首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
1. We compare the rates and mechanisms of processing of tussock (Chionochloa spp.) leaf litter in six New Zealand streams draining grassland catchments that contrast in the extent to which they have been developed for pasture. 2. Rates of processing, measured as rate of weight loss of leaf packs and rate of leaf softening, were at the slow end of the spectrum for vascular plant processing. Processing was faster at developed sites, mediated mainly through the influence of oxidized nitrogen concentration on microbial activity. 3. Few invertebrate shredders colonized leaf packs and it is unlikely that invertebrates had an appreciable effect on leaf processing in our study streams, which do not effectively retain leaf litter. Very small headwater tributaries appear to retain leaf litter and possess a more abundant shredder community. 4. Measures of leaf processing in our six streams were significantly correlated with Petersen's (1992) RCE score of stream condition. We discuss the potential for using rate of leaf litter processing as a method of bioassessment. 5. Even the most degraded stream in our study is classed as ‘good’ using the RCE inventory system. Human impact in the Taieri River is relatively small compared with the degradation observed in some parts of the world.  相似文献   

2.
Summary 1. Habitats are often connected by fluxes of energy and nutrients across their boundaries. For example, headwater streams are linked to surrounding riparian vegetation through invertebrate and leaf litter inputs, and there is evidence that consumers in downstream habitats are subsidised by resources flowing from headwater systems. However, the strength of these linkages and the manner in which potential headwater subsidies vary along climatic and disturbance gradients are unknown. 2. We quantified the downstream transport of invertebrates, organic matter and inorganic sediment from 60 fishless headwater streams in the Wenatchee River Basin located on the eastern slope of the Cascade Range in Washington, U.S.A. Streams were classified into four groups (each n = 15) based on their position within two ecological subregions (wet and dry) and the extent of past timber harvest and road development (logged and unlogged). 3. Time and ecoregion were significant for all response variables as transport varied across sampling periods, and dry ecoregion streams displayed significantly higher mean values. Logged sites also generally showed higher mean transport, but only inorganic sediment transport was significantly higher in logged sites. Both ecoregion and land‐use interacted significantly with time depending on the response variable. Differences among stream categories were driven by relatively low levels of transport in unlogged drainages of the wet ecoregion. Interestingly, unlogged dry ecoregion streams showed comparable transport rates to logged sites in the wet ecoregion. Dominance by deciduous riparian vegetation in all but unlogged streams in the wet ecoregion is a primary hypothesised mechanism determining transport dynamics in our study streams. 4. Understanding the quantity and variation of headwater subsidies across climate and disturbance gradients is needed to appreciate the significance of ecological linkages between headwaters and associated downstream habitats. This will enable the accurate assessment of resource management impacts on stream ecosystems. Predicting the consequences of natural and anthropogenic disturbances on headwater stream transport rates will require knowledge of how both local and regional factors influence these potential subsidies. Our results suggest that resources transported from headwater streams reflect both the meso‐scale land‐use surrounding these areas and the constraints imposed by the ecoregion in which they are embedded.  相似文献   

3.
4.
Land‐use changes such as conversion of natural forest to rural and urban areas have been considered as main drivers of ecosystem functions decline, and a large variety of indicators has been used to investigate these effects. Here, we used a replicated litter‐bag experiment to investigate the effects of land‐use changes on the leaf‐litter breakdown process and leaf‐associated invertebrates along the forest–pasture–urban gradient located in a subtropical island (Florianópolis, SC, Brazil). We identified the invertebrates and measured the litter breakdown rates using the litter bags approach. Litter bags containing 3 g of dry leaf of Alchornea triplinervia were deployed on forest rural and urban streams. Principal component analysis, based on physico‐chemical variables which, confirmed a gradient of degradation from forest to urban streams with intermediate values in rural areas. In accordance, shredder richness and abundance were lower in rural and urban than in forest streams. The land‐use changes led also to the dominance of tolerant generalist taxa (Chironomidae and Oligochaeta) reducing the taxonomic and functional diversity in these sites. Leaf‐litter breakdown rates decreased from forest to rural and finally to urban areas and were associated with changes in pH, water velocity, dissolved oxygen and abundance of leaf‐shredding invertebrates, although global decomposition rates did not differ between rural and urban streams. Overall, this study showed that land‐use changes, namely to rural and urban areas, have a strong impact on tropical streams ecosystems, in both processes and communities composition and structure. Despite of being apparently a smaller transformation of landscape, rural land use is comparable to urbanisation in terms of impact in stream functioning. It is thus critical to carefully plan urban development and maintain forest areas in the island of Florianópolis in order to preserve its natural biodiversity and aquatic ecosystems functioning.  相似文献   

