首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
R Pressey  F M Woods 《Phytochemistry》1992,31(4):1139-1142
Pectinesterase is present in green tomato fruit and increases several-fold during ripening. Several isoenzymes of pectinesterase are known to exist in tomatoes, but one isoenzyme predominates in the fruit of most cultivars. A few cherry tomato cultivars have been identified that contain low levels of this isoenzyme and much higher levels of another pectinesterase that is unique to those cultivars. The two major pectinesterases were purified to homogeneity and characterized. There were significant differences in the pectinesterases but they cross-reacted with antibodies raised against them and their N-terminal amino acid sequences were similar.  相似文献   

2.
Molecular biology of fruit ripening and its manipulation with antisense genes   总被引:25,自引:0,他引:25  
Considerable progress in tomato molecular biology has been made over the past five years. At least 19 different mRNAs which increase in amount during tomato fruit ripening have been cloned and genes for enzymes involved in cell wall degradation (polygalacturonase and pectinesterase) and ethylene synthesis (ACC synthase) have been identified by conventional procedures. Transgenic plants have been used to identify regions of DNA flanking fruit-specific, ripening-related and ethylene-regulated genes and trans-acting factors which bind to these promoters have also been identified.Antisense genes expressed in transgenic plants have proved to be highly effective for inhibiting the specific expression of ripening-related genes. These experiments have changed our understanding of how softening occurs in tomato fruit. Antisense techniques have also been used to identify genes encoding enzymes for carotenoid biosynthesis (phytoene synthase) and ethylene biosynthesis (the ethylene-forming enzyme). The altered characteristics of fruit transformed with specific antisense genes, such as retarded ripening and resistance to splitting, may prove to be of value to fruit growers, processors and ultimately the consumer.  相似文献   

3.
The role of the cell wall hydrolase polygalacturonase (PG) during fruit ripening was investigated using novel mutant tomato lines in which expression of the PG gene has been down regulated by antisense RNA. Tomato plants were transformed with chimaeric genes designed to express anti-PG RNA constitutively. Thirteen transformed lines were obtained of which five were analysed in detail. All contained a single PG antisense gene, the expression of which led to a reduction in PG enzyme activity in ripe fruit to between 5% and 50% that of normal. One line, GR16, showed a reduction to 10% of normal PG activity. The reduction in activity segregated with the PG antisense gene in selfed progeny of GR16. Plants homozygous for the antisense gene showed a reduction of PG enzyme expression of greater than 99%. The PG antisense gene was inherited stably through two generations. In tomato fruit with a residual 1% PG enzyme activity pectin depolymerisation was inhibited, indicating that PG is involved in pectin degradation in vivo. Other ripening parameters, such as ethylene production, lycopene accumulation, polyuronide solubilisation, and invertase activity, together with pectinesterase activity were not affected by the expression of the antisense gene.  相似文献   

4.
This paper describes the analysis of tomato plants transformed with a chimeric gene consisting of the promoter region of a fruit specifically expressed tomato gene linked to the ipt gene coding sequences from the Ti plasmid of Agrobacterium tumefaciens. The pattern of expression of this chimeric gene was found to be consistent with the expression of the endogenous fruit-specific gene and consequently, plants expressing the chimeric gene were phenotypically normal until fruit maturation and ripening. A dramatically altered fruit phenotype, islands of green pericarp tissue remaining on otherwise deep red ripe fruit, was then evident in many of the transformed plants. Cytokinin levels in transformed plant fruit tissues were 10 to 100-fold higher than in control fruit. In the leaves of a fruit-bearing transformant, despite a lack of detectable ipt mRNA accumulation, approximately fourfold higher than control leaf levels of cytokinin were detected. It is suggested that cytokinin produced in fruit is being transported to the leaves since accumulation in leaves of PR-1 and chitinase mRNAs, which encode defense-related proteins known to be induced by cytokinin, occurred only when the transformant was reproductively active. Effects of elevated cytokinin levels on tomato fruit gene expression and cellular differentiation processes are also described.  相似文献   

5.
6.
Recent advances in fruit development and ripening: an overview   总被引:5,自引:0,他引:5  
  相似文献   

7.
Genetic mapping of ripening and ethylene-related loci in tomato   总被引:5,自引:0,他引:5  
 The regulation of tomato fruit development and ripening is influenced by a large number of loci as demonstrated by the number of existing non-allelic fruit development mutations and a multitude of genes showing ripening-related expression patterns. Furthermore, analysis of transgenic and naturally occurring tomato mutants confirms the pivotal role of the gaseous hormone ethylene in the regulation of climacteric ripening. Here we report RFLP mapping of 32 independent tomato loci corresponding to genes known or hypothesized to influence fruit ripening and/or ethylene response. Mapped ethylene-response sequences fall into the categories of genes involved in either hormone biosynthesis or perception, while additional ripening-related genes include those involved in cell-wall metabolism and pigment biosynthesis. The placement of ripening and ethylene-response loci on the tomato RFLP map will facilitate both the identification and exclusion of candidate gene sequences corresponding to identified single gene and quantitative trait loci contributing to fruit development and ethylene response. Received: 26 October 1998 / Accepted: 13 November 1998  相似文献   

