首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Comparisons of ambient bottom-water geochemistry and stable isotopic values of the tests of living (stained) calcareous benthic foraminifera from the North Pacific (on the Aleutian Margin, water depth 1988 m) and Murray Canyons group in the Southern Indian Ocean (Australian Margin, water depths 2476 m and 1634 m) provide modern environmental analogs to calibrate paleoenvironmental assessments. Consistent with the hypothesis that microhabitat preferences influence foraminiferal isotopic values, benthic foraminifera from both margins were depleted in 13C with respect to bottom-water dissolved inorganic carbon (DIC). The carbon isotope values of deep infaunal foraminifera (Chilostomella oolina, Globobulimina pacifica) showed greater differences from estimates of those of DIC than shallow benthic foraminifera (Bulimina mexicana, Bolivinita quadrilatera, Pullenia bulloides). This study provides new isotopic and ecological information for B. quadrilatera. The mean Δδ13C value, defined as foraminiferal δ13C values minus estimated ambient δ13C values from the Aleutian Margin, is 0.97‰ higher for G. pacifica than the mean from the Murray Canyon. This difference may result either from genetic or biological differences between the populations or from differences in environmental isotopic influences (such as pore water differences) that were not accounted for in the equilibrium calculations. These analyses provide calibration information for the evaluation of bottom water conditions and circulation patterns of ancient oceans based on fossil foraminiferal geochemistry.  相似文献   

2.
Despite high taxonomic diversity elsewhere in North America during the Pleistocene, vertebrate faunas are exceedingly rare in the region of northern Mexico. Térapa, a unique fossil site located in the present-day desert of Northcentral Sonora, Mexico (29°41′N, 109°39′W, 605 m elevation), contributes to our understanding of the paleoecology and paleoclimate of the region during the Late Pleistocene, ca. 43,000-40,000 cal. yr BP. At least 60 vertebrate taxa, including amphibians, turtles, a crocodilian, snakes, birds and many mammals, have been recovered from an 11-m thick sequence of fossiliferous sediments. The diversity and tropical affinity of these taxa suggest a more-forested environment than the thornscrub desert habitat present in this region today.Isotopic analyses of tooth enamel carbonate from ancient mammalian herbivores suggest that the Sonoran desert has undergone considerable climate change since the Late Pleistocene. Bulk carbon (δ13C) and oxygen (δ18O) isotopes from nine mammalian fossils indicate a habitat mosaic with variations in diet that include browsers, mixed feeders and C4 hyper-grazers (δ13C range of − 10‰ to 2‰). Unique to this site are δ13C tooth enamel values of − 6.1 and − 5.6 ‰ for the deer Odocoileus, which suggest a more variable diet than strict browsing, including possibly feeding on CAM and/or C4 plants. Serial sampling of carbon (δ13C) and oxygen (δ18O) isotopes for ancient mammal teeth with hypsodont dentitions (fossil Equus and Bison,) as well as δ18O meteroric water estimates from well-supported climatic models suggest a cooler and more equable environment at Térapa during the Late Pleistocene. These results also support previous habitat reconstructions inferred from the macrobotanical and packrat midden records of northern Sonora (Mexico). High-resolution stable isotope geochemistry indicates that: 1) ancient Térapa was covered with forest and grassland habitats that extended northward into Mexico by about 350 km relative to their present-day northern limits during the Late Pleistocene; and 2) an Amount Effect (AE) is demonstrated in the fossil record at Térapa even though the climate was less seasonal compared to the modern desert habitat.  相似文献   