5.
1. Scant information is available on leaf breakdown in streams of arid and semiarid regions, including the Mediterranean, where environmental heterogeneity can be high and the relationship between stream characteristics and leaf breakdown is poorly known. We tested the hypotheses that differences in leaf breakdown metrics would be substantially higher between mountain and lowland Mediterranean streams than among streams within each subregion and that variability among streams would be substantially higher in the lowlands, because permanent reaches in the semiarid lowland streams are rare and isolated. 2. We compared leaf breakdown and associated dynamics of nutrients, fungi and invertebrates in low‐order Mediterranean streams draining sub‐humid forests in the Sierra Nevada Mountains and nearby semiarid lowlands of south‐eastern Spain. Streams differed between the two subregions mainly in water ion content, temperature and riparian tree cover. We detected higher environmental heterogeneity among streams within the lowlands compared to the Sierra Nevada mountain range. In the lowlands, breakdown coefficients (k) of alder leaves spanned almost the entire range reported for this species from temperate streams, overlapping with less variable breakdown coefficients in the Sierra Nevada. 3. The high variability of k values among the lowland sites appeared to be caused primarily by variability in the composition and abundance of a few leaf‐consuming invertebrate taxa, particularly the snail Melanopsis praemorsa. Fungal and nutrient dynamics were less variable among sites within each subregion. 4. These results indicate that the critical condition for stream functional assessment of well‐constrained breakdown rates, or related metrics, could be met at reference sites within homogenous bio‐geo‐climatic regions such as the Sierra Nevada. By contrast, in heterogeneous areas such as the semiarid lowland streams, natural variability of breakdown rates can greatly exceed the magnitude of effects expected in response to anthropogenic disturbances.  相似文献   

6.
Leaf litter decomposition is a crucial process providing matter and energy to communities inhabiting headwater streams. This process could be affected by many man-made landscape transformations and its response can vary depending on the climate setting. In this study, we test the hypothesis that the presence of small headwater reservoirs decreases litter decomposition downstream, as reported for temperate Oceanic climatic regions, and that this effect is more accentuated in the Mediterranean. The effect of small dams on the decomposition of alder (Alnus glutinosa) leaves was studied in four headwater streams in Catalonia (NE Spain). The presence of a dam affected litter decomposition rates in three of the four streams studied, and this depended on reservoir typology. In those with seasonal surface release, decomposition rates were slower downstream from the dams, but in the case of a continuous hypolimnetic release, it was faster, with higher DIN and temperature and abundance of shredders. Alder litter decomposition rates were twice those reported for Oceanic climatic conditions. In Mediterranean headwaters, the effect of small dams will even be more evident at an annual scale due to the diminished flow rates in summer and this effect will be more pronounced than in the more Oceanic.  相似文献   

7.
We examined red maple (Acer rubrum L.) leaf litter breakdown in streams and riparian zones at two sites in the southern Appalachian Mountains to understand how differences in abiotic and biotic factors influence leaf breakdown rates. Litterbags were placed in three riparian habitats differing in litter layer moisture: stream > bank > upland. Invertebrates colonizing litterbags at one site were also examined to determine how variations in community and functional structure affect breakdown rates. Leaves broke down fastest in streams and slowest in upland habitats, whereas bank habitats were intermediate and characterized by high variability. Faster leaf breakdown rates in streams appeared to be a function of greater moisture availability, a more stable thermal regime, and a higher biomass of leaf-shredding invertebrates, especially the stonefly Tallaperla. In addition, patterns of leaf breakdown and invertebrate community structure provided evidence for a stronger than expected ecological connection between the stream and the bank. Overall, detritus processing within this narrow riparian ecosystem varied considerably depending on the availability of moisture. Results from this study show that stream channel–floodplain interactions in riparian ecosystems of steep forested mountains are analogous to ones in larger downstream or low-gradient systems. Riparian zones throughout a river network display a remarkable heterogeneity in their ability to process organic matter, which is ultimately driven by changes in hydrological conditions. Received 6 March 2001; accepted 3 July 2001.  相似文献   

