首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The photocycle of the photophobic receptor sensory rhodopsin II from N. pharaonis was analyzed by varying measuring wavelengths, temperature, and pH, and by exchanging H2O with D2O. The data can be satisfactorily modeled by eight exponents over the whole range of modified parameters. The kinetic data support a model similar to that of bacteriorhodopsin (BR) if a scheme of irreversible first-order reactions is assumed. Eight kinetically distinct protein states can then be identified. These states are formed from five spectrally distinct species. The chromophore states Si correspond in their spectral properties to those of the BR photocycle, namely pSRII510 (K), pSRII495 (L), pSRII400 (M), pSRII485 (N), and pSRII535 (O). In comparison to BR, pSRII400 is formed approximately 10 times faster than the M state; however, the back-reaction is almost 100 times slower. Comparison of the temperature dependence of the rate constants with those from the BR photocycle suggests that the differences are caused by changes of DeltaS. The rate constants of the pSRII photocycle are almost insensitive to the pH variation from 9.0 to 5.5, and show only a small H2O/D2O effect. This analysis supports the idea that the conformational dynamics of pSRII controls the kinetics of the photocycle of pSRII.  相似文献   

2.
In the present work the light-activated proton transfer reactions of sensory rhodopsin II from Natronobacterium pharaonis (pSRII) and those of the channel-mutants D75N-pSRII and F86D-pSRII are investigated using flash photolysis and black lipid membrane (BLM) techniques. Whereas the photocycle of the F86D-pSRII mutant is quite similar to that of the wild-type protein, the photocycle of D75N-pSRII consists of only two intermediates. The addition of external proton donors such as azide, or in the case of F86D-pSRII, imidazole, accelerates the reprotonation of the Schiff base, but not the turnover. The electrical measurements prove that pSRII and F86D-pSRII can function as outwardly directed proton pumps, whereas the mutation in the extracellular channel (D75N-pSRII) leads to an inwardly directed transient current. The almost negligible size of the photostationary current is explained by the long-lasting photocycle of about a second. Although the M decay, but not the photocycle turnover, of pSRII and F86D-pSRII is accelerated by the addition of azide, the photostationary current is considerably increased. It is discussed that in a two-photon process a late intermediate (N- and/or O-like species) is photoconverted back to the original resting state; thereby the long photocycle is cut short, giving rise to the large increase of the photostationary current. The results presented in this work indicate that the function to generate ion gradients across membranes is a general property of archaeal rhodopsins.  相似文献   

3.
Sensory rhodopsin II (also called phoborhodopsin) from the archaeal Natronobacterium pharaonis (pSRII) functions as a repellent phototaxis receptor. The excitation of the receptor by light triggers the activation of a transducer molecule (pHtrII) which has close resemblance to the cytoplasmic domain of bacterial chemotaxis receptors. In order to elucidate the first step of the signal transduction chain, the accessibility as well as static and transient mobility of cytoplasmic residues in helices F and G were analysed by electron paramagnetic resonance spectroscopy. The results indicate an outward tilting of helix F during the early steps of the photocycle which is sustained until the reformation of the initial ground state. Co-expression of pSRII with a truncated fragment of pHtrII affects the accessibility and/or the mobility of certain spin-labelled residues on helices F and G. The results suggest that these sites are located within the binding surface of the photoreceptor with its transducer.  相似文献   

4.
Our understanding on the folding of membrane proteins lags behind that of soluble proteins due to challenges posed by the exposure of hydrophobic regions during in vitro chemical denaturation and refolding experiments. While different folding models are accepted for soluble proteins, only the two-stage model and the long-range interactions model have been proposed so far for helical membrane proteins. To address our knowledge gap on how different membrane proteins traverse their folding pathways, we have systematically investigated the structural features of SDS-denatured states and the kinetics for reversible unfolding of sensory rhodopsin II (pSRII), a retinal-binding photophobic receptor from Natronomonas pharaonis. pSRII is difficult to denature, and only SDS can dislodge the retinal chromophore without rapid aggregation. Even in 30% SDS (0.998 ΧSDS), pSRII retains the equivalent of six out of seven transmembrane helices, while the retinal-binding pocket is disrupted, with transmembrane residues becoming more solvent exposed. Folding of pSRII from an SDS-denatured state harboring a covalently bound retinal chromophore shows deviations from an apparent two-state behavior. SDS denaturation to form the sensory opsin apo-protein is reversible. We report pSRII as a new model protein which is suitable for membrane protein folding studies and has a unique folding mechanism that differs from those of bacteriorhodopsin and bovine rhodopsin.  相似文献   