3.
Several studies of salt marsh systems have attempted to quantify the flow of organic matter between the land and coastal waters. However, the techniques used could not identify sources of dissolved organic carbon (DOC) rapidly assimilated by heterothrophic bacteria. Recently, the assay of carbon isotope ratios has allowed characterization of the different sources of organic matter in salt marshes. In this study, we wanted to find out if the natural isotopic composition assayed in heterotrophic bacteria distinguished the origin of bioavailable DOC. We determined the δ13C values for 1) three bacterial strains and their nucleic acids cultured on glucose and tryptose substrates, respectively, and 2) naturally occurring bacteria recovered from seawater in which salt marsh vegetation had been immersed. First, we showed that the isotopic fractionation was the same for the three bacterial strains cultured on the same synthetic substrate, but could vary depending on the nature of DOC. There was no significant difference between the δ13 C values of bacteria and their nucleic acids. Second, natural bacteria were grown in a medium enriched in DOC from halophytic plants. The δ13C values of this community were close to those of dissolved organic carbon from plant leachates. The comparison between the isotopic ratios of natural bacteria in Vibrio alginolyticus showed that the heterogeneity of the bacterial community averaged the isotopic fractionation from the preferential assimilation of organic compounds in the medium by each bacterial strain. The δ13 C values recorded for the bacterial community in the field and their nucleic acids made it possible to identify the source of organic matter readily accessible to microorganisms in a coastal ecosystem.  相似文献   

4.
Tooth enamel apatite carbonate carbon and oxygen isotope ratios of modern kangaroos (Macropus spp.) collected on a 900-km latitudinal transect spanning a C3–C4 transition zone were analysed to create a reference set for palaeoenvironmental reconstruction in southern Australia. The carbon isotope composition of enamel carbonate reflects the proportional intake of C3 and C4 vegetation, and its oxygen isotope composition reflects that of ingested water. Tooth enamel forms incrementally, recording dietary and environmental changes during mineralisation. Analyses show only weak correlations between climate records and latitudinal changes in δ13C and δ18O. No species achieved the δ13C values (~?1.0 ‰) expected for 100 % C4 grazing diets; kangaroos at low latitudes that are classified as feeding primarily on C4 grasses (grazers) have δ13C of up to ?3.5 ‰. In these areas, δ13C below ?12 ‰ suggests a 100 % C3 grass and/or leafy plant (browse) diet while animals from higher latitude have lower δ13C. Animals from semi-arid areas have δ18O of 34–40 ‰, while grazers from temperate areas have lower values (~28–30 ‰). Three patterns with implications for palaeoenvironmental reconstruction emerge: (1) all species in semi-arid areas regularly browse to supplement limited grass resources; (2) all species within an environmental zone have similar carbon and oxygen isotope compositions, meaning data from different kangaroo species can be pooled for palaeoenvironmental investigations; (3) relatively small regional environmental differences can be distinguished when δ13C and δ18O data are used together. These data demonstrate that diet–isotope and climate–isotope relationships should be evaluated in modern ecosystems before application to the regional fossil record.  相似文献   

5.
A wide range of carbon isotope values in the Devonian fossil Prototaxites has been interpreted to support heterotrophy and the classification of Prototaxites as a giant fungus. This inference remains controversial because of the huge size of Prototaxites relative to co-occurring terrestrial vegetation and the lack of existing fungal analogues that display equally broad isotopic ranges. Here, we show wide isotopic variability in the modern saprotrophic fungus Arrhenia obscurata collected adjacent to shallow meltwater pools of a sparsely vegetated glacial succession in the Washington Cascades, USA. Soils collected specifically around the edges of these pools were up to 5‰ higher in δ13C than adjacent soils consistent with C3 origin. Microbial sources of primary production appear to cause these high δ13C values, and the environment may be analogous to that of the Early Devonian landscapes, where Prototaxites individuals with extreme isotopic variance were found. Carbon isotopes are also compared in Prototaxites, Devonian terrestrial vascular plants, and Devonian algal-derived lake sediments. Prototaxites isotopic values show little correspondence with those of contemporaneous tracheophytes, providing further evidence that non-vascular land plants or aquatic microbes were important contributors to its carbon sources. Thus, a saprotrophic fungal identity is supported for Prototaxites, which may have relied on deposits of algal-derived organic matter in floodplain environments that were less dominated by vascular plants than a straight reading of the macrofossil record might suggest.  相似文献   