8.
The aim of this paper was to study the influence of environmental characteristics of the Mediterranean climate on seasonal variability of particulate organic matter abundance in a mountain stream. Coarse and fine fractions of both suspended and benthic particulate organic matter were determined on 14 occasions between February 1998 and November 1999 in a second‐order Mediterranean stream in Central Spain (Arroyo Mediano). Temporal variability of suspended organic matter followed a seasonal pattern, attributed to litter‐fall inputs, instream processing, and the hydrological regime. Suspended organic matter (SOM) and its seasonal variability fall well within the range reported for streams in temperate non‐Mediterranean deciduous forest. However, we found no seasonal trend in benthic organic matter (BOM) storage, and it seems that the amount of BOM remained fairly constant throughout the year. Reach retention (evaluated as the ratio between BOM and SOM per m2) was higher in summer during reduced stream flow, mainly due to coarse particulate organic matter storage. These observations do not differ from those reported for other headwater streams in temperate forested biomes, from which we conclude that there was no evidence of a Mediterranean influence on particulate organic matter dynamics in the Mediano stream, nor probably in other headwater Mediterranean streams. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

9.
Feeding plasticity of the Andean plecopteran Klapopteryx kuscheli and Notoperla archiplatae larvae was assessed through a field experiment using enclosures. K. kuscheli has previously been described as a shredder and N. archiplatae as a scraper. Further information on gut contents from different populations supported those results. In the experiment, larvae of both species were exposed to contrasting food items: leaf litter and periphyton. Consumption, growth and the efficiency of food conversion were measured. K. kuscheli was able to feed on periphyton, though it did not grow. N. archiplatae failed to feed on leaf litter. While K. kuscheli might be considered a facultative shredder, N. archiplatae functions as a specialist scraper. The natural distribution and seasonal abundance in two small streams showed contrasting habitat use of both species. N. archiplatae inhabited high velocity runs and riffles underneath large substrates while K. kuscheli presented a higher habitat plasticity. Implications of those results for ecosystem function are discussed. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
Input, storage, export potential, and system-level processing of coarse organic matter were investigated in the intermittent streams that drain the Bear Brook Watershed in Maine (BBWM). BBWM is a paired catchment study investigating ecosystem effects of atmospheric N and S deposition. We predicted that the increased N loading to the treatment catchment would elevate input of organic matter, result in higher levels of coarse organic matter biomass, and increase litter processing rates in the treatment stream relative to the reference stream. We found that the streams draining BBWM did not have statistically different coarse organic matter input, biomass, or processing rates and we found only modest differences in export potential. System-level processing rates for maple (Acer spp.) litter were similar to rates previously quantified using litterbag methods. However, system-level processing rates for American beech (Fagus grandifolia) litter were an order of magnitude faster than rates measured with litterbags. This difference was likely due to movements of these leaves from riffle/runs and pools into debris dams, rather than differences in measurements of leaf tissue processing rates between methods. Organic matter dynamics of the intermittent streams at BBWM were similar to other forested, headwater streams. Our results indicate that the long-term N manipulation experiment at BBWM has not altered input, storage or processing of coarse organic matter in the treatment stream. Physical characteristics of these stream ecosystems appear to regulate organic matter dynamics rather than differences in nutrient chemistry.  相似文献   

11.
Anthropogenic acidification in headwater streams is known to affect microbial assemblages involved in leaf litter breakdown. Far less is known about its potential effects on microbial enzyme activities. To assess the effects of acidification on microbial activities associated with decaying leaves, a 70-day litter bag experiment was conducted in headwater streams at six sites across an acidification gradient. The results revealed that microbial leaf decomposition was strongly and negatively correlated with total Al concentrations (r?=??0.99, p?<?0.001) and positively correlated with Ca2+ concentrations (r?=?0.94, p?=?0.005) and pH (r?=?0.93, p?=?0.008). Denaturing gradient gel electrophoresis analyses showed that microbial assemblages differed between non-impacted and impacted sites, whereas fungal biomass associated with decaying leaves was unaffected. The nutrient content of leaf detritus and ecoenzymatic activities of carbon (C), nitrogen (N) and phosphorus (P) acquisition revealed that N acquisition was unaltered, while P acquisition was significantly reduced across the acidification gradient. The P content of leaf litter was negatively correlated with total Al concentrations (r?=??0.94, p?<?0.01) and positively correlated with decomposition rates (r?=?0.95, p?<?0.01). This potential P limitation of microbial decomposers in impacted sites was confirmed by the particularly high turnover activity for phosphatase and imbalanced ratios between the ecoenzymatic activities of C and P acquisition. The toxic form of Al has well-known direct effects on aquatic biota under acidic conditions, but in this study, Al was found to also potentially affect microbially mediated leaf processing by interfering with the P cycle. These effects may in turn have repercussions on higher trophic levels and whole ecosystem functioning.  相似文献   