8.
目前,互联网上提供许多关于基因及其相关信息的数据库,从这些资料库中提取的资料信息,可用于遗传,生化,分子生物学等各种形式的研究。TIGR Tomato Gene Index数据库中的信息为研究番茄果实成熟开辟了新思路。本研究通过对该数据库的分析,发现了一些在番茄果实成熟过程中差异表达的基因。并进一步通过基因芯片软件和文献挖掘的方法对这些基因进行了分析,结果发现了一些新的与果实成熟相关的基因。这对研究番茄果实成熟提供有价值的信息和思路。  相似文献   

9.
Due to its economic importance, ease of genetic manipulation, cultivation and processing, the tomato plant has been a target for increasing and diversifying content of fruit phytonutrients by transgenic and non-transgenic approaches. The tomato high pigment (hp) mutations exemplify the latter alternative and due to their positive effect on fruit lycopene content, they were introgressed into elite tomato germplasm for cost effective extraction of this important carotenoid. Interestingly, hp mutant fruits are also characterized by higher fruit levels of other functional metabolites, phenotypes caused by mutations in central genes regulating light signal-transduction. This gene identification suggests that modulation of light signaling machinery in plants may be highly effective towards manipulation of fruit phytonutrients but has never been thoroughly reviewed. This review therefore summarizes the progress which has been made on this valuable approach, emphasizing the consequences of transgenic modulation of light signaling components on the functional properties of the tomato fruit.  相似文献   

10.
Molecular mechanisms of ethylene regulation of gene transcription   总被引:9,自引:0,他引:9  
  相似文献   

11.
Carmi N  Salts Y  Dedicova B  Shabtai S  Barg R 《Planta》2003,217(5):726-735
The molecular signals for the development of the ovary into fruit following ovule fertilization are not clear. However, in many species, including tomato ( Lycopersicon esculentum Mill.), auxins and auxin transport inhibitors can substitute for fertilization as activators of fruit set, suggesting that this plant hormone plays a key role in this process. In agreement, transgenes for auxin biosynthesis expressed under ovary- or ovule-specific promoters were shown earlier to enable parthenocarpic (i.e. seedless) fruit development. In the present study, we tested an alternative approach for the induction of parthenocarpy that is based on ovary-specific expression of the Agrobacterium rhizogenes-derived gene rolB. This gene was chosen because rolB transgenic plants manifest several syndromes characteristic of auxin treatment. Tomato plants transformed with a chimeric construct containing the rolB gene fused to the ovary- and young-fruit-specific promoter TPRP-F1 developed parthenocarpic fruits. Fruit size and morphology, including jelly fill in the locules of the seedless fruits, were comparable to those of seeded fruits of the parental line. Although it is not known whether ROLB signals for the same cassette of genes involved in fertilization-dependent fruit development, it clearly activates a battery of genes that enable successful completion of seedless fruit development in tomato.  相似文献   

12.
13.
14.
15.
16.
17.
Fruit of domesticated tomato (Lycopersicon esculentum) accumulate primarily glucose and fructose, whereas some wild tomato species, including Lycopersicon chmielewskii, accumulate sucrose. Genetic analysis of progeny resulting from a cross between L. chmielewskii and L. esculentum indicated that the sucrose-accumulating trait could be stably transferred and that the trait was controlled by the action of one or two recessive genes. Biochemical analysis of progeny resulting from this cross indicated that the sucrose-accumulating trait was associated with greatly reduced levels of acid invertase, but normal levels of sucrose synthase. Invertase from hexose-accumulating fruit was purified and could be resolved into three isoforms by chromatofocusing, each with isoelectric points between 5.1 and 5.5. The invertase isoforms showed identical polypeptide profiles on sodium dodecyl sulfate polyacrylamide gel electrophoresis, consisting of a primary 52 kilodalton polypeptide and two lower molecular mass polypeptides that appear to be degradation products of the 52 kilodalton polypeptide. The three invertase isoforms were indistinguishable based on pH, temperature, and substrate concentration dependence. Immunological detection of invertase indicated that the low level of invertase in sucrose-accumulating fruit was due to low levels of invertase protein rather than the presence of an invertase inhibitor. Based on comparison of genetic and biochemical data we speculate that a gene either encoding tomato fruit acid invertase or one required for its expression, plays an important role in determining sucrose accumulation.  相似文献   

18.
Tomatoes (Lycopersicon esculentum Mill cv. Ailsa Craig) were transformed with a gene construct having 244 bp of the 5 end of a polygalacturonase (PG) cDNA, coding for a 71 amino acid N-terminal extension to the mature protein, fused to 1320 bp of a pectinesterase (PE) cDNA encoding the full sequence of the mature PE protein. This chimaeric gene was inserted in a sense orientation between a CaMV 35S promoter and terminator for constitutive expression. In transformed tomato plants expression of the endogenous PG and PE genes in the fruit was inhibited; there was little or no observable PG and PE mRNA and a substantial reduction in the level of PG and PE enzyme activity. The transgene was expressed in the leaves of the transformed plants as demonstrated by the accumulation of mRNA, but no protein product could be identified. However, no transgene mRNA or protein were observed in the transgenic fruit.This paper represents the first report of the down-regulation of two non-homologous endogenous genes using a single gene construct. A sense gene construct was responsible for these effects. These findings are discussed in relation to possible mechanisms of action of co-suppression.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号