首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Toxic Microcystis blooms frequently occur in eutrophic water bodies and exist in the form of colonial and unicellular cells. In order to understand the mechanism of Microcystis dominance in freshwater bodies, the physiological and biochemical responses of unicellular (4 strains) and colonial (4 strains) Microcystis strains to phosphorus (P) were comparatively studied. The two phenotype strains exhibit physiological differences mainly in terms of their response to low P concentrations. The growth of four unicellular and one small colonial Microcystis strain was significantly inhibited at a P concentration of 0.2 mg l−1; however, that of the large colonial Microcystis strains was not inhibited. The results of phosphate uptake experiments conducted using P-starved cells indicated that the colonial strains had a higher affinity for low levels of P. The unicellular strains consumed more P than the colonial strains. Alkaline phosphatase activity in the unicellular strains was significantly induced by low P concentrations. Under P-limited conditions, the oxygen evolution rate, F v/F m, and ETR max were lower in unicellular strains than in colonial strains. These findings may shed light on the mechanism by which colonial Microcystis strains have an advantage with regard to dominance and persistence in fluctuating P conditions. Handling editor: L. Naselli-Flores  相似文献   

2.
Microcystis sp., especially in its colonial form, is a common dominant species during cyanobacterial blooms in many iron‐deficient water bodies. It is still not entirely clear, however, how the colonial forms of Microcystis acclimate to iron‐deficient habitats, and the responses of unicellular and colonial forms to iron‐replete and iron‐deficient conditions were examined here. Growth rates and levels of photosynthetic pigments declined to a greater extent in cultures of unicellular Microcystis than in cultures of the colonial form in response to decreasing iron concentrations, resulting in the impaired photosynthetic performance of unicellular Microcystis as compared to colonial forms as measured by variable fluorescence and photosynthetic oxygen evolution. These results indicate that the light‐harvesting ability and photosynthetic capacity of colonial Microcystis was less affected by iron deficiency than the unicellular form. The carotenoid contents and nonphotochemical quenching of colonial Microcystis were less reduced than those of the unicellular form under decreasing iron concentrations, indicating that the colonial morphology enhanced photoprotection and acclimation to iron‐deficient conditions. Furthermore, large amounts of iron were detected in the capsular polysaccharides (CPS) of the colonies, and more iron was found to be attached to the colonial Microcystis CPS under decreasing iron conditions as compared to unicellular cultures. These results demonstrated that colonial Microcystis can acclimate to iron deficiencies better than the unicellular form, and that CPS plays an important role in their acclimation advantage in iron‐deficient waters.  相似文献   

3.
Light intensity (4.5–40.0 μEin m?2 s?1) and culture age had a pronounced effect on cell size and size range of a non-toxic axenic Microcystis isolate. The rate of cell volume increase (μm3 d?1) was 1.03 × light intensity (μEin m?2 s?1) 6.49. Average cell volume varied from 33 to 119 μm3, cells at higher light intensities being larger and having a larger size range. The effects on a toxic axenic Microcystis isolate were similar but less pronounced. Average cell volume ranged from 21–74 μm3. In general, cell size and especially size variability appear to be sensitive indicators of physiological state, with cells under stress conditions being larger and associated with a larger size range. The wide range of cell diameters observed at different irradiance levels (3.4–7.2 μm for the non-toxic and 1.8–6.4 μm for the toxic isolate), makes questionable the use of cell size as a taxonomic character without careful consideration of environmental conditions.  相似文献   

4.
Dunaliella species accumulate carotenoids and their role in protection against photooxidative stress has been investigated extensively. By contrast, the role of other antioxidants in this alga, has received less attention. Therefore, the components of the ascorbate–glutathione cycle, along with superoxide dismutase (E.C. 1.15.1.1) and peroxidase (E.C. 1.11.1.11) activity were compared in two strains of Dunaliella salina. Strain IR‐1 had two‐fold higher chlorophyll and β‐carotene concentration than Gh‐U. IR‐1 had around four‐fold higher superoxide dismutase, ascorbate peroxidase and pyrogallol peroxidase activities than Gh‐U on a protein basis. Ascorbate and glutathione concentrations and redox state did not differ between strains and there was little difference in the activity of ascorbate–glutathione cycle enzymes (monodehydroascorbate reductase [E.C. 1.6.5.4], dehydroascorbate reductase [E.C. 1.8.5.1] and glutathione reductase [E.C. 1.8.1.7]). The response of these antioxidants to high light and low temperature was assessed by transferring cells from normal growth conditions (28°C, photon flux density of 100 μmol m?2 s?1)to 28°C/1200 μmol m?2 s?1; 13°C/100 μmol m?2 s?1; 13°C/1200 μmol m?2 s?1 and 28°C/100 μmol m?2 s?1 for 24 h. Low temperature and combined high light‐low temperature decreased chlorophyll and β‐carotene in both strains indicating that these treatments cause photooxidative stress. High light, low temperature and combined high light‐low temperature treatments increased the total ascorbate pool by 10–50% and the total glutathione pool by 20–100% with no consistent effect on their redox state. Activities of ascorbate–glutathione cycle enzymes were not greatly affected but all the treatments increased superoxide dismutase activity. It is concluded that D. salina can partially adjust to photooxidative conditions by increasing superoxide dismutase activity, ascorbate and glutathione.  相似文献   