12.
The community of aquatic hyphomycetes associated with decomposing alder leaf litter was studied during autumn-winter in nine headwater reference streams of the Basque Country (northern Spain). In order to study the spatial variability in composition and community structure, three streams from each of three different river basins were compared. The colonization dynamics and community changes throughout the decomposition process were also followed in three of the rivers (one per basin). The taxonomic richness and community structure of these fungi varied among rivers, including similar streams of a given watershed. However, neither species diversity nor total abundance was statistically related to environmental variables. Only the conidial production of two of the species, Flagellospora curvula and Lunulospora curvula appeared to be enhanced by nitrate availability in the water. The taxonomic richness and the reproductive activity (sporulation rate) were positively related to the leaf litter decomposition rate. The changes in conidial production along the process were similar for all the streams and helped explain leaf litter quality dynamics.  相似文献   

13.
Amazon and Cerrado‐forested streams show natural fluctuations in leaf litter quantity along the time and space, suggesting a change on litter quality input. These natural fluctuations of leaf litter have repercussion on the organic matter cycling and consequently effects on leaf decomposition in forested streams. The effects of the quantity of leaf litter with contrasting traits on consumption by larvae of shredder insects from biomes with different organic matter dynamics have still been an understudied question. The Trichoptera Phylloicus spp. is a typical shredder in tropical headwater streams and keep an important role in leaf litter decomposition. Here, we assessed the consumption by shredder Phylloicus spp., from Amazonia and Cerrado biomes, on higher (Maprounea guianensis) and lower quality leaves (Inga laurina) in different proportions and quantities. Experiments were performed concomitantly in microcosms approaches, simulating Cerrado and Amazonian streams. Higher leaf consumption occurred in Cerrado microcosms. Litter quantity influenced negatively leaf consumption by shredders in Cerrado, in opposition to Amazonia, where consumption was not affected by leaf quantity. In both sites, we observed higher consumption by shredders in treatment with only M. guianensis and no difference between other treatments with mixture of leaves. In treatment with litter of I. laurina, we noted the use of substrate for case building (due to the higher leaf toughness), affecting the fragmentation process. Therefore, our results indicate that leaf litter quality drives the preference of consumption by Phylloicus larvae in Cerrado and Amazonia streams.  相似文献   

14.
Stream shredders play an important role in the breakdown of allochthonous leaf litter—a well-known, key process in temperate headwater streams. In contrast, it has been suggested that litter breakdown in tropical streams is driven by microorganisms, shredders being scarce or absent. We propose that shredders have been overlooked in some tropical streams for two reasons: (1) assuming that tropical shredders belong to the same taxa as temperate ones, without determining the diet of tropical litter fauna; and (2) the small spatial scale of most tropical stream studies, which do not account for intra- and inter-site comparisons. We explored shredder abundance and species richness in six streams in each of two tropical regions, the Australian wet tropics (AWT) and Panama (PAN), finding 734 individuals of 12 shredder species in AWT and 391 individuals of 16 species in PAN. Shredder species richness was positively related to altitude in AWT, but not in PAN. Shredder contribution to total leaf breakdown in the field was 24±3 SE percent in AWT and negligible in PAN, but this was probably due to the unsuccessful colonization of experimental cages by PAN shredders. In the laboratory, shredder contribution to total leaf breakdown was higher than in the field (35%±2 SE in AWT and 64%±3 SE in PAN) and varied with leaf decomposability. Our results support earlier indications that shredders are not scarce or functionally unimportant in the tropics, and suggest that their contribution to litter processing should be determined along altitudinal gradients.
  相似文献   