6.
《Marine Micropaleontology》2006,58(2):135-157
The stable carbon and oxygen isotope composition of different benthic foraminiferal species of the latest Campanian and earliest Maastrichtian from Ocean Drilling Project Hole 690C (Weddell Sea, southern South Atlantic, ∼1800 m paleowater depth) have been investigated. The total range of measured isotope values of all samples exceeds ∼4‰ for δ13C and 1.1‰ for δ18O. Carbon isotope values of proposed deep infaunal species are generally similar or only slightly lower when compared to proposed epifaunal to shallow infaunal species. Interspecific differences vary between samples probably reflecting temporal changes in organic carbon fluxes to the sea floor. Constantly lower δ13C values for Pullenia marssoni and Pullenia reussi suggest the deepest habitat for these species. The strong depletion of δ13C values by up to 3‰ within lenticulinids may be attributed to a deep infaunal microhabitat, strong vital effects, or different feeding strategy when compared to other species or modern lenticulinids. The mean δ18O values reveal a strong separation of epifaunal to shallow infaunal and deep infaunal species. Epifaunal to shallow infaunal species are characterized by low δ18O values, deep infaunal species by higher values. This result possibly reflects lower metabolic rates and longer life cycles of deep infaunal species or the operating of a pore water [CO32−] effect on the benthic foraminiferal stable isotopes.Pyramidina szajnochae shows an enrichment of oxygen isotopes with test size comprising a total of 0.6‰ between 250 and 1250 μm shell size. Although δ13C lacks a corresponding trend these data likely represent the presence of changes in metabolic rates during ontogenesis. These results demonstrate the general applicability of multi-species stable isotope measurements of pristine Cretaceous benthic foraminifera to reconstruct past microhabitats and to evaluate biological and environmental effects on the stable isotope composition.  相似文献   

7.
Efforts to understand the cause of 12C versus 13C isotope fractionation in plants during photosynthesis and post‐photosynthetic metabolism are frustrated by the lack of data on the intramolecular 13C‐distribution in metabolites and its variation with environmental conditions. We have exploited isotopic carbon‐13 nuclear magnetic resonance (13C NMR) spectrometry to measure the positional isotope composition (δ13Ci, ‰) in ethanol samples from different origins: European wines, liquors and sugars from C3, C4 and crassulacean acid metabolism (CAM) plants. In C3‐ethanol samples, the methylene group was always 13C‐enriched (~2‰) relative to the methyl group. In wines, this pattern was correlated with both air temperature and δ18O of wine water, indicating that water vapour deficit may be a critical defining factor. Furthermore, in C4‐ethanol, the reverse relationship was observed (methylene‐C relatively 13C‐depleted), supporting the concept that photorespiration is the key metabolic process leading to the 13C distribution in C3‐ethanol. By contrast, in CAM‐ethanol, the isotopic pattern was similar to but stronger than C3‐ethanol, with a relative 13C‐enrichment in the methylene‐C of up to 13‰. Plausible causes of this 13C‐pattern are briefly discussed. As the intramolecular δ13Ci‐values in ethanol reflect that in source glucose, our data point out the crucial impact on the ratio of metabolic pathways sustaining glucose synthesis.  相似文献   

8.
Organic carbon and nitrogen isotope values (δ13C, δ15N) and C/N ratios of six sediment cores from six coastal lagoons (including the Oder Estuary) were measured to chart the coastal development and to reconstruct the local palaeoenvironments of the southern Baltic Sea region during the Holocene. In addition, δ13C, δ15N and C/N values of major organic matter sources in the coastal lagoons and their drainage areas are investigated to determine the origin of organic matter (i.e. terrigenous or marine) in the sediments: plankton, aquatic macrophytes, typical C3 shore plants and peat. The δ13C, δ15N and C/N values of the samples collected show the clearly identifiable stages in the development of the water bodies: post-glacial lake stages with sandy sedimentation, lacustrine phases with high autochthonous productivity, terrestrial stages with peat formation, sedimentation as a result of marine transgression, and brackish sedimentation after the formation of sand spits and barrier islands. These stages are the results of sea level changes in the region. The values allow derivation of differences in the palaeoenvironments of the lagoons in the study area. A distinct terrestrial input is evident in the sediments of the lagoonal Oder Estuary, which can be attributed to the direct inflow of the Oder River into the lagoon. The isotope and C/N values also suggest a contribution of C4 plant detritus for the water bodies in the northeastern part of the study area (Barther Bodden, Grabow). The burial of autochthonous organic matter (i.e. plankton, aquatic macrophytes) in the sediment could be derived for all lagoons in this investigation.  相似文献   

9.