5.
We used batch cultures of three strains of the unicellular synurophyte Mallomonascaudata to investigate the effects of nitrate, phosphate, silicate and light intensity on population growth and growth rate. The three strains were isolated from three different reservoirs in Kyungpook Province, Korea. For all three strains, we observed high population growth under all nutrient concentrations studied, except at nitrate concentration below 0.8 μM. The maximum growth rate (μmax) occurred at 8.2 μM or 16.5 μM nitrate, depending on the strain, and at 11.5 μM phosphate. Silicate concentration had no effect on growth rate. With respect to light intensity, the maximum population growth and maximum growth rates (μmax) occured between 42 and 104 μmol m?2 s?1 depending on strain and culture temperature. Population growth of these three strains under batch culture occurred over a wide range of nutrient and light intensities, but there seemed to be strain‐specific differences that may represent adaptations to local environments.  相似文献   

6.
The relative importance of respiration and organic carbon release to the efficiency of carbon specific growth of Skeletonema costatum (Grev.) Clave was evaluated over a light range from 1500–15 μE · m?2· s?1. Net growth efficiency ranged from 0.45–0.69 with a maximum at 130 μE · m?2· s?1. Respiration was 93% or more of the variations in growth efficiency. Organic carbon release ranged from 0–7% of gross production and increased with light intensity. Carbon specific particulate production was a hyperbolic function of incident light intensity and was related exponentially to particulate carbon production per unit chlorophyll a. Full sunlight conditions, 1500 μE · m?2· s?1, did not induce photoinhibition of gross production. Variations in the efficiency of growth of S. costatum were minimized over a wide range of light intensities mainly because of variations in cellular pigments which permitted the efficient utilization of available light energy, and a reduction in the losses of carbon which increases the growth rate, possibly as a consequence of the recycling of respired carbon within the cell.  相似文献   

7.
Morphological evolution from a unicellular to multicellular state provides greater opportunities for organisms to attain larger and more complex living forms. As the most common freshwater cyanobacterial genus, Microcystis is a unicellular microorganism, with high phenotypic plasticity, which forms colonies and blooms in lakes and reservoirs worldwide. We conducted a systematic review of field studies from the 1990s to 2017 where Microcystis was dominant. Microcystis was detected as the dominant genus in waterbodies from temperate to subtropical and tropical zones. Unicellular Microcystis spp. can be induced to form colonies by adjusting biotic and abiotic factors in laboratory. Colony formation by cell division has been induced by zooplankton filtrate, high Pb2+ concentration, the presence of another cyanobacterium (Cylindrospermopsis raciborskii), heterotrophic bacteria, and by low temperature and light intensity. Colony formation by cell adhesion can be induced by zooplankton grazing, high Ca2+ concentration, and microcystins. We hypothesise that single cells of all Microcystis morphospecies initially form colonies with a similar morphology to those found in the early spring. These colonies gradually change their morphology to that of M. ichthyoblabe, M. wesenbergii and M. aeruginosa with changing environmental conditions. Colony formation provides Microcystis with many ecological advantages, including adaption to varying light, sustained growth under poor nutrient supply, protection from chemical stressors and protection from grazing. These benefits represent passive tactics responding to environmental stress. Microcystis colonies form at the cost of decreased specific growth rates compared with a unicellular habit. Large colony size allows Microcystis to attain rapid floating velocities (maximum recorded for a single colony, ∼ 10.08 m h−1) that enable them to develop and maintain a large biomass near the surface of eutrophic lakes, where they may shade and inhibit the growth of less‐buoyant species in deeper layers. Over time, accompanying species may fail to maintain viable populations, allowing Microcystis to dominate. Microcystis blooms can be controlled by artificial mixing. Microcystis colonies and non‐buoyant phytoplankton will be exposed to identical light conditions if they are evenly distributed over the water column. In that case, green algae and diatoms, which generally have a higher growth rate than Microcystis, will be more successful. Under such mixing conditions, other phytoplankton taxa could recover and the dominance of Microcystis would be reduced. This review advances our understanding of the factors and mechanisms affecting Microcystis colony formation and size in the field and laboratory through synthesis of current knowledge. The main transition pathways of morphological changes in Microcystis provide an example of the phenotypic plasticity of organisms during morphological evolution from a unicellular to multicellular state. We emphasise that the mechanisms and factors influencing competition among various close morphospecies are sometimes paradoxical because these morphospecies are potentially a single species. Further work is required to clarify the colony‐forming process in different Microcystis morphospecies and the seasonal variation in this process. This will allow researchers to grow laboratory cultures that more closely reflect field morphologies and to optimise artificial mixing to manage blooms more effectively.  相似文献   

