the replacement of the native Fraxinus by Robinia would imply a reduction in the rate of leaf processing and also a slower release of leaf nitrogen to water.  相似文献   

8.
  1. Temperate headwater streams traditionally have been considered heterotrophic and brown food web dominated with little primary production. Recent work, however, suggests algae on leaves in these streams may play a greater role than previously thought through interactions with microbial decomposers like fungi. Algae also may be important for macroinvertebrates colonizing leaves in streams. Algae are a more nutritious food resource for shredders than fungi and bacteria and provide a food resource for non-shredder macroinvertebrates.
  2. In a field experiment, we manipulated light in three low-nutrient and three high-nutrient streams using leaf bags filled with red maple leaves in winter and spring. After four weeks we measured algal and fungal biomass, leaf stoichiometry, and macroinvertebrate abundance and biomass associated with the leaf bags. We also identified the macroinvertebrate community and examined differences in functional feeding guilds and taxa under ambient- and shaded-light treatments and low- and high-nutrient concentrations in relation to measured leaf characteristics.
  3. Algal biomass on leaves was greatest in high-nutrient streams and ambient-light treatments in both seasons. Fungal biomass on leaves was greatest in high-nutrient streams and showed a moderate marginally significant positive correlation with algae during the winter. Leaf C:N was negatively correlated to algae in winter and fungi in both seasons, while leaf N:P and C:P were negatively correlated to fungi in winter and algae in spring. Interactions between fungi and algae on leaves and the nutritional importance of each for macroinvertebrates likely change across seasons, potentially impacting macroinvertebrate community composition.
  4. Macroinvertebrate diversity did not differ, but biomass was significantly greater in shaded-light treatments during spring. Abundance was highest in the high-nutrient ambient-light conditions in both seasons, corresponding to greatest algal biomass. Functional feeding guild biomass and abundance were related to different leaf characteristics by season and guild. Higher algal biomass was an important factor for colonization of certain macroinvertebrates (e.g., Ephemerella (Ephemeroptera: Ephemerellidae) and Stenonema (Ephemeroptera: Heptageniidae)), while others were more abundant under shaded treatments with lower algal biomass (e.g., Tipula (Diptera: Tipulidae)), indicating taxa-specific responses.
  5. Leaf-associated algae may be an important factor mediating macroinvertebrate communities associated with leaves in temperate headwater streams. Our results demonstrate that green and brown food webs intersect within leaf packs, and they cannot be easily disentangled. We therefore should consider both autochthonous and allochthonous resources within headwater streams when examining their communities or developing water management strategies.
  相似文献   

9.
The role of macroinvertebrates in the process of leaf breakdown is well studied in temperate streams, but less is known about their role in the tropics. We investigated the effect of reducing macroinvertebrate access to leaf material on leaf breakdown rates in a forested headwater stream in the Luquillo Experimental Forest, Puerto Rico. We measured leaf mass loss using fine and coarse mesh bags over 12 weeks for two common riparian species: Cecropia schreberiana (Moraceae) and Dacryodes excelsa (Burseraceae). Coarse mesh allowed freshwater shrimp and other macroinvertebrates to access leaf material, while fine mesh did not. Leaf breakdown rates did not differ between C. schreberiana and D. excelsa in coarse mesh bags (?0.0375/day vs. ?0.0395/day, respectively), but C. schreberiana breakdown was significantly slower than D. excelsa in fine mesh bags (?0.0159/day vs. ?0.0266/day). Additionally, breakdown in fine mesh bags was significantly slower compared to coarse mesh bags for C. schreberiana, but less so for D. excelsa. Breakdown rates for all treatments were fast relative to those in temperate‐zone streams indicating that both macroinvertebrates and macroinvertebrate‐independent processing can strongly influence leaf decomposition in tropical streams. The difference between C. schreberiana and D. excelsa indicates that the effect of macroinvertebrate exclusion can change with leaf type.  相似文献   