Background

The oxygen (δ18O) and carbon (δ13C) isotope compositions of bioapatite from skeletal remains of fossil mammals are well-established proxies for the reconstruction of palaeoenvironmental and palaeoclimatic conditions. Stable isotope studies of modern analogues are an important prerequisite for such reconstructions from fossil mammal remains. While numerous studies have investigated modern large- and medium-sized mammals, comparable studies are rare for small mammals. Due to their high abundance in terrestrial ecosystems, short life spans and small habitat size, small mammals are good recorders of local environments.

Methodology/Findings

The δ18O and δ13C values of teeth and bones of seven sympatric modern rodent species collected from owl pellets at a single locality were measured, and the inter-specific, intra-specific and intra-individual variations were evaluated. Minimum sample sizes to obtain reproducible population δ18O means within one standard deviation were determined. These parameters are comparable to existing data from large mammals. Additionally, the fractionation between coexisting carbonate (δ18OCO3) and phosphate (δ18OPO4) in rodent bioapatite was determined, and δ18O values were compared to existing calibration equations between the δ18O of rodent bioapatite and local surface water (δ18OLW). Specific calibration equations between δ18OPO4 and δ18OLW may be applicable on a taxonomic level higher than the species. However, a significant bias can occur when bone-based equations are applied to tooth-data and vice versa, which is due to differences in skeletal tissue formation times. δ13C values reflect the rodents’ diet and agree well with field observations of their nutritional behaviour.

Conclusions/Significance

Rodents have a high potential for the reconstruction of palaeoenvironmental conditions by means of bioapatite δ18O and δ13C analysis. No significant disadvantages compared to larger mammals were observed. However, for refined palaeoenvironmental reconstructions a better understanding of stable isotope signatures in modern analogous communities and potential biases due to seasonality effects, population dynamics and tissue formation rates is necessary.  相似文献   

10.
Leaves of 26 grass, herb, shrub and tree species were collected from mesotrophic grasslands to assess natural variability in bulk, fatty acid and monosaccharide δ13C values under different grazing management (cattle- or deer-grazed) on three sample dates (May, July and October) such that interspecific and spatiotemporal variations in whole leaf tissues and compound-specific δ13C values could be determined. The total mean leaf bulk δ13C value for plants was −28.9‰ with a range of values spanning 7.5‰. Significant interspecific variation between bulk leaf δ13C values was only determined in October (P = <0.001) when δ13C values of the leaf tissues from both sites was on average 1.5‰ depleted compared to during July and May. Samples from May were significantly different between fields (P = 0.03) indicating an effect from deer- or cattle-grazing in young leaves. The average individual monosaccharide δ13C value was 0.8‰ higher compared with whole leaf tissues. Monosaccharides were the most abundant components of leaf biomass, i.e. arabinose, xylose, mannose, galactose and glucose, and therefore, fluctuations in their individual δ13C values had a major influence on bulk δ13C values. An average depletion of ca. 1‰ in the bulk δ13C values of leaves from the deer-grazed field compared to the cattle-grazed field could be explained by a general depletion of 1.1‰ in glucose δ13C values, as glucose constituted >50% total leaf monosaccharides. In October, δ13C values of all monosaccharides varied between species, with significant variation in δ13C values of mannose and glucose in July, and mannose in May. This provided an explanation for the noted variability in the tissue bulk δ13C values observed in October 1999. The fatty acids C16:0, C18:2 and C18:3 were highly abundant in all plant species. Fatty acid δ13C values were lower than those of bulk leaf tissues; average values of −37.4‰ (C16:0), −37.0‰ (C18:2) and −36.5‰ (C18:3) were determined. There was significant interspecific variation in the δ13C values of all individual fatty acids during October and July, but only for C18:2 in May (P = <0.05). This indicated that seasonal trends observed in the δ13C values of individual fatty acids were inherited from the isotopic composition of primary photosynthate. However, although wide diversity in δ13C values of grassland plants ascribed to grazing management, interspecific and spatiotemporal influences was revealed, significant trends (P = <0.0001) for fatty acid and monosaccharide δ13C values: δ13C16:0 < δ13C18:2 < δ13C18:3 and δ13Carabinose > δ13Cxylose > δ13Cglucose > δ13Cgalactose, respectively, previously described, appear consistent across a wide range of species at different times of the year in fields under different grazing regimes.  相似文献   