8.
9.
The dry matter production in Polytrichum commune protonemata was increased when the light intensity was increased from 0 to 160 μE m?2 s?1, and at 160 μE m?2 s?1 production was about 200% of that found at 17 μE m?2 s?1. Production of chlorophyll (Chl) was increased by increasing light intensity from 0 to 17 μE m?2 s?1, but decreasing at light intensities above 17 μE m?2 s?1. At 160 μE m?2 s?1 the production of Chl was only about 50% of that at 17 μE m?2 s?1. The rate of CO2 fixation was low (0.31 μg CO2/mg Chi × h) at the light intensity of 17 μE m?2 s?1 as compared with that at 160 μE m?2 s?1 (0.83 μg CO2/mg Chi × h). Production of mono- (MGDG) and diglycosyl diglycerides (DGDG) was closely associated with that of chlorophylls. At the higher light intensity (160 μE m?2 s?1) production of glycolipids was about 60% of that at 17 μE m?2 s?1. Production of more polar lipids was less affected by light intensity. Light intensity also affected the fatty acid pattern of the lipid fractions. The effect was most pronounced in the MGDG fraction, where the proportion of C 18: 3ω3 + C 16: 3ω3 was higher at the higher light intensity.  相似文献   

10.
The population of Undaria pinnatifida in its ecologic niche sustains itself in high temperature summer in the form of vegetative gametophytes, the haploid stage in its heteromorphic life cycle. Gametogenesis initiates when seawater temperature drops below the threshold levels in autumn in the northern hemisphere. Given that the temperature may fall into the appropriate range for gametogenesis, the level of irradiance determines the final destiny of a gametophytic cell, either undergoing vegetative cell division or initiating gametogenesis. In elucidating how vegetatively propagated gametophytes cope with changes of irradiance in gametogenesis, we carried out a series of culture experiments and found that a direct exposure to irradiance as high as 270 μmol photons m?2 s?1 was lethal to dim‐light (7–10 μmol photons m?2 s?1) adapted male and female gametophytes. This lethal effect was linearly corelated with the exposure time. However, dim‐light adapted vegetative gametophytes were shown to be able tolerate as high as 420 μmol photons m?2 s?1 if the irradiance was steadily increased from dim light levels (7–10 μmol photons m?2 s?1) to 90, 180 and finally 420 μmol photons m?2 s?1, respectively, at a minimum of 1–3 h intervals. Percentage of female gametophytic cells that turned into oogonia and were eventually fertilized was significantly higher if cultured at higher but not lethal irradiances. Findings of this investigation help to understand the dynamic changes of population size of sporophytic plants under different light climates at different site‐specific ecologic niches. It may help to establish specific technical details of manipulation of light during mass production of seedlings by use of vegetatively propagated gametophytes.  相似文献   

