首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Responses of tomato leaves in a greenhouse to light and CO2 were examined at the transient stage at the end of winter, when both photoperiod and irradiance gradually increase. Additionally, CO2 fluxes were calculated for a greenhouse without supplementary lighting and without CO2 enrichment based on CO2 sinks (plant photosynthesis) and CO2 sources (plant and substrate respiration). In January, tomato leaves in the greenhouse showed low photosynthesis with a maximum assimilation of 6–8 μmol CO2 m−2 s−1, a quantum yield of 0.06 μmol CO2 μmol−1 photosynthetic active radiation (PAR) and a low light compensation point of 26 μmol PAR m−2 s−1, a combination which classifies them as shade leaves. In February, tomato leaves increased their light compensation point to 39 μmol PAR m−2 s−1 and quantum yield to 0.08, the former indicating the adaptation to increased irradiance and photoperiod. These tomato leaves increased their transpiration from 0.4 to 0.9 in January to ∼2 mmol H2O m−2 s−1 in February. Both photosynthesis and transpiration were primarily limited by light but neither by stomatal conductivity nor by CO2. In January, light response of photosynthesis, dark respiration and transpiration were negligibly affected by increasing CO2 concentrations from 600 to 900 ppm CO2 under low light conditions, indicating no benefit of CO2 enrichment unless light intensity increased. In February, tomato leaves were photoinhibited at inherent greenhouse CO2 concentrations on the first sunny day; this photoinhibition was further enhanced by an increased CO2 concentration of 1000 ppm. CO2 fluxes in the greenhouse appeared strongly dependent on solar radiation. After exceeding the light compensation point in the morning, greenhouse CO2 concentrations decreased by 58 or by 110 ppm CO2 h−1 on a sunny day in January or February and by 23 ppm on overcast days in both months. Calculated per overall tomato canopy, plant photosynthesis contributed 42–50% to the morning CO2 depletion in the greenhouse. Dark respiration of tomato leaves was ∼2 μmol CO2 m−2 s−1 in January and ∼3 μmol CO2 m−2 s−1 in February. This dark respiration resulted in rises of 15 and 17 ppm CO2 h−1 at night in the greenhouse compartment and was identified as primary source of CO2. Respiration of the substrate used to grow the plants, which produced 7.3 ppm CO2 h−1, was identified as secondary source of CO2. The combined plant and substrate respiration resulted in peaks of up to 900 ppm CO2 in the greenhouse before dawn.  相似文献   

2.
The introduced shrub Tamarix ramosissima invades riparian zones, but loses competitiveness under flooding. Metabolic effects of flooding could be important for T. ramosissima, but have not been previously investigated. Photosynthesis rates, stomatal conductance, internal (intercellular) CO2, transpiration, and root alcohol dehydrogenase (ADH) activity were compared in T. ramosissima across soil types and under drained and flooded conditions in a greenhouse. Photosynthesis at 1500 μmol quanta m−2 s−1 (A1500) in flooded plants ranged from 2.3 to 6.2 μmol CO2 m−2 s−1 during the first week, but A1500 increased to 6.4–12.7 μmol CO2 m−2 s−1 by the third week of flooding. Stomatal conductance (gs) at 1500 μmol quanta m−2 s−1 also decreased initially during flooding, where gs was 0.018 to 0.099 mol H2O m−2 s−1 during the first week, but gs increased to 0.113–0.248 mol H2O m−2 s−1 by the third week of flooding. However, photosynthesis in flooded plants was reduced by non-stomatal limitations, and subsequent increases indicate metabolic acclimation to flooding. Root ADH activities were higher in flooded plants compared to drained plants, indicating oxygen stress. Lower photosynthesis and greater oxygen stress could account for the susceptibility of T. ramosissima at the onset of flooding. Soil type had no effect on photosynthesis or on root ADH activity. In the field, stomatal conductance, leaf water potential, transpiration, and leaf δ13C were compared between T. ramosissima and other flooded species. T. ramosissima had lower stomatal conductance and water potential compared to Populus deltoides and Phragmites australis. Differences in physiological responses for T. ramosissima could become important for ecological concerns.  相似文献   