10.
Leaf decomposition in an experimentally acidified stream channel   总被引:3,自引:2,他引:1  
Decomposition of Alnus rugosa and Myrica Gale leaves immersed in artificial stream channels fed by a small headwater creek was followed over a three month period. At the end of experiment, remaining weights of both leaf types confined in litter bags were significantly higher after immersion in experimentally acidified water (pH 4.0) than when immersed in control water (pH 6.2–7.0). For both types of leaves and for all sampling times, there was generally no difference in the C:N ratios between leaves in acidified and those in control water. In control water, oxygen uptake by microorganism on A. rugosa leaves was significantly higher after 46 days of immersion, whereas differences between treatments appeared only after 69 days for M. Gale leaves. Transfer of A. rugosa leaves from acid to control water led to a rapid increase in microbial activity; this increased activity was reflected in a fast weight loss of the leaves. For both leaf types, total numbers of macroinvertebrates were usually higher in litter bags immersed in control water. Macroinvertebrates colonizing the litter bags were mainly collector-gatherers: Chironomidae were numerically dominant in control leaf packs whereas Oligochaeta dominated in acid leaf packs. Macroinvertebrate biomass in M. Gale litter was higher in control than in acidified water, which contrasted with macroinvertebrate biomass in A. rugosa leaf packs which was not significantly different between treatments. Macroinvertebrate contribution to the breakdown of leaf litter was thus considered less important than the microbial contribution. This study demonstrated that decomposition of leaf litter in acidic headwater streams can be seriously reduced, mainly as a result of a lower microbial activity.  相似文献   

11.
Leaf decomposition of the exotic evergreen Eucalyptus globulus (eucalyptus), and three native deciduous tree species, Alnus glutinosa (alder), Castanea sativa (chestnut) and Quercus faginea (oak), was compared in a second order stream in Central Portugal. Changes in dry weight, nitrogen and polyphenolic compounds and microbial colonization were periodically assessed for three months.Negative exponential curves fit the leaf weight loss with time for all leaf species. Mass loss rate was in the order alder (K = 0.0161) > chestnut (K = 0.0079) > eucalyptus (K = 0.0068) > oak (K = 0.0037). Microbial colonization followed the same pattern as breakdown rates. Evidence of fungal colonization was observed in alder after 3 days in the stream, whereas it took 21 days in oak leaves to have fungal colonization. Fungal diversity was leaf species-dependent and increased with time. In all cases, percent nitrogen per unit leaf weight increased, at least, at the initial stages of decay while soluble polyphenolics (expressed as percentage per unit leaf weight) decreased rapidly in the first month of leaves immersion.Intrinsic factors such as nitrogen and polyphenolic content may explain differences in leaf decomposition. The possible incorporation of eucalyptus litter into secondary production in a reasonable time span is suggested, although community balance and structure might be affected by differences in allochthonous patterns determined by eucalyptus monocultures.  相似文献   

12.
Leaves of 4 species (Quercus robur, Castanea sativa, Corylus avellana and Pinus pinaster) were incubated in a forested headwater stream using bags (1 mm and 5 mm net size) and trays (5 mm net size). The type of treatment influenced litter breakdown rates. Differences in loss rates were noted between Pinus and the deciduous species, and between Quercus and Corylus. Numbers of invertebrates per sample and per gram leaf AFDW generally increased with exposure time. The taxa colonizing the four leaf species were largely identical but colonization was greatly dependent on type of treatment. Taxa richness (Hmax) increased with time. Differences between Hmax and specific diversity (H) were high, due to the importance of Chironomids. Collectors and scrapers, among other functional groups, exhibited the highest densities. Differences in loss rates between fine and coarse treatments were related to differences in shredder biomass, corroborating the importance of this functional group in litter processing.  相似文献   

13.
官昭瑛  何莹  安玉蓉  蔡吉花  童晓立 《生态学报》2010,30(11):2828-2835
在亚热带地区一条2级溪流中比较了本地植物(红锥和薏米)和外来植物(托里桉和马缨丹)凋落物的分解速率及底栖动物定殖及其摄食功能群的组成。结果显示,本地植物凋落物的分解速率为:0.020 d-1(红锥)和0.056 d-1(薏米),外来树叶的分解速率则为:0.038 d-1(托里桉)和0.041 d-1(马缨丹),它们均属于快速分解组。定殖在外来和本地树叶凋落物上的大型底栖动物种类分别为21种和24种。在外来和本地树叶上定殖的底栖动物平均密度差异不显著(P0.05)。从大型底栖动物摄食功能群的比例来看,定殖在本地凋落物上的集食者的比例最高(73.5%),其次是撕食者(10.9%)和捕食者(8.7%),刮食者(6.8%)的比例最低,在外来凋落物上,摄食功能群的比例分别为集食者(67.6%)、撕食者(13.9%)、刮食者(12.1%)和捕食者(6.1%),两者相比,底栖动物的摄食功能群均以集食者和撕食者为主,在组成比例上并无显著差异。结果表明2种外来植物凋落物分解对底栖动物多样性及其摄食功能群的影响不明显。  相似文献   