15.
1. If species disproportionately influence ecosystem functioning and also differ in their sensitivities to environmental conditions, the selective removal of species by anthropogenic stressors may lead to strong effects on ecosystem processes. We evaluated whether these circumstances held for several Colorado, U.S.A. streams stressed by Zn. 2. Benthic invertebrates and chemistry were sampled in five second–third order streams for 1 year. Study streams differed in dissolved metal concentrations, but were otherwise similar in chemical and physical characteristics. Secondary production of leaf‐shredding insects was estimated using the increment summation and size‐frequency methods. Leaf litter breakdown rates were estimated by retrieving litter‐bags over a 171 day period. Microbial activity on leaf litter was measured in the laboratory using changes in oxygen concentration over a 48 h incubation period. 3. Dissolved Zn concentrations varied eightfold among two reference and three polluted streams. Total secondary production of shredders was negatively associated with metal contamination. Secondary production in reference streams was dominated by Taenionema pallidum. Results of previous studies and the current investigation demonstrate that this shredder is highly sensitive to metals in Colorado headwater streams. Leaf litter breakdown rates were similar between reference streams and declined significantly in the polluted streams. Microbial respiration at the most contaminated site was significantly lower than at reference sites. 4. Our results supported the hypothesis that some shredder species contribute disproportionately to leaf litter breakdown. Furthermore, the functionally dominant taxon was also the most sensitive to metal contamination. We conclude that leaf litter breakdown in our study streams lacked functional redundancy and was therefore highly sensitive to contaminant‐induced alterations in community structure. We argue for the necessity of simultaneously measuring community structure and ecosystem function in anthropogenically stressed ecosystems.  相似文献   

16.
1. Terrestrial leaf‐litter is the dominant energy input to many headwater streams and consequently the nature of the riparian vegetation can have profound effects on in‐stream processes. The impact of conifer plantations on community structure and ecosystem functioning (litter breakdown) was investigated in field experiments in three countries (Britain, Ireland, Poland), each representing a distinct European ecoregion. Twenty‐six streams were used in the trial: half were bordered with broadleaved and the other half with conifer riparian vegetation. 2. In a leaf breakdown study using litter bags, two leaf types (oak and alder) were used to assess the impact of resource quality and two mesh sizes (10 and 0.5 mm aperture) were used to gauge the relative importance of invertebrate detritivores and microbial decomposers respectively. Comparisons were made between vegetation types and among regions; pH varied among individual streams but, unlike many previous studies, it was not confounded with vegetation type, enabling us to isolate the effect of vegetation more effectively. 3. Overall, riparian vegetation type did not affect breakdown rates but strong regional differences were observed. There was also a significant interaction between these two variables, but this disappeared after fitting pH as a covariable, demonstrating its importance in determining breakdown rates and raising the possibility that in previous studies the impacts of conifer plantations might have been confounded with pH. 4. Shredder species composition differed between vegetation types. Small stoneflies were most strongly associated with conifer streams; broadleaved streams generally had a higher proportion of larger taxa, such as limnephilid caddisflies and gammarid shrimps, although the latter were excluded from sites with low pH. However, breakdown rates were maintained irrespective of shredder community composition, suggesting a high degree of functional redundancy in these communities. Similar processing rates were observed between streams with high numbers of nemourids and those with only a few limnephilids or gammarids, suggesting that density compensation among consumers might stabilise process rates. 5. Our results suggest that leaf‐litter breakdown can be an effective proxy for assessing stream ecosystem functioning, as rates differed significantly across spatial scales, from between streams to across regions and responded to an environmental gradient (pH). The litter bag technique can also complement traditional assessment methods by providing valuable information on the composition of consumer guilds, thereby providing an important link between structure and function that is needed to help inform management practices.  相似文献   

17.
In forest headwater streams where the riparian canopy limits autochthonous primary production, leaf litter decomposition is a key process controlling nutrient and carbon cycling. Any alteration of the riparian vegetation may influence litter decomposition and detrital food webs. We evaluated the effect of non-native Platanus hybrida riparian plantations on leaf litter decomposition in Mediterranean streams. The experiment was conducted in six headwater streams; three lined by native riparian vegetation and three crossing P. hybrida plantations. We have characterized the processing rates of alder leaves and the assemblages of shredder macroinvertebrates and fungi. Litter decomposition was significantly faster in the P. hybrida than in the reference streams. Although the dissolved inorganic nitrogen concentration was higher in P. hybrida, no significant effect was observed in decomposition rates. Differences in decomposition rates reflected the macroinvertebrate and shredder colonization in alder litter, with higher abundance and richness in the P. hybrida streams. However, aquatic hyphomycete sporulation rate was higher in reference streams, suggesting that the variation in decomposition rates is a direct consequence of shredder abundance. Our findings support part of the substrate quality-matrix quality (SMI) hypothesis, which expects that high-quality litter will show increased decomposition rates in a low-quality litter matrix.  相似文献   