3.
Abstract. The effects in vivo of cardioactive peptides proctolin, CCAP and leucomyosuppressin (LMS) are investigated by means of noninvasive optocardiographic or thermographic techniques in postdiapause pupae of Manduca sexta. A constant pattern of heartbeat reversal in these pupae is manifested by regular alternations of the forward orientated (anterograde) and the backward orientated (retrograde) cardiac pulsations, with a periodicity of some 5–10 min. The heartbeat pattern is monitored continuously for several hours before and 24 h after injection of the investigated peptides. Injections of Ringer solution alone cause a slight, almost immediate increase of the rate of the pupal heartbeat (0–10%), which lasts only for 20–30 min. Injection of proctolin, CCAP or LMS does not show any immediate cardiostimulating effects (beyond those of Ringer) at concentrations up to 2 × 10−6 M (calculated from µg of the injected peptide and 70% pupal water content; 5–7 g pupal body mass). By contrast, injections of proctolin and CCAP in the range of 10-9 − 10-6 M concentrations cause delayed effects on the heartbeat, which are manifested only several hours after the injections. The delayed effects involve prolonged, or even continuous periods of unidirectional, more efficient and faster anterograde pulsations. Consequently, the flow of haemolymph through the head and thoracic parts of the pupal body increases. In the case of proctolin, the prolonged anterograde cardiac activity usually starts 5 h after the injections and the effect persists for 7–12 h. Using CCAP, the stimulation of anterograde activity starts 2.5–3 h after injections and lasts usually 7–8 h. Very small doses of peptides (10-8 − 10-9 M) do not change the latency period significantly, but they decrease the duration of the response. The frequency of the systolic contractions of the heart does not increase during the prolonged anterograde phase. Injections of LMS to produce a final concentration of 10−6 M in the pupa induce pathophysiological disturbances of heartbeat reversal and peristalsis. The effects start with a delay of some 1.5–2.5 h after the injections. By contrast to the effects of proctolin and CCAP, LMS does not produce delayed anterograde cardiac pulsations. These results show that the most intensively investigated cardiostimulating peptides in vitro, proctolin and CCAP, have no direct cardiostimulating activity under physiological conditions in vivo. It is concluded therefore that the delayed pharmacological effects of these peptides observed in the pupae of M. sexta, represent a secondary effect, resulting from stimulation of nonspecific, extracardiac myotropic or other physiological functions.  相似文献   

4.
1. When added in vitro to crab haemolymph at concentrations of 50 or 100 mg.1−1, copper decreased both haemocyanin-O2 affinity and the cooperativity of O2 binding.2. In crabs contaminated by a lethal dose of waterborne copper (2mg.l−1), haemolymph total concentration of the metal never reached levels that could affect O2 binding properties directly.3. Exogenous copper added in vitro or entering the animal in contaminated water was found for the most part non filterable and thus probably bound to haemolymph proteins.  相似文献   

5.
Experiments were conducted in controlled growth chambers to evaluate how increases in CO2 concentration ([CO2]) affected carbon metabolism and partitioning into sorbitol, sucrose, and starch in various ages of apple leaves. Apple plants (Malus domestica), 1 year old, were exposed to [CO2] of 200, 360, 700, 1000, and 1600 μl l−1 up to 8 days. Six groups of leaves (counted from the shoot apex): leaves 1–5 (sink), 6–7 (sink to source transition), 8–9 (sink to source transition), 10–11 (nearly-matured source), 21–22 (mid-age source), and 30–32 (aged source), were sampled at 1, 2, 4, and 8 days after [CO2] treatments for carbohydrate analysis. Increases in [CO2] from a sub-ambient (200 μl l−1) to an ambient level (360 μl l−1) significantly increased the concentrations of sorbitol, sucrose, glucose, and fructose tested in all ages of leaves. Continuous increase in [CO2] from ambient to super-ambient levels up to 1600 μl l−1 also increased sorbitol concentration by ≈50% in source leaves, but not in sink and sink to source transition leaves. Increases in [CO2] from 360 to 1600 μl l−1, however, had little effect on sucrose content in all ages of leaves. Starch concentrations increased in all ages of leaves as [CO2] increased. Rapid starch increases (e.g. 5-, 6-, 20-, and 50-fold increases for leaf groups 1–5, 6–7, 10–11, and 21–22, respectively) occurred from 700 to 1600 μl l−1 [CO2] during which increases in sorbitol concentration either ceased or slowed down. Our results indicate that changes in carbohydrates were much more responsive to CO2 enrichment in source leaves than in sink and sink to source transition leaves. Carbon partitioning was favored into starch and sorbitol over sucrose in all ages of leaves when [CO2] was increased from 200 to 700 μl l−1, and was favored into starch over sorbitol from 700 to 1600 μl l−1 [CO2].  相似文献   