14.
The decomposition of deciduous leaf material provides a critical source of energy to aquatic food webs. Changes to riparian forests through harvesting practices may alter the species composition of deciduous leaf material entering streams. We compared over-winter decomposition of three different riparian leaf species (speckled alder (Alnus incana ssp. rugosa (Du Roi) J. Clausen), white birch (Betula papyrifera Marsh.), and trembling aspen (Populus tremuloides Michx.)) to determine their importance as a food resource for macroinvertebrate communities within Boreal Shield streams in northeastern Ontario, Canada. Leaf pack decomposition of the three leaf species formed a processing continuum throughout winter, where alder and birch leaf packs decomposed at a medium rate (k = 0.0065/day and 0.0053/day, respectively) and aspen leaf packs decomposed more slowly (k = 0.0035/day). Macroinvertebrate community colonization on leaf packs changed through time regardless of leaf species. Alder leaf packs supported higher abundances of macroinvertebrates in the fall while aspen leaf packs supported greater shredder abundances in the following spring. The study shows that leaf diversity may be important for providing a sustained food resource for aquatic macroinvertebrates throughout the relatively long over-winter period in Canadian Boreal Shield streams. Riparian forest management strategies should ensure that deciduous plant species richness is sustained in riparian areas.  相似文献   

15.
Stuart E. Bunn 《Hydrobiologia》1988,162(3):211-223
The long-term processing of jarrah (Eucalyptus marginata) leaves was examined in a small forest stream to determine the role played by macroinvertebrates and the influence of soluble polyphenols in the leaves. The widely used exponential model of litter processing was inadequate in describing the fate of jarrah leaves. Decomposition occurred in three distinct phases and was best described by a quadratic model. After a substantial and rapid loss due to leaching, processing was virtually inhibited during summer and autumn, with no associated increase in the organic nitrogen content. Macroinvertebrates played a significant role in the latter part of the year, processing approximately 25% of the initial leaf mass.High levels of soluble polyphenols in the leaves had an inhibitory effect on the microbial colonization of jarrah leaves, as indicated by the organic nitrogen content. However, pre-leaching of these compounds had no effect on the rate of decomposition nor on the leaf bag fauna. Polyphenols released into the stream during summer, when flows are low, may reach high concentrations and contribute to the slow processing at this time. Leaf litter processing in a nearby sedimented stream was compared with that in the undisturbed stream. Sediment disrupted litter processing, virtually eliminating the contribution made by invertebrates. Smothered leaf bags became anoxic, restricting microbial activity and reducing leaf quality. The low processing rate of leaves in the sedimented stream was attributed to differences in the leaf bag fauna. Leaf bags in the sedimented stream had more animals but shredders were poorly represented and predators were the most abundant feeding group. The low density of shredders was more likely to be a result of the reduced availability of detritus rather than selective predation. Whatever the reason, invertebrates in the sedimented stream were denied access to an important source of energy. Inorganic sediment can have a profound effect on stream function by interfering with the shredder-CPOM pathway.  相似文献   

16.
Invasion by exotic trees into riparian areas has the potential to impact terrestrial and aquatic systems. To test the effect of different streamside tree species on the aquatic food web in a stream in Montana, we compared decomposition rates of leaf litter and invertebrate assemblages associated with the leaf litter of the exotic Acer platanoides and the dominant native Populus trichocarpa trees. Macroinvertebrate family richness, evenness, and diversity increased with days of aquatic processing; however, there was no effect of leaf species. Leaves of the A. platanoides were associated with 70% greater density of macroinvertebrates of the family Nemouridae. This family consists primarily of detritivores and had the greatest overall density and frequency of occurrence relative to other macroinvertebrate families. The density of a family of predatory macroinvertebrates (Rhyacophilidae) was also generally (73%) greater in association with A. platanoides than P. trichocarpa leaves. The density of Ephemerellidae and Rhyacophilidae increased over time. In contrast to studies comparing leaves of exotic vs. native trees, we observed no difference in leaf decomposition rates; however, the amount of leaf inputs are likely to differ between native and invaded forests. The results indicate that replacement of native riparian trees with exotics affected the most common family of macroinvertebrates and possibly a common family of predatory macroinvertebrates (Rhyacophilidae), which may affect the detrital food web.  相似文献   