18.
Tropical stream food webs are thought to be based primarily on terrestrial resources (leaf litter) in small forested headwater streams and algal resources in larger, wider streams. In tropical island streams, the dominant consumers are often omnivorous freshwater shrimps that consume algae, leaf litter, insects, and other shrimps. We used stable isotope analysis to examine (1) the relative importance of terrestrial and algal‐based food resources to shrimps and other consumers and determine (2) if the relative importance of these food resources changed along the stream continuum. We examined δ15N and δ13C signatures of leaves, algae, macrophytes, biofilm, insects, snails, fishes, and shrimps at three sites (300, 90, and 10 m elev.) along the Río Espíritu Santo, which drains the Caribbean National Forest, Puerto Rico. Isotope signatures of basal resources were distinct at all sites. Results of two‐source δ13C mixing models suggest that shrimps relied more on algal‐based carbon resources than terrestrially derived resources at all three sites along the continuum. This study supports other recent findings in tropical streams, demonstrating that algal‐based resources are very important to stream consumers, even in small forested headwater streams. This study also demonstrates the importance of doing assimilation‐based analysis (i.e., stable isotope or trophic basis of production) when studying food webs.  相似文献   

19.
Tropical montane ecosystems of the Andes are critically threatened by a rapid land‐use change which can potentially affect stream variables, aquatic communities, and ecosystem processes such as leaf litter breakdown. However, these effects have not been sufficiently investigated in the Andean region and at high altitude locations in general. Here, we studied the influence of land use (forest–pasture–urban) on stream physico‐chemical variables (e.g., water temperature, nutrient concentration, and pH), aquatic communities (macroinvertebrates and aquatic fungi) and leaf litter breakdown rates in Andean streams (southern Ecuador), and how variation in those stream physico‐chemical variables affect macroinvertebrates and fungi related to leaf litter breakdown. We found that pH, water temperature, and nutrient concentration increased along the land‐use gradient. Macroinvertebrate communities were significantly different between land uses. Shredder richness and abundance were lower in pasture than forest sites and totally absent in urban sites, and fungal richness and biomass were higher in forest sites than in pasture and urban sites. Leaf litter breakdown rates became slower as riparian land use changed from natural to anthropogenically disturbed conditions and were largely determined by pH, water temperature, phosphate concentration, fungal activity, and single species of leaf‐shredding invertebrates. Our findings provide evidence that leaf litter breakdown in Andean streams is sensitive to riparian land‐use change, with urban streams being the most affected. In addition, this study highlights the role of fungal biomass and shredder species (Phylloicus; Trichoptera and Anchytarsus; Coleoptera) on leaf litter breakdown in Andean streams and the contribution of aquatic fungi in supporting this ecosystem process when shredders are absent or present low abundance in streams affected by urbanization. Finally, we summarize important implications in terms of managing of native vegetation and riparian buffers to promote ecological integrity and functioning of tropical Andean stream ecosystems.  相似文献   

20.
  1. We investigated how compositional differences in riparian leaf litter derived from burned and undisturbed forests influenced leaf breakdown and macroinvertebrate communities using experimental mixed-species leaf packs in boreal headwater streams. Leaf pack mixtures simulating leaf litter from dominant riparian woody-stem species in burned and undisturbed riparian zones were incubated in two references and two fire-disturbed streams for 5 weeks prior to measuring temperature-corrected breakdown rates and macroinvertebrate community composition, richness, and functional metrics associated with decomposers such as shredder abundance and % shredders.
  2. Leaf litter breakdown rates were higher and had greater variability in streams bordered by reference riparian forests than in streams where riparian forests had been burned during a wildfire. Streams bordered by fire disturbance showed significant effects of litter mixture on decomposition rates, observed as significantly higher decomposition rates of a fire-simulated leaf mixture compared to all other mixtures.
  3. Variation among sites was higher than variation among litter mixtures, especially for macroinvertebrate community composition. In general, fire-simulated leaf mixtures had greater shredder abundances and proportions, but lower overall macroinvertebrate abundance; however, the shredder abundance trend was not consistent across all leaf mixtures at each stream.
  4. These results show that disturbance-driven riparian forest condition and resulting composition of leaf subsidies to streams can influence aquatic invertebrate community composition and their function as decomposers. Therefore, if one of the primary goals of modern forest management is to emulate natural disturbance patterns, boreal forest managers should adapt silvicultural practices to promote leaf litter input that would arise post-fire, thereby supporting stream invertebrate communities and their function.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号