5.
Studies have shown that trans-cis isomerization of retinal is the primary photoreaction in the photocycle of the light-driven proton pump bacteriorhodopsin (BR) from Halobacterium salinarum, as well as in the photocycle of the chloride pump halorhodopsin (HR). The transmembrane proteins HR and BR show extensive structural similarities, but differ in the electrostatic surroundings of the retinal chromophore near the protonated Schiff base. Point mutation of BR of the negatively charged aspartate D85 to a threonine T (D85T) in combination with variation of the pH value and anion concentration is used to study the ultrafast photoisomerization of BR and HR for well-defined electrostatic surroundings of the retinal chromophore. Variations of the pH value and salt concentration allow a switch in the isomerization dynamics of the BR mutant D85T between BR-like and HR-like behaviors. At low salt concentrations or a high pH value (pH 8), the mutant D85T shows a biexponential initial reaction similar to that of HR. The combination of high salt concentration and a low pH value (pH 6) leads to a subpopulation of 25% of the mutant D85T whose stationary and dynamic absorption properties are similar to those of native BR. In this sample, the combination of low pH and high salt concentration reestablishes the electrostatic surroundings originally present in native BR, but only a minor fraction of the D85T molecules have the charge located exactly at the position required for the BR-like fast isomerization reaction. The results suggest that the electrostatics in the native BR protein is optimized by evolution. The accurate location of the fixed charge at the aspartate D85 near the Schiff base in BR is essential for the high efficiency of the primary reaction.  相似文献   

6.
Purified wild-type sensory rhodopsin II from Natronobacterium pharaonis (pSRII-WT) and its histidine-tagged analog (pSRII-His) were studied by laser-induced optoacoustic spectroscopy (LIOAS) and flash photolysis with optical detection. The samples were either dissolved in detergent or reconstituted into polar lipids from purple membrane (PML). The quantum yield for the formation of the long-lived state M(400) was determined as Phi(M) = 0.5 +/- 0.06 for both proteins. The structural volume change accompanying the production of K(510) as determined with LIOAS was DeltaV(R,1) /= Phi(M), indicating that the His tag does not influence this early step of the photocycle. The medium has no influence on DeltaV(R,1), which is the largest so far measured for a retinal protein in this time range (<10 ns). This confirms the occurrence of conformational movements in pSRII for this step, as previously suggested by Fourier transform infrared spectroscopy. On the contrary, the decay of K(510) is an expansion in the detergent-dissolved sample and a contraction in PML. Assuming an efficiency of 1.0, DeltaV(R,2) = -3 ml/mol for pSRII-WT and -4.6 ml/mol for pSRII-His were calculated in PML, indicative of a small structural difference between the two proteins. The energy content of K(510) is also affected by the tag. It is E(K) = (88 +/- 13) for pSRII-WT and (134 +/- 11) kJ/mol for pSRII-His. A slight difference in the activation parameters for K(510) decay confirms an influence of the C-terminal His on this step. At variance with DeltaV(R,1), the opposite sign of DeltaV(R,2) in detergent and PML suggests the occurrence of solvation effects on the decay of K(510), which are probably due to a different interaction of the active site with the two dissolving media.  相似文献   