17.
Rates of leaf litter processing at eight sites were used in conjunction with other methods to evaluate the impact of highway construction on aquatic habitats. Monthly processing of white oak leaves from four different mesh size bags at unimpacted reference sites indicated that the three larger mesh sizes were useful for comparing sites, as they did not restrict invertebrate colonization and provided similar rates of processing within sites. Small mesh size (0.12 mm) prevented leaf shredding macroinvertebrates from colonizing bags, and caused significantly slower leaf processing in a riffle.Leaf processing was fastest in a reference riffle above an area of highway construction but was significantly slower in the reference pool due to low current velocity and the absence of shredders. Leaf processing in a riffle below the highway was slower than the reference riffle, and the number of shredders was reduced. Removal of streamside vegetation during highway construction caused increased stream temperatures and reduced the amount of natural leaf accumulations, thereby reducing shredder habitat. At other sites highway construction caused less of an impact than preexisting environmental influences. Leaf processing in an riffle of a lower pH stream was significantly slower than in the reference riffle. Shredders were absent from the low pH stream, and rates of leaf processing in the acid impacted riffle and pool were similar to those of the reference pool. Comparisons of the low pH stream with the reference stream indicated that physical processes were less important than biological processes of leaf decay. Leaf processing in ponds was similar to that of stream pools. Processing was faster in a small versus large pond, and a high density of invertebrates was associated with leaf bags in the small pond after one year.  相似文献   

18.
1. The exposure of mesh litter bags has been widely used to investigate the role of benthic macroinvertebrates in leaf processing in freshwaters. In this sense, several studies have related litter bag breakdown rates to the presence of colonizing invertebrates. A possible confounding factor in such experiments is that the litter bags trap suspended particulate organic matter that can itself attract invertebrate colonists, irrespective of the intended experimental treatment.
2. We attempted to quantify the accumulation of particulate organic matter (POM) within litter bags and to investigate its possible impact on macroinvertebrate density and richness. In seven headwater forested streams we exposed mesh bags filled either with beech leaves ( Fagus sylvatica ) or with plastic strips of an equal surface area.
3. Principal component analysis (PCA) showed that bag type and stream were the main explanatory variables for invertebrate colonization and POM accumulation within the bags. In contrast, there was little variation among sampling dates (6.4% of the total inertia).
4. The accumulated POM within the bags was substantial (up to 8.83 g ash-free dry mass (AFDM)) but highly variable among sites (mean from 0.32 to 4.58 g AFDM). At each of the seven sites, both richness and abundance of invertebrates were positively correlated with the mass of accumulated POM in bags. Macroinvertebrate colonization (notably taxon richness) was directly linked with the quantity of POM accumulated.
5. Our findings provide evidence of a potential pitfall in linking invertebrates to litter processing in mesh bags, particularly when large amounts of POM, entrained in stream flow, accumulate within the bags. An evaluation of the POM mass trapped in litter bags could account for the erratic patterns sometimes observed in their colonization by invertebrates.  相似文献   

19.
In connection with the liming of an acid lake in southern Norway, a series of litter bags was placed in a pH-gradient in the limed lake and a nearby unlimed lake. During the experiments, which lasted two years, no significant differences in decomposition rates between the various localities at the same depth were noticed. The chironomid collector Tanytarsus pallidicornis was the dominant invertebrate species in the benthic samples. This demonstrates the importance of fine particulate organic matter as a food source in the lake. Collector dominance was lower in the leaf packs, which consisted mostly of coarse particulate organic matter. A poor fauna of detritus grazers probably contributed to the unchanged rates of decomposition of the leaves after liming.  相似文献   

20.
The effect of leaf species composition on decomposition patterns was examined in a coastal plain stream. Red maple leaves (Acer rubrum) decomposed at the same rate separately or when mixed with cypress leaves (Taxodium distichum). Cypress addition increased structural integrity but its effects differed between sites with different hydrologic regimes. Invertebrate communities varied slightly between mixed and single species packs, however invertebrates did not appear to be the primary agent of decomposition. Mixed species packs may be an alternative method to fine mesh bags for studying processing of small, narrow leaves in a more realistic manner.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号