6.
Zhang F W  Liu A H  Li Y N  Zhao L  Wang Q X  Du M Y 《农业工程》2008,28(2):453-462
Using the CO2 flux data measured by the eddy covariance method in the northeast of Qinghai-Tibetan Plateau in 2005, we analyzed the carbon flux dynamics in relation to meteorological and biotic factors. The results showed that the alpine wetland ecosystem was the carbon source, and it emitted 316.02 gCO2 · m−2 to atmosphere in 2005 with 230.16 gCO2 · m−2 absorbed in the growing season from May to September and 546.18 gCO2 · m−2 released in the non-growing season from January to April and from October to December. The maximum of the averaged daily CO2 uptake rates and release rates was (0.45 ± 0.0012) mgCO2 · m−2 · s−1 (Mean ± SE) in July and (0.22 ± 0.0090) mgCO2 · m−2 · s−1 in August, respectively. The averaged diurnal variation showed a single-peaked pattern in the growing season, but exhibited very small fluctuation in the non-growing season. Net ecosystem exchange (NEE) and gross primary production (GPP) were all correlated with some meteorological factors, and they showed a negatively linear correlation with aboveground biomass, while a positive correlation existed between the ecosystem respiration (Res) and those factors.  相似文献   

7.
Summary

The oxygen consumption rate (?O2) for Potamonauteus warreni Calman (= Potamon warreni (Calman) kept in 25 °C water was 34,4 μmol 1?1 O2 kg?1 and after 72 hours in 98% R.H. air the rate was 31,9 μmol 1?1 O2 kg?1 min?1. The ?O2 values for each of the two groups are not significantly different (P > 0,05). The partial oxygen tension of pre-branchial (v = venous) haemolymph (PvCO2) is 15,3 mm Hg in water and 13,0 mm Hg in air); partial carbon dioxide tension of pre-branchial (v) haemolymph (PvCO2) is 13,2 mm Hg in water and 13,0 mm Hg in air); the total carbon dioxide concentration in pre-branchial (v) haemolymph (CvCO2) tot. is 12,3 mmol 1?1 in air and 13,9 mmol 1?1 in water) are not significantly different for the two groups (P > 0,05). The haemolymph pH and the lactate concentration for crabs in water was found to be 7,51 and 0,38 mmol 1?1 respectively. No significant differences were found in pre-branchial haemolymph oxygen tension, carbon dioxide tension, total carbon dioxide content, haemolymph pH, lactate level, chloride concentration, P50 and haemocyanin-oxygen cooperativity in control crabs kept in water, and experimental crabs held in air for 72 hours. The chloride concentration, (327,0 mmol 1?1) for crabs kept in water does not differ from that of crabs held in air for 72 hours but is at least 15% higher than the sodium concentration (255 mmol 1?1) for crabs kept in water. The gill surface area is 520 mm2 g?1 wet body mass; on average 9,2 gill platelets (lamellae) can be found on a gill length of one millimetre. Each lamella is spaced 60–70 μm apart, each with a thickness of 30–40 μm. It is concluded that P. warreni may be described as a truly amphibious fresh-water crab.  相似文献   