11.
A globally recorded negative carbon isotope excursion characterizes the transition from Cambrian Series 2 to Cambrian Series 3. This transition is also well exposed in sedimentary successions on the Yangtze Platform, and the Wuliu–Zengjiayan section, Guizhou Province, South China has been proposed as a potential Global Stratotype Section and Point (GSSP) for this boundary. Here, we report δ13Ccarb values for the Jianshan and the Wuliu–Zengjiayan sections. Both sections display a progressive decrease in δ13C from values around + 3‰ upwards in stratigraphy to a pronounced δ13C minimum with values as low as ? 6.9‰ at the proposed boundary level, and a return to δ13C values between 0 and + 1‰ in the upper part of the sections. The δ13C minimum is thought to be caused by a transgressive event, flooding the shelf area with 13C depleted basinal anoxic bottom water. Our δ13C data are in good agreement with carbon isotope profiles recorded elsewhere. These define the so called ROECE event (Redlichiid–Oleneliid Extinction Carbon Isotope Excursion, cf. Zhu et al., 2006, 2007) and may reflect the perturbation of the global carbon cycle during the Cambrian Series 2 to Cambrian Series 3 transition.  相似文献   

12.
Abstract The diet of the harvester termite Hodotermes mossambicus was investigated at two sites with distinct dietary components: C4 grasses (δ13C isotope values, ?13.8‰ to ?14.0‰) and C3 plants (δ13C isotope values, ?25.6‰ to ?27.1‰). By comparing observations of food items carried into the colony by the termites and carbon isotope ratios of whole termites (that determined assimilated carbon), the relative proportion of the C3 and C4 plant food components of the termite diet was estimated. There was agreement between the observational data and stable carbon isotopic data, with grass representing approximately 93% of the diet of H. mossambicus at two study sites (urban and rural) on the South African highveld. However, when correcting for mass of food items, that is, C3 and C4, carried by termites, the proportion of grass (C4) in the diet may be underestimated.  相似文献   

13.
The exceptional fossil sites of Cerro de los Batallones (Madrid Basin, Spain) contain abundant remains of Late Miocene mammals. From these fossil assemblages, we have inferred diet, resource partitioning and habitat of three sympatric carnivorous mammals based on stable isotopes. The carnivorans include three apex predators: two sabre-toothed cats (Felidae) and a bear dog (Amphicyonidae). Herbivore and carnivore carbon isotope (δ13C) values from tooth enamel imply the presence of a woodland ecosystem dominated by C3 plants. δ13C values and mixing-model analyses suggest that the two sabre-toothed cats, one the size of a leopard and the other the size of a tiger, consumed herbivores with similar δ13C values from a more wooded portion of the ecosystem. The two sabre-toothed cats probably hunted prey of different body sizes, and the smaller species could have used tree cover to avoid encounters with the larger felid. For the bear dog, δ13C values are higher and differ significantly from those of the sabre-toothed cats, suggesting a diet that includes prey from more open woodland. Coexistence of the sabre-toothed cats and the bear dog was likely facilitated by prey capture in different portions of the habitat. This study demonstrates the utility of stable isotope analysis for investigating the behaviour and ecology of members of past carnivoran guilds.  相似文献   