7.
Tateishi Y  Abe T  Tamogami J  Nakao Y  Kikukawa T  Kamo N  Unno M 《Biochemistry》2011,50(12):2135-2143
Sensory rhodopsin II is a seven transmembrane helical retinal protein and functions as a photoreceptor protein in negative phototaxis of halophilic archaea. Sensory rhodopsin II from Natronomonas pharaonis (NpSRII) is stable under various conditions and can be expressed functionally in Escherichia coli cell membranes. Rhodopsins from microorganisms, known as microbial rhodopsins, exhibit a photocycle, and light irradiation of these molecules leads to a high-energy intermediate, which relaxes thermally to the original pigment after passing through several intermediates. For bacteriorhodopsin (BR), a light-driven proton pump, the photocycle is established as BR → K → L → M → N → O → BR. The photocycle of NpSRII is similar to that of BR except for N, i.e., M thermally decays into the O, and N has not been well characterized in the photocycle. Thus we here examined the second half of the photocycle in NpSRII, and in the present transient absorption study we found the formation of a new photointermediate whose absorption maximum is ~500 nm. This intermediate becomes pronounced in the presence of azide, which accelerates the decay of M. Transient resonance Raman spectroscopy was further applied to demonstrate that this intermediate contains a 13-cis retinal protonated Schiff base. However, detailed analysis of the transient absorption data indicated that M-decay does not directly produce N but rather produces O that is in equilibrium with N. These observations allowed us to propose a structural model for a photocycle that involves N.  相似文献   

8.
pharaonis phoborhodopsin (ppR; also called pharaonis sensory rhodopsin II, psR-II) is a photoreceptor for negative phototaxis in Natronobacterium pharaonis. During the photocycle of ppR, the Schiff base of the retinal chromophore is deprotonated upon formation of the M intermediate (ppR(M)). The present FTIR spectroscopy of ppR(M) revealed that the Schiff base proton is transferred to Asp-75, which corresponds to Asp-85 in a light-driven proton-pump bacteriorhodopsin (BR). In addition, the C==O stretching vibrations of Asn-105 were assigned for ppR and ppR(M). The common hydrogen-bonding alterations in Asn-105 of ppR and Asp-115 of BR were found in the process from photoisomerization (K intermediate) to the primary proton transfer (M intermediate). These results implicate similar protein structural changes between ppR and BR. However, BR(M) decays to BR(N) accompanying a proton transfer from Asp-96 to the Schiff base and largely changed protein structure. In the D96N mutant protein of BR that lacks a proton donor to the Schiff base, the N-like protein structure was observed with the deprotonated Schiff base (called M(N)) at alkaline pH. In ppR, such an N-like (M(N)-like) structure was not observed at alkaline pH, suggesting that the protein structure of the M state activates its transducer protein.  相似文献   

9.
Sensory rhodopsin II (pSRII), the photophobic receptor from Natronobacterium pharaonis, has been studied by time-resolved resonance Raman (RR) spectroscopy using the rotating cell technique. Upon excitation with low laser power, the RR spectra largely reflect the parent state pSRII(500) whereas an increase of the laser power leads to a substantial accumulation of long-lived intermediates contributing to the RR spectra. All RR spectra could consistently be analysed in terms of four component spectra which were assigned to the parent state pSRII(500) and the long-lived intermediates M(400), N(485) and O(535) based on the correlation between the C = C stretching frequency and the absorption maximum. The parent state and the intermediates N(485) and O(535) exhibit a protonated Schiff base. The C = N stretching frequencies and the H/D isotopic shifts indicate strong hydrogen bonding interactions of the Schiff base in pSRII(500) and O(535) whereas these interactions are most likely very weak in N(485).  相似文献   

10.
菌紫质(BR)是嗜盐菌紫膜中的唯一蛋白质,野生型的BR分子含有248个氨基酸残基,其中一个视黄醛通过希夫碱基连结在第216位赖氨酸上,它具有质子泵的功能.光照下,BR进行光循环,光循环又与质子泵过程相关联.菌紫质的结构和功能方面的研究已有很大进展,但其光循环途径和质子泵的机理还不太清楚.文章概述了近年来对菌紫质结构,光循环和质子泵机理研究的进展,尤其对争论较大的菌紫质光循环途径的四类模型作了较详细的介绍.  相似文献   