8.
Photosynthesis, transpiration, and leaf area distribution were sampled in mature Quercus virginiana and Juniperus ashei trees to determine the impact of leaf position on canopy-level gas exchange, and how gas exchange patterns may affect the successful invasion of Quercus communities by J. ashei. Sampling was conducted monthly over a 2-yr period in 12 canopy locations (three canopy layers and four cardinal directions). Photosynthetic and transpiration rates of both species were greatest in the upper canopy and decreased with canopy depth. Leaf photosynthetic and transpiration rates were significantly higher for Q. virginiana (4.1–6.7 μmol CO2·m−2·s−1 and 1.1–2.1 mmol H2O·m−2·s−1) than for J. ashei (2.1–2.8 μmol CO2·m−2·s−1 and 0.7–1.0 mmol H2O·m−2·s−1) in every canopy level and direction. Leaves on the south and east sides of both species had higher gas exchange rates than leaves on the north and west sides. Although Quercus had a greater mean canopy diameter than Juniperus (31.3 vs. 27.7 m2), J. ashei had significantly greater leaf area (142 vs. 58 m2/tree). A simple model combining leaf area and gas exchange rates for different leaf positions demonstrated a significantly greater total canopy carbon dioxide uptake for J. ashei compared to Q. virginiana (831 vs. 612 g CO2·tree−1·d−1, respectively). Total daily water loss was also greater for Juniperus (125 vs. 73 Ltree−1·d−1). Differences in leaf gas exchange rates were poor predictors of the relationship between the invasive J. ashei and the codominant Q. virginiana. Leaf area and leaf area distribution coupled with leaf gas exchange rates were necessary to demonstrate the higher overall competitive potential of J. ashei.  相似文献   

9.
The gas exchange characteristics are reported for Amaranthus tricolor, a C4 vegetable amaranth of southeastern Asia. Maximum photosynthetic capacity was 48.3±1.0μmol CO2 m?2s?1 and the temperature optimum was 35°C. The calculated intercellular CO2 concentration at this leaf temperature and an incident photon flux (400–700 mm) of 2 mmol m?2s?1 averaged 208±14 μl l?1, abnormally high for a C4 species. The photosynthetic rate, intercellular CO2 concentration, and leaf conductance all decreased with an increase in water vapor pressure deficit. However, the decrease in leaf conductance which resulted in a decrease in intercellular CO2 concentration accounted for only one fourth of the observed decrease in photosynthetic rate as water vapor pressure deficit was increased. Subsequent measurements indicated that the depence of net photosynthesis on intercellular CO2 concetration changed with water vapor pressure deficit.  相似文献   

10.
The gas exchange characteristics are reported for Amaranthus tricolor, a C4 vegetable amaranth of southeastern Asia. Maximum photosynthetic capacity was 48.3±1.0 μmol CO2 m-2 s-1 and the temperature optimum was 35°C. The calculated intercellular CO2 concentration at this leaf temperature and an incident photon flux (400–700 mm) of 2 mmol m-2 s-1 averaged 208±14 μl l-1, abnormally high for a C4 species. The photosynthetic rate, intercellular CO2 concentration, and leaf conductance all decreased with an increase in water vapor pressure deficit. However, the decrease in leaf conductance which resulted in a decrease in intercellular CO2 concentration accounted for only one fourth of the observed decrease in photosynthetic rate as water vapor pressure deficit was increased. Subsequent measurements indicated that the dependence of net photosynthesis on intercellular CO2 concentration changed with water vapor pressure deficit.  相似文献   

11.
《Aquatic Botany》2005,83(1):71-81
The aquatic plant Elodea nuttallii (Planch.) St. John has been shown to express plasticity in the source of inorganic carbon it uses for photosynthesis. An investigation was undertaken to determine what effect the switch from CO2 to HCO3 use had on the growth of E. nuttallii. Plants were grown under reduced CO2 availability that favoured the switch, together with control plants (CO2 at equilibrium with air) that continued to use CO2 only. The extent to which both sets of plants could utilise HCO3 was determined (as the ratio of oxygen evolution at pH 9 and 6.5), and several measures of growth were made. Although reduced CO2 availability produced an increase in HCO3 utilisation, no differences were found in the measured growth of the plants. Therefore, it was possible to estimate, from the difference between the estimated rate of photosynthesis of the plants utilising HCO3 and those using CO2 only, the approximate cost of constructing, maintaining and running the bicarbonate utilisation mechanism in this species as 69 μmol photons m−2 s−1. This value can be used to estimate an irradiance of circa 80 μmol m−2 s−1 below which HCO3 use would not be expected in this species, an irradiance commonly experienced by submerged macrophytes in the field.  相似文献   