14.
Fractionation of δ13C and δ15N between food, consumer, and faecal pellets was studied in the Arctic marine copepod Calanus glacialis Jaschnov, fed with isotopically distinct algal monocultures. Temporal variations in δ13C and δ15N of copepods that were fed ice algae and phytoplankton followed those of a control group consisting of starved animals. There were no significant trends in the δ13C and δ15N values of copepods that were starved for 42 days, suggesting that the isotopic composition of non-lipid body tissues is unaffected by the metabolic processes during prolonged periods of starvation. The stable isotopic composition of starved copepods therefore seems to reflect food consumed during the previous period of feeding and growth. Faecal pellets produced by feeding copepods were depleted in 13C and 15N by 6.3-11.2‰ and 0.7-9.1‰, respectively, relative to the food ingested. These results indicate that faecal pellet production is an important pathway for the trophic fractionation of δ13C, whereas other fractionation pathways, such as excretion of ammonia, may be relatively more important for δ15N. The strong depletion of 13C in faecal pellets compared to the food suggests that grazing by herbivorous copepods on primary production adds to the variability of δ13C in marine particulate organic matter.  相似文献   

15.
Paleoecological records suggest that growing season length and/or cloudiness may affect peatland carbon accumulation and testate amoeba-based environmental reconstructions, highlighting a need to understand how light intensity affects microbial communities. We shaded plots on two peatlands for two years to examine effects on testate amoeba communities, the relative abundance of mixotrophic and heterotrophic testate amoebae, transfer-function performance, and δ13C values of two species of mixotrophic testate amoebae. Surprisingly, relative abundance of mixotrophic species increased in shade, although compositional changes did not affect transfer-function performance. Shading did not affect δ13C values of Hyalosphenia papilio and Heleopera sphagni, which ranged from −23.5 to −19.6‰ and −23.2 to −19.2‰, respectively. These δ13C values were higher than those of potential food sources and lower than literature-derived values for Chlorella, the zoochlorellae inhabiting mixotrophic testate amoebae. δ13C values thus suggest that these mixotrophic species obtain some carbon from Chlorella, although coupled dietary and isotope studies are needed to quantify this contribution. More research is needed to assess impacts of light variability on peatland microbial communities; however, carbon sources are recorded by δ13C values of testate amoebae, indicating potential for studies of carbon cycling and how mixotrophy varies temporally and spatially.  相似文献   

16.
Over the past decades, coralline algae have increasingly been used as archives of palaeoclimate information due to their seasonal growth bands and their vast distribution from high latitudes to the tropics. Traditionally, these reconstructions have been performed mainly on high latitude species, limiting the geographical area of their potential use. Here we assess the use of temperate crustose fossil coralline algae from shallow water habitats for palaeoenvironmental reconstruction to generate records of past climate change. We determine the potential of three different species of coralline algae, Lithothamnion minervae, Lithophyllum stictaeforme and Mesophyllum philippii, with different growth patterns, as archives for pH (δ11B) and temperature (Mg/Ca) reconstruction in the Mediterranean Sea. Mg concentration is driven by temperature but modulated by growth rate, which is controlled by species-specific and intraspecific growth patterns. L. minervae is a good temperature recorder, showing a moderate warming trend in specimens from 11.37 cal ka BP (from 14.2 ± 0.4°C to 14.9 ± 0.15°C) to today. In contrast to Mg, all genera showed consistent values of boron isotopes (δ11B) suggesting a common control on boron incorporation. The recorded δ11B in modern and fossil coralline specimens is in agreement with literature data about early Holocene pH, opening new perspectives of coralline-based, high-resolution pH reconstructions in deep time.  相似文献   

17.
Summary Stable carbon isotope ratio analysis is a powerful technique in tracing ecosystem carbon flows, especially those between primary and secondary producers. The distinctive 13C/12C ratios of plant species tend to pass along the food chain with little further fractionation, hence the stable carbon isotope composition of an animal is an important clue to what it has eaten. We compared the stable carbon isotope composition of plants and insects in an old field in Georgia. Of the dominant plants in the old field, 6 were C4 species and had 13C1 values of-10.9 to 12.9, and 7 were C3 species with values of-27.3 to-29.1. Insects known to be feeding on only one plant species had 13C values within 1 of the isotopic composition of the plant. Wasp larvae parasitizing two insect species had 13C values 1.3 and 1.7 higher than that of the food plant. A variety of insects of unknown food habits collected on monospecific and mixed species plant stands in the old field had 13C values ranging from-10.1 to-30.0. Two species of leafhopper and a grasshopper had isotopic compositions within the range of C4 plant values; a tortoise beetle and a lace bug had isotopic compositions within C3 plant values. Other insects had intermediate 13C values, suggesting a mixed diet composed of both C3 and C4 plants. The carbon isotopic ratios of field collected insects appears to be a useful qualitative indicator of their feeding preference.  相似文献   