11.
The light-catalysed reaction of hydroxylamine (HA) with retinal is one of the basic features of bacteriorhodopsin (BR). Surprisingly, according to recent results, neither the photocycle and proton pumping of BR, nor the transcis isomerisation of retinal is prerequisite for photobleaching of BR in the presence of HA. How, then, is the accessibility of retinal to HA enhanced on illumination? We studied whether local thermal denaturation of BR, proposed recently, could provide an explanation for HA-promoted bleaching. According to our results, HA does not alter the absorption spectrum and the photocycle kinetics of BR substantially at room temperature, even at molar concentrations, but grossly affects the temperature of thermal denaturation. At pH 7, the presence of 0.5 M HA reduces the denaturation temperature from 100°C to as low as 72°C. The decrease is proportional to the logarithm of the HA concentration over more than three orders of magnitude, and even 0.5 mM HA has a significant effect. In addition, photobleaching becomes considerably faster with increasing temperature in the presence of HA, it takes a few seconds at 50–60°C. Our results suggest that photobleaching of BR in the presence of HA can be explained by overall destabilisation of the structure of the protein and local thermal denaturation that has already accounted for the photobleaching of the HA-free BR at elevated temperatures. These results further support the importance of thermooptic effects in protein photoreactions and identify HA as a thermal destabiliser of BR.  相似文献   

12.
Modification of the chromophore in bacteriorhodopsin (BR) from ET1001 and D96N strains of Halobacterium salinarum (halobium) was carried out. Purple membranes were decolored by means of light-dependent hydroxylaminolysis. The all-trans -isomers of retinal and its 3,4-didehydro-, 4-keto-, and phenyl analogs were reconstituted into apomembranes. Absorption maxima of the homonymic pigments in both strains were similar. The kinetics of the M-intermediates in the mode of a single turnover of the photocycle induced by a short light flash (532 nm, 15 ns) was compared. For the investigated bacteriorhodopsin analogs the efficiency of the M-intermediate formation did not exhibit any reliable dependence on the point mutation. Both for ET1001 and for D96N strains the M-relaxation of the 4-ketoBR was distinctly biphasic, with the slow phase comprising about 10–15% of the signal amplitude. Replacement of the ionone ring by phenyl caused a weak deceleration of the M relaxation (~1.5-fold decrease in t 1/2). Independence of the photocycle deceleration of the point mutation and chromophore modification was shown for all BR analogs studied.  相似文献   

13.
Natronomonas pharaonis halorhodopsin (pHR) is an archaeal rhodopsin functioning as an inward-directed, light-driven Cl- pump. To characterize the electrophysiological features of the Cl- pump activity of pHR, we expressed pHR in Xenopus laevis oocytes and analyzed its photoinduced Cl- pump activity using the two-electrode voltage-clamp technique. Photoinduced outward currents were observed only in the presence of Cl-, Br-, I-, NO3-, and SCN-, but not in control oocytes, indicating that photoinduced anion currents were mediated by pHR. The relationship between photoinduced Cl- current via pHR and the light intensity was linear, demonstrating that transport of Cl- is driven by a single-photon reaction and that the steady-state current is proportional to the excited pHR molecule. The current-voltage relationship for pHR-mediated photoinduced currents was also linear between -150 mV and +50 mV. The slope of the line describing the current-voltage relationship increased as the number of the excited pHR molecules was increased by the light intensity. The reversal potential (VR) for Cl- as the substrate for the anion pump activity of pHR was about -400 mV. The value for VR was independent of light intensity, meaning that the VR reflects the intrinsic value of the excited pHR molecule. The value of VR changed significantly for the R123K mutant of pHR. We also show that the Cl- pump activity of pHR can generate a substantial negative membrane potential, indicating that pHR is a very potent Cl- pump. We have also analyzed the kinetics of voltage-dependent Cl- pump activity as well as that of the photocycle. Based on these data, a kinetic model for voltage-dependent Cl- transport via pHR is presented.  相似文献   