12.
《Inorganica chimica acta》1986,123(3):175-179
The palladium(II)-promoted hydrolysis of the methyl esters of glycyl-L-leucine, glycyl-L-alanine and L-alanylglycine have been studied at 25 °C and I=0.1 M in the pH range 4–5. At a 1:1 metal to ligand ratio the peptide esters act as tridentate ligands, donation occurring via the terminal amino group, the deprotonated amide nitrogen, and the carbonyl group of the ester. Due to the high Lewis acidity of Pd(II) rapid hydrolysis of the ester function by water and hydroxide ion occurs. Rate constants kOH and kH2O have been obtained for base hydrolysis and water hydrolysis of the coordinated peptide esters at 25 °C. The rate constants for base hydrolysis are 3.4 X 106 M−1 s−1 (L-alaglyOMe), 6.4 X 106 M−1 s−1 (gly-L-alaOMe) and 2.3 X 107 M−1 s−1 (gly-L-leuOMe). Base hydrolysis of the coordinated peptide esters is at least 106 times that of the free unprotonated ligand. Activation parameters have been obtained for both water and base hydrolysis of the Pd(II) complex of methyl L-alanylglycinate and possible mechanisms for the hydrolyses are considered.  相似文献   

13.
The steady-state kinetic parameters for the hydration of CO2 catalyzed by membrane-bound carbonic anhydrase from the renal brush-border of the dog are compared with the same parameters for water-soluble bovine erythrocyte carbonic anhydrase. For the membrane-bound enzyme, the turnover number kcat is 6.5 × 105 s?1 and the Michaelis constant is 7.5 mm for CO2 hydration at pH 7.4 and 25 °C. The corresponding constants for bovine carbonic anhydrase under these conditions are 6.3 × 105 s?1 and 15 mm (Y. Pocker and D.W. Bjorkquist (1977)Biochemistry16, 5698–5707). The rate constant for the transfer of a proton between carbonic anhydrase and buffer was determined from the dependence of the catalytic rate on the concentration of the buffers imidazole and N-2-hydroxyethylpiperazine-N′-2-ethanesulfonic acid (Hepes); the value of 2 × 108m?1s?1 describes this constant for both forms of carbonic anhydrase at pH 7.4. Furthermore, the pH dependence of the initial velocity of hydration of CO2 in the range of pH 6.5 to 8.0 is identical for the membrane-bound and soluble enzyme at low buffer concentration (1–2 mm imidazole). We conclude that the membrane plays no detectable role in affecting the CO2 hydration activity and that the active site of the renal, membrane-bound carbonic anhydrase is exposed to the aqueous phase.  相似文献   

14.
The effects of current velocity on the photosynthesis of the submerged angiosperm Callitriche stagnalis Scop. were investigated by CO2-exchange in a closed water-flow system. Apparent photosynthesis was stimulated by increasing velocities and a maximum rate was reached at 8–12 mm s?1. Increasing the velocity to 20 and 40 mm s?1 reduced the photosynthetic rates by 5–30% and 13–29%, respectively. It is suggested that the inhibition of photosynthesis at high velocities is caused by agitation of the incubated plant material. The ecological significance of this result is discussed briefly.  相似文献   

15.
The small, arboreal goanna, Varanus caudolineatus, has a field metabolic rate of approximately 0.46 mL CO2 g−1 hr−1 and a daily water intake requirement of approximately 31.6 mL kg−1 day−1 measured during the summer. V. caudolineatus held in a controlled-temperature environment of 35°C have lower metabolic (0.25 mL CO2 g−1 hr−1) and water flux (24.9 mL H2O kg−1d−1) rates than those in the field. Body water content was approximately 80% for V. caudolineatus.  相似文献   