18.
Most functional feeding types are represented within the species rich group of aquatic chironomids. Thus, we hypothesized that different lake types and microhabitats within lakes would (1) host specific chironomid communities and (2) that the individual communities would show specific δ 13C stable isotope signatures reflecting the prevailing origin of food source. To test our hypotheses, five lakes in southwest Greenland were investigated at a high taxonomic resolution and with detailed information on δ 13C signature of the chironomids and of individual microhabitats (macrophytes, sediment, stones, and profundal). We found that there was a significant difference in δ 13C between the chironomid assemblages of freshwater lakes and oligosaline lakes, while assemblages of the littoral microhabitats did not differ significantly. The δ 13C of chironomids reflected the wide variety of habitat signals, particularly in the freshwater lakes. Our results indicate that many chironomid taxa are ubiquitous and are found in several microhabitats, suggesting that they can adjust their feeding strategy according to the habitat. The implication is that chironomid assemblage composition has only limited use as indicator of littoral microhabitats in the Arctic. On the other hand, the δ 13C signature of fossil chironomids might have a potential as indicator of microhabitats in freshwater lakes.  相似文献   

19.
Detailed records of the carbon and oxygen isotopic ratios of Neogloboquadrina pachyderma are compared between nine high-latitude sediment cores, from the Northern and Southern Hemispheres, covering the last 140 000 yrs. The strong analogies between the δ13C records permit to define a δ13C stratigraphic scale, with three clear cut transitions simultaneous with the oxygen isotopic transitions 6/5 (125 kyrs.), 5/4 (65 kyrs.), and 2/1 (13 kyrs.). The δ13C records of N. pachyderma in the high-latitude cores, which follow the changes in δ13C of the surface water TCO2 near areas of deep water formation present trends similar to the benthic foraminifera δ13C records in cores V19–30 and M12-392, although amplitudes of the isotopic shifts are different. This implies that a large part of the observed variations represents global changes in the carbon distribution between biosphere and ocean.The 13C/12C ratios of N. pachyderma in the North Atlantic cores display larger regional variations at 18 kyrs. B.P. than at present. To explain these differences, we have plotted the 18 kyrs. B.P. δ13C values of N. pachyderma from 17 cores distributed N of 40°N. Comparison with published surface water temperature distribution at 18 kyrs. B.P. indicates that a strong divergent cyclonic cell, centered approximatively 55°N and 15°W, was active during most of the last ice-age maximum This hydrology, analogous to the present Weddell Sea, explains the published evidences of bottom water formation, if located on the northern flank of the gyre, and the strong polar front on the southern flank, probable location of intermediate water formation.  相似文献   

20.
《Acta Oecologica》1999,20(2):119-123
We studied carbon and nitrogen isotopic composition (δ13C and δ15N) in sunlit leaves of four dominant species (Rosmarinus officinalis L., Stipa parviflora L., Juniperus thurifera L. and Pinus halepensis L.) in a characteristic gradient of water and nitrogen availability produced by relief and micrometeorology in a subdesertic valley of central-NE Spain. Minimum values of δ13C were found at the foothills, and higher values were found both in the valley and on the top of the hill where water availability was lower. However, different species (functional groups) presented different δ13C values in the same valley. The lowest values of δ15N were found on the top of the hill and the highest ones in the valley, where N losses would thus be higher. In general, when growing together, trees showed 2 % higher values for δ13C as well as for δ15N than shrubs and grasses. The specific responses show that they use different available water and nitrogen resources within small catchments. For this ecosystem type, C and N isotope analyses are sensitive enough to resolve fine spatial and functional patterns even over a very short distance (100 m), where topography generates great gradients in microclimate, hydrology, soil physical conditions, vegetation and biogeochemistry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号