11.
Many laboratories have solely used the Wilson isolate to physiologically characterize the harmful algal bloom (HAB) dinoflagellate Karenia brevis (C. C. Davis) G. Hansen et Moestrup. However, analysis of one isolate may lead to misinterpretations when extrapolating measurements to field populations. In this study, pulse‐amplitude‐modulated chlorophyll fluorometer (PAM‐FL) relative electron transport rate (ETR), Fv/Fm, and chl were compared with traditional techniques, such as 14C photosynthesis versus irradiance (P–E) curves, DCMU [3‐(3′,4′‐dichlorophenyl)‐1,1‐dimethyl urea] Fv/Fm, and extracted chl. The DCMU and PAM‐FL values of Fv/Fm (r2 = 0.51) and chl (r2 = 0.58) were in good agreement. There was no correlation between 14C and PAM‐FL α, Pmax, and β parameters because PAM‐FL ETR was only a relative measurement. The PAM‐FL techniques were then used to investigate P–E curves, quantum yield of PSII (Fv/Fm), and chl from 10 K. brevis isolates to determine whether one or all isolates would better represent the species. Comparisons were made with a radial photosynthetron, which allowed for controlled conditions of light and temperature. Isolate α, Pmax, and β varied between 0.097 and 0.204 μmol e? · m?2 · s?1 · (μmol quanta · m?2 · s?1)?1, 80.41 and 241 μmol e? · m?2 · s?1, and 0.005 and 0.160 μmol e? · m?2 · s?1 · (μmol quanta · m?2 · s?1)?1, respectively. Either carbon limitation and/or bacterial negative feedback were implicated as the cause of the P–E parameter variability. Furthermore, these results directly contradicted some literature suggestions that K. brevis is a low‐light‐adapted dinoflagellate. Results showed that K. brevis was more than capable of utilizing and surviving in light conditions that may be present on cloudless days off Florida.  相似文献   

12.
Both colonies and free‐living cells of the terrestrial cyanobacterium, Nostoc flagelliforme (Berk. & Curtis) Bornet & Flahault, were cultured under aquatic conditions to develop the techniques for the cultivation and restoration of this endangered resource. The colonial filaments disintegrated with their sheaths ruptured in about 2 days without any desiccating treatments. Periodic desiccation played an important role in preventing the alga from decomposing, with greater delays to sheath rupture with a higher frequency of exposure to air. The bacterial numbers in the culture treated with seven periods of desiccation per day were about 50% less compared with the cultures without the desiccation treatment. When bacteria in the culture were controlled, the colonial filaments did not disintegrate and maintained the integrity of their sheath for about 20 days even without the desiccation treatments, indicating the importance of desiccation for N. flagelliforme to prevent them from being disintegrated by bacteria. On the other hand, when free‐living cells obtained from crushed colonial filaments were cultured in liquid medium, they developed into single filaments with sheaths, within which multiple filaments were formed later on as a colony. Such colonial filaments were developed at 15, 25, and 30° C at either 20 or 60 μmol photons·m?2·s?1; colonies did not develop at 180 μmol photons·m?2·s?1, though this light level resulted in the most rapid growth of the cells. Conditions of 60 μmol photons·m?2·s?1 and 25° C appeared to result in the best colonial development and faster growth of the sheath‐held colonies of N. flagelliforme when cultured indoor under aquatic conditions.  相似文献   

13.
This paper provided insight into the influence of iron on the growth of Microcystis aeruginosa strains related to different phenotypes of this species. In this research it was intended to compare the growth, pigment composition, photosynthetic efficiency and extracellular polysaccharides production of unicellular and colonial strains of M. aeruginosa. A significantly growth inhibition under iron-limited condition on unicellular M. aeruginosa was noted, whereas the colonial strain could maintain a steady growth along with the culture time. This observation was reconfirmed by the content of chlorophyll a. Compared with unicellular strain; the colonial strain exhibited a higher PSII maximum light energy transformation, photosynthetic oxygen evolution and extracellular polysaccharides (EPS) production in iron-limited condition. Further, in order to gain more information about the accessibility of iron in the two phenotypic Microcystis, we found the two strains could produce hydroxamate-type siderophores, the content of siderophores produced by the colonial strain was more than those in unicellular strain under the iron-limited condition. It was interpreted as an adaptation to the dilute environment. Our results demonstrated that the colonial phenotypes possessed stronger ability to endure iron-limited condition than unicellular strain by higher pigment contents, higher photosynthetic activities, higher EPS production and higher siderophores secretion. It might elucidate that the colonial M. aeruginosa bloom can sustain in eutrophic reservoirs and lakes.  相似文献   