16.
The oxidation of linoleic acid leads to the generation of several products with biological activity, including 13-oxooctadeca-9,11-dienoic acid (13-OXO), a bioactive 2,4-dienone that has been linked to cell differentiation. In the current work, the conjugation of 13-OXO by human glutathione transferases (GSTs) of the alpha (A1–1, A4–4), mu (M1–1, M2–2) and pi (the allelic variants P1–1/ile, and P1–1/val) classes, and a rat theta (rT2–2) class enzyme has been evaluated. The kinetics and stereoselectivity of the production of the 13-OXO-glutathione conjugate (13-OXO-SG) have been examined. In contrast to many xenobiotic substrates, the endogenous substrate 13-OXO does not exhibit an appreciable non-enzymatic rate of conjugation under physiological conditions. Therefore, the GST-catalyzed conjugation takes on greater significance as it provides the only realistic means for formation of 13-OXO-SG in most biological systems. Alpha class enzymes are most efficient at catalyzing the formation of 13-OXO-SG with kcat/Km values of 8.9 mM−1 s−1 for GST A1–1 and 2.14 mM−1 s−1 for GST A4–4. In comparison, enzymes from the mu and pi classes exhibit specificity constants from 0.4 to 0.8 mM−1 s−1. Conjugation of 13-OXO with glutathione at C-9 of the substrate can yield a pair of diastereomers that can be resolved by chiral HPLC. GSTs from the mu and pi classes are the most stereoselective enzymes and there is no apparent relationship between catalytic efficiency and stereoselectivity. The role of GST in the metabolic disposition of the bioactive oxidation products of linoleic acid has implications for the regulation of normal cellular functions by these versatile enzymes.  相似文献   

17.
18.
This study describes the effects that prolonged dehydration has on ionic balance in Schistocerca gregaria. When adult locusts are dehydrated for 7 days the body weight reduces by 10–20% and the haemolymph volume by 35–50%, but haemolymph concentrations of Na+, K+ and Cl change only slightly. On dehydration Na+ and Cl are removed from the haemolymph; 25% of the removed ions is excreted and 75% is evenly distributed in the body of the locust. The amount of potassium excreted always exceeds that removed from the haemolymph. Mature adults control more effectively than young ones the haemolymph ionic composition during dehydration, but young adults show a smaller reduction in haemolymph volume. In the normal state of hydration, 76% of the total body Na+ and 56% of the total body Cl is present in the haemolymph. These fall to 62 and 42% respectively on dehydration and increase to 77 and 50% on rehydration.  相似文献   

19.
The α-carbonic anhydrase gene from Helicobacter pylori strain 26695 has been cloned and sequenced. The full-length protein appears to be toxic to Escherichia coli, so we prepared a modified form of the gene lacking a part that presumably encodes a cleavable signal peptide. This truncated gene could be expressed in E. coli yielding an active enzyme comprising 229 amino acid residues. The amino acid sequence shows 36% identity with that of the enzyme from Neisseria gonorrhoeae and 28% with that of human carbonic anhydrase II. The H. pylori enzyme was purified by sulfonamide affinity chromatography and its circular dichroism spectrum and denaturation profile in guanidine hydrochloride have been measured. Kinetic parameters for CO2 hydration catalyzed by the H. pylori enzyme at pH 8.9 and 25°C are kcat=2.4×105 s−1, KM=17 mM and kcat/KM=1.4×107 M−1 s−1. The pH dependence of kcat/KM fits with a simple titration curve with pKa=7.5. Thiocyanate yields an uncompetitive inhibition pattern at pH 9 indicating that the maximal rate of CO2 hydration is limited by proton transfer between a zinc-bound water molecule and the reaction medium in analogy to other forms of the enzyme. The 4-nitrophenyl acetate hydrolase activity of the H. pylori enzyme is quite low with an apparent catalytic second-order rate constant, kenz, of 24 M−1 s−1 at pH 8.8 and 25°C. However, with 2-nitrophenyl acetate as substrate a kenz value of 665 M−1 s−1 was obtained under similar conditions.  相似文献   

20.
Two β-carbonic anhydrases (CAs, EC 4.2.1.1) were identified, cloned and purified in the pathogenic bacterium Legionella pneumophila, denominated LpCA1 and LpCA2. They efficiently catalyze CO2 hydration to bicarbonate and protons, with kcat in the range of (3.4–8.3) × 105 s−1 and kcat/Km of (4.7–8.5) × 107 M−1 s−1, and are inhibited by sulfonamides and sulfamates. The best LpCA1 inhibitors were aminobenzolamide and structurally similar sulfonylated aromatic sulfonamides, as well as acetazolamide and ethoxzolamide(KIs in the range of 40.3–90.5 nM). The best LpCA2 inhibitors belonged to the same class of sulfonylated sulfonamides, together with acetazolamide, methazolamide and dichlorophenamide (KIs in the range of 25.2–88.5 nM). As these enzymes may be involved in pH regulation in the phagosome during Legionella infection, their inhibition may lead to antibacterials with a novel mechanism of action.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号