14.
The photocycle kinetics of halorhodopsin from Natronobacterium pharaonis (pHR(575)) was analyzed at different temperatures and chloride concentrations as well as various halides. Over the whole range of modified parameters the kinetics can be adequately modeled with six apparent rate constants. Assuming a model in which the observed rates are assigned to irreversible transitions of a single relaxation chain, six kinetically distinguishable states (P(1-6)) are discernible that are formed from four chromophore states (spectral archetypes S(j): K(570), L(N)(520), O(600), pHR'(575)). Whereas P(1) coincides with K(570) (S(1)), both P(2) and P(3) have identical spectra resembling L(520) (S(2)), thus representing a true spectral silent transition between them. P(4) constitutes a fast temperature-dependent equilibrium between the chromophore states S(2) and S(3) (L(520) and O(600), respectively). The subsequent equilibrium (P(5)) of the same spectral archetypes is only moderately temperature dependent but shows sensitivity toward the type of anion and the chloride concentration. Therefore, S(2) and S(3) occurring in P(4) as well as in P(5) have to be distinguished and are assigned to L(520)<--> O(1)(600) and O(2)(600)<--> N(520) equilibrium, respectively. It is proposed that P(4) and P(5) represent the anion release and uptake steps. Based on the experimental data affinities of the halide binding sites are estimated.  相似文献   

15.
The sensory rhodopsin II from Natronobacterium pharaonis (NpSRII) was mutated to try to create functional properties characteristic of bacteriorhodopsin (BR), the proton pump from Halobacterium salinarum. Key residues from the cytoplasmic and extracellular proton transfer channel of BR as well as from the retinal binding site were chosen. The single site mutants L40T, F86D, P183E, and T204A did not display altered function as determined by the kinetics of their photocycles. However, the photocycle of each of the subsequent multisite mutations L40T/F86D, L40T/F86D/P183E, and L40T/F86D/P183E/T204A was quite different from that of the wild-type protein. The reprotonation of the Schiff base could be accelerated approximately 300- to 400-fold, to approximately two to three times faster than the corresponding reaction in BR. The greatest effect is observed for the quadruple mutant in which Thr-204 is replaced by Ala. This result indicates that mutations affecting conformational changes of the protein might be of decisive importance for the creation of BR-like functional properties.  相似文献   

16.
The photocycle of pharaonis halorhodopsin was investigated in the presence of 100 mM NaN(3) and 1 M Na(2)SO(4). Recent observations established that the replacement of the chloride ion with azide transforms the photocycle from a chloride-transporting one into a proton-transporting one. Kinetic analysis proves that the photocycle is very similar to that of bacteriorhodopsin. After K and L, intermediate M appears, which is missing from the chloride-transporting photocycle. In this intermediate the retinal Schiff base deprotonates. The rise of M in halorhodopsin is in the microsecond range, but occurs later than in bacteriorhodopsin, and its decay is more accentuated multiphasic. Intermediate N cannot be detected, but a large amount of O accumulates. The multiphasic character of the last step of the photocycle could be explained by the existence of a HR' state, as in the chloride photocycle. Upon replacement of chloride ion with azide, the fast electric signal changes its sign from positive to negative, and becomes similar to that detected in bacteriorhodopsin. The photocycle is enthalpy-driven, as is the chloride photocycle of halorhodopsin. These observations suggest that, while the basic charge translocation steps become identical to those in bacteriorhodopsin, the storage and utilization of energy during the photocycle remains unchanged by exchanging chloride with azide.  相似文献   

17.
Bacteriorhodopsin (BR), a specialized nanomachine, converts light energy into a proton gradient to power Halobacterium salinarum. In this work, we analyze the mechanical stability of a BR triple mutant in which three key extracellular residues, Glu9, Glu194, and Glu204, were mutated simultaneously to Gln. These three Glu residues are involved in a network of hydrogen bonds, in cation binding, and form part of the proton release pathway of BR. Changes in these features and the robust photocycle dynamics of wild-type (WT) BR are apparent when the three extracellular Glu residues are mutated to Gln. It is speculated that such functional changes of proteins go hand in hand with changes in their mechanical properties. Here, we apply single-molecule dynamic force spectroscopy to investigate how the Glu to Gln mutations change interactions, reaction pathways, and the energy barriers of the structural regions of WT BR. The altered heights and positions of individual energy barriers unravel the changes in the mechanical and the unfolding kinetic properties of the secondary structures of WT BR. These changes in the mechanical unfolding energy landscape cause the proton pump to choose unfolding pathways differently. We suggest that, in a similar manner, the changed mechanical properties of mutated BR alter the functional energy landscape favoring different reaction pathways in the light-induced proton pumping mechanism.  相似文献   