14.
To develop tools for modeling diazotrophic growth in the open ocean, we determined the maximum growth rate and carbon content for three diazotrophic cyanobacteria commonly observed at Station ALOHA (A Long‐term Oligotrophic Habitat Assessment) in the subtropical North Pacific: filamentous nonheterocyst‐forming Trichodesmium and unicellular Groups A and B. Growth‐irradiance responses of Trichodesmium erythraeum Ehrenb. strain IMS101 and Crocosphaera watsonii J. Waterbury strain WH8501 were measured in the laboratory. No significant differences were detected between their fitted parameters (±CI) for maximum growth rate (0.51 ± 0.09 vs. 0.49 ± 0.17 d?1), half‐light saturation (73 ± 29 vs. 66 ± 37 μmol quanta · m?2 · s?1), and photoinhibition (0 and 0.00043 ± 0.00087 [μmol quanta · m?2 · s?1]?1). Maximum growth rates and carbon contents of Trichodesmium and Crocosphaera cultures conformed to published allometric relationships, demonstrating that these relationships apply to oceanic diazotrophic microorganisms. This agreement promoted the use of allometric models to approximate unknown parameters of maximum growth rate (0.77 d?1) and carbon content (480 fg C · μm?3) for the uncultivated, unicellular Group A cyanobacteria. The size of Group A was characterized from samples from the North Pacific Ocean using fluorescence‐activated cell sorting and real‐time quantitative PCR techniques. Knowledge of growth and carbon content properties of these organisms facilitates the incorporation of different types of cyanobacteria in modeling efforts aimed at assessing the relative importance of filamentous and unicellular diazotrophs to carbon and nitrogen cycling in the open ocean.  相似文献   

15.
16.
Batch cultures of both Microcystis PCC7806 and a mcyA? knockout mutant (MT) of PCC7806 were cultured at three different light intensities and five media treatments, so as to vary cellular N:C ratios and concentrations and sampled daily over 5 d for analysis of microcystin concentration, cell numbers, and residual nitrate in the growth medium. A competitive survival advantage was noted at a high‐light level (37 μmol photons · m?2 · s?1), where the toxic strain survived while the nontoxic strain became chlorotic. A strong correlation (r2 = 0.91, P < 0.001, N = 22) between microcystin concentration and growth rate was observed at high‐light conditions. No advantage was observed at optimal or low‐light conditions, and media composition had no significant effect on the relationship between toxicity and survival at high‐light conditions. These data suggest a possible role for microcystin in protection against photooxidation.  相似文献   

17.
Photosynthetic pigments, C, N, and P tissue composition, and photosynthetic rate were measured from April to October in the brown alga Phyllariopsis purpurascens (C. Agardh) Henry et South (Laminariales, Phaeophyta) growing at a 30-m depth in the Strait of Gibraltar. Ir-radiance reaching the population ranged from 13.5 to 27.5 mol.m-2.mo-1. The available light for this species, expressed as a percentage of the irradiance above the water, was 1.8%. Dissolved inorganic nitrogen forms, NO3-and NH4+, were constant from April to October, whereas phosphate was depleted in August. Chlorophyll a decreased from 520.0 ± 165.0 to 199.6 ± 159.9 μg.g-1 dry weight; in contrast, chlorophyll c and carotenoids did not change until September but increased threefold in October. C:N and N:P ratios changed in the same way and in the same range. They were constant until July but increased from 15–17 up to 42 (C:N) and from 14 to 40 (N:P) in October, suggesting a severe P limitation of growth of this species. The dark respiration rate and the light compensation point were constant from April to October (0.5 ± 0.1 μmol O2. m-2.s-1 and 6.5 ± 0.2 μmol.m-2. s-1, respectively), whereas the maximum rate of apparent photosynthesis, light onset saturation parameter, and half saturation constant for light were maximum in April to May (3.7 μmol O2. m-2.s-1and 40 and 41.5 μmol.m-2. s-1, respectively) and October (3.6 μmol O2. m-2.s-1 and 50 and 53.7 μmol.m-2. s-1, respectively). They were minimum in August (1.2 μmol O2.m-2.s-1 and 11.3 and 12 μmol.m-2.s-1, respectively). These minimum figures yielded a negative carbon budget in August and 0 in September, whereas it was positive the rest of the year. Photosynthetic efficiency, estimated by the ratio between maximum apparent photosynthesis and light half saturation constant, showed a strong agreement with productivity measured by means of an independent method. These results indicate that lamina expansion in this species is controlled by photosynthetic efficiency.  相似文献   

18.
Mesodinium rubrum (=Myrionecta rubra), a marine ciliate, acquires plastids, mitochondria, and nuclei from cryptophyte algae. Using a strain of M. rubrum isolated from McMurdo Sound, Antarctica, we investigated the photoacclimation potential of this trophically unique organism at a range of low irradiance levels. The compensation growth irradiance for M. rubrum was 0.5 μmol quanta · m−2 · s−1, and growth rate saturated at ∼20 μmol quanta · m−2 · s−1. The strain displayed trends in photosynthetic efficiency and pigment content characteristic of marine phototrophs. Maximum chl a–specific photosynthetic rates were an order of magnitude slower than temperate strains, while growth rates were half as large, suggesting that a thermal limit to enzyme kinetics produces a fundamental limit to cell function. M. rubrum acclimates to light‐ and temperature‐limited polar conditions and closely regulates photosynthesis in its cryptophyte organelles. By acquiring and maintaining physiologically viable, plastic plastids, M. rubrum establishes a selective advantage over purely heterotrophic ciliates but reduces competition with other phototrophs by exploiting a very low‐light niche.  相似文献   

19.
1. The effect of light intensity on photosynthesis and the fate of newly fixed organic carbon was compared for three characean algae collected at the same depth (10 m) but differing in their depth distributions. For each species we determined photosynthesis–irradiance (P–E) responses, the partitioning of newly fixed carbon into four intracellular pools (low molecular‐weight compounds, polysaccharides, lipids and proteins) and the extracellular organic carbon (EOC) release at a range of photon flux densities (PFD) 0–60 μmol m–2 s–1. 2. The P–E responses differed between the three species, with the light compensation point (Ec) and dark respiration rate highest in the shallowest species (Chara fibrosa), intermediate in the mid‐range species (C. globularis) and lowest in the deepest species (C. corallina). Photosynthetic efficiency (α) and photosynthesis: respiration ratios were lowest in C. fibrosa and highest in C. corallina. 3. In all three species, the low molecular weight pool was the principal photosynthetic product (>60% of fixed C) at 3 μmol m–2 s–1 PFD, but its proportional contribution decreased rapidly with increasing irradiance. Polysaccharide rose to become the major product (>35% of fixed C) at saturating PFD (35 μmol m–2 s–1). 4. Protein synthesis was saturated at 5 μmol m–2 s–1 in all species and was consistently a lower proportion of the fixed carbon in C. corallina than the other species. The fraction incorporated in the lipid pool increased slightly with irradiance but was always less than 10% of fixed C, while the proportion lost as EOC was unaffected by light, being significantly higher in C. fibrosa than the other species. 5. A kinetic experiment with C. fibrosa at 35 μmol m–2 s–1 PFD revealed a continued increase in net polysaccharide, protein and lipid synthesis during a 22.5‐h light period, whereas the net size of the low molecular weight pool remained constant. In a subsequent dark period, protein and lipid synthesis continued at the expense of the polysaccharide and low‐molecular‐weight pools. The EOC release rose to a constant low release in the light, then peaked slightly immediately after the dark–light transition before returning to the same rate as in the light. Extrapolating these data over 24 h suggests that the proportion of fixed carbon lost as EOC may be as high as 10% in this species. 6. The interspecific differences in carbon acquisition between the three species reflected their depth distributions, with the deeper species having more efficient photosynthetic metabolism, lower P:R ratios and less EOC release, although no apparent differences in internal partitioning of photosynthate.  相似文献   

20.
Calcifying and a noncalcifying strains of Emiliania huxleyi were cultured in nutrient replete turbidostats under a photon flux density (PFD) gradient from 50 to 600 μmol E·m?2·s?1. For both strains, growth was PFD‐saturated at 300 μmol E·m?2·s?1. The strains, although with clearly different physiological properties due to the presence or absence of calcification, showed the same trends and magnitude of change in their pigment compliment as a function of PFD. Light‐controlled pigment composition and the trends of change in pigment composition were identical in both strains. Fucoxanthin (Fuco) was the major carotenoid in the calcifying strain, while in the noncalcifying strain this role was assumed by 19′ hexanoyloxyfucoxanthin (19 Hex). The photoprotective pigments and 19 Hex, normalized to chl a, increased with increasing light, while chl a content per cell and chl c's and Fuco, normalized to chl a, decreased with increasing PFD. The sum of all carotenoids normalized to chl a was remarkably similar in all PFDs used. Collectively, our results suggest that 19 Hex was synthesized from Fuco with light as a modulating factor and that the total amount of carotenoids is strain‐specific and synthesized/catabolized in tandem with chl a to a genetically predefined level independent of PFD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号