18.
《Journal of molecular biology》2019,431(15):2790-2809
Sensory rhodopsin II (pSRII), a retinal-binding photophobic receptor from Natronomonas pharaonis, is a novel model system for membrane protein folding studies. Recently, the SDS-denatured states and the kinetics for reversible unfolding of pSRII have been investigated, opening the door to the first detailed characterisation of denatured states of a membrane protein by solution-state nuclear magnetic resonance (NMR) using uniformly 15N-labelled pSRII. SDS denaturation and acid denaturation of pSRII both lead to fraying of helix ends but otherwise small structural changes in the transmembrane domain, consistent with little changes in secondary structure and disruption of the retinal-binding pocket and tertiary structure. Widespread changes in the backbone amide dynamics are detected in the form of line broadening, indicative of μs-to-ms timescale conformational exchange in the transmembrane region. Detailed analysis of chemical shift and intensity changes lead to high-resolution molecular insights on structural and dynamics changes in SDS- and acid-denatured pSRII, thus highlighting differences in the unfolding pathways under the two different denaturing conditions. These results will form the foundation for furthering our understanding on the folding and unfolding pathways of retinal-binding proteins and membrane proteins in general, and also for investigating the importance of ligand-binding in the folding pathways of other ligand-binding membrane proteins, such as GPCRs.  相似文献   

19.
Bacteriorhodopsin (BR) is an integral membrane protein, which functions as a light-driven proton pump in Halobacterium salinarum. We report evidence that one or more methionine residues undergo a structural change during the BR→M portion of the BR photocycle. Selenomethionine was incorporated into BR using a cell-free protein translation system containing an amino acid mixture with selenomethionine substituted for methionine. BR→M FTIR difference spectra recorded for unlabeled and selenomethionine-labeled cell-free expressed BR closely resemble the spectra of in vivo expressed BR. However, reproducible changes occur in two regions near 1284 and 900 cm−1 due to selenomethionine incorporation. Isotope labeled tyrosine was also co-incorporated with selenomethionine in order to confirm these assignments. Based on recent x-ray crystallographic studies, likely methionines which give rise to the FTIR difference bands are Met-118 and Met-145, which are located inside the retinal binding pocket and in a position to constrain the motion of retinal during photoisomerization. The assignment of methionine bands in the FTIR difference spectrum of BR provides a means to study methionine-chromophore interaction under physiological conditions. More generally, combining cell-free incorporations of selenomethionine into proteins with FTIR difference spectroscopy provides a useful method for investigating the role of methionines in protein structure and function.  相似文献   

20.
The genome of thylakoidless cyanobacterium Gloeobacter violaceus encodes a fast-cycling rhodopsin capable of light-driven proton transport. We characterize the dark state, the photocycle, and the proton translocation pathway of GR spectroscopically. The dark state of GR contains predominantly all-trans-retinal and, similar to proteorhodopsin, does not show the light/dark adaptation. We found an unusually strong coupling between the conformation of the retinal and the site of Glu132, the homolog of Asp96 of BR. Although the photocycle of GR is similar to that of proteorhodopsin in general, it differs in accumulating two intermediates typical for BR, the L-like and the N-like states. The latter state has a deprotonated cytoplasmic proton donor and is spectrally distinct from the strongly red-shifted N intermediate known for proteorhodopsin. The proton uptake precedes the release and occurs during the transition to the O intermediate. The proton translocation pathway of GR is similar to those of other proton-pumping rhodopsins, involving homologs of BR Schiff base proton acceptor and donor Asp85 and Asp96 (Asp121 and Glu132). We assigned a pair of FTIR bands (positive at 1749 cm−1 and negative at 1734 cm−1) to the protonation and deprotonation, respectively, of these carboxylic acids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号