首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Mountainous catchments are usually not in focus of the modelling of nutrient fluxes on catchment scale. Out of 9 model approaches tested in the EU‐project EUROHARP only MONERIS claims to be capable of modelling nitrogen and phosphorus emissions in a landscape with mountainous slope. Results derived in the present study indicate that the MONERIS 2.14 model in its current version is not able to reproduce the measured nutrient loads in rivers from alpine catchments in Austria with a size of 70 to 400 km2. Despite this apparent limitation, MONERIS delivers a framework flexible enough to offer the possibility for the introduction of adaptations to regions that had not been a focus during its development. Significant improvements in model performance have been achieved during this study with relatively simple adaptations: (i) calibration a snowmelt constants, (ii) adaptation of the nitrogen balance for open and naturally covered areas, (iii) adaptation of the denitrification approach for groundwater of solid rock areas with low nitrogen surplus and high amount of leakage water, (iv) introduction of the differentiation of area‐specific suspended solids emission factors for mountainous open areas covered either with glaciers or not, (v) definition of new input parameters for phosphorus concentrations in solid limestone and schist/gneiss rocks and of dissolved phosphorus concentrations in surface runoff and groundwater flow for mountainous areas. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
Eutrophication management is still one of the major challenges in the Baltic Sea region. Intense transformation processes in several Baltic Sea states have led to drastic changes in e.g., landuse and thereby nutrient emissions and water quality. Several future development directions are possible. The Oder catchment – lagoon – coastal water system serves as a pilot study area, since it has a major influence on the nutrient loads into the Baltic Sea and about 90% of the catchment is located in Poland, a state with transitional economy. Different scenarios for landuse changes in the Oder catchment are developed and their consequences on nutrient emissions simulated. Next to politically induced changes of agricultural landuse in general, specific aspects such as cultivation of energy maize and increased animal stocks are considered. Nitrogen emissions are likely to increase due to agricultural landuse changes whereas phosphorus emissions will not change or even decrease according to the application of the EC‐Urban Waste Water Treatment Directive. Resulting nitrogen loads to the Oder Lagoon could increase up to 23%, phosphorus loads could decrease by 11% compared to 2005. These trends may lead to higher nitrogen availability compared to phosphorus at least in the Oder lagoon. Interannual differences in discharge also have profound effects on nutrient emissions. A good status of the Oder river basin – lagoon – coastal sea system according to EC‐Directives is not very likely to be achieved under the investigated circumstances. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
Freshwater ecosystems are some of the most endangered environments in the world, being affected at multiple scales by the surrounding landscape and human activities therein. Effective research, conservation and management of these ecosystems requires integrating environmental and landscape data with hierarchic river networks by means of summarisation and synthesis of information for large and comprehensive areas at different scales (e.g. basin, sub‐basin, upstream drainage area). The dendritic nature of river networks, the need to tackle multiple scales and the ever‐growing sources of digital information (e.g. temperature or land use data grids) have increasingly led to hardly manageable processing time and stringent hardware requirements when integrating and working with this information. Here we present the River Network Toolkit (RivTool), a software that uses only tabular data to derive and calculate new information at multiple scales for riverine landscapes. It uses data from linear hierarchical river networks and the environmental/landscape data from their respective drainage areas. The software allows the acquisition of: 1) information that characterises river networks based on its topographic nature; 2) data obtained via mathematical calculations that account for the hierarchical and network nature of these systems; and 3) output information using different spatial data sources (e.g. climatic, land use, topologic) that result from up and downstream summarisations. This user‐friendly software considers two units of analysis (segment and sub‐basin) and is time effective even with large datasets. RivTool facilitates and reduces the time required for extracting information for freshwater ecosystems, and may thus contribute to increase scientific productivity, efficiency and accurateness when generating new or improving existing knowledge on large‐scale patterns and processes in river networks.  相似文献   

4.
Global 0.5- by 0.5-degree resolution estimates are presented on the fate of nitrogen (N) stemming from point and nonpoint sources, including plant uptake, denitrification, leaching from the rooting zone, rapid flow through shallow groundwater, and slow flow through deep groundwater to riverine systems. Historical N inputs are used to describe the N flows in groundwater. For nonpoint N sources (agricultural and natural ecosystems), calculations are based on local hydrology, climate, geology, soils, climate and land use combined with data for 1995 on crop production, N inputs from N fertilizers and animal manure, and estimates for ammonia emissions, biological N fixation, and N deposition. For point sources, our estimates are based on population densities and human N emissions, sanitation, and treatment. The results provide a first insight into the magnitude of the N losses from soil-plant systems and point sources in various parts of the world, and the fate of N during transport in atmosphere, groundwater, and surface water. The contribution to the river N load by anthropogenic N pollution is dominant in many river basins in Europe, Asia, and North Africa. Our model results explain much of the variation in measured N export from different world river basins.  相似文献   

5.
Estuarine nutrient enrichment is thought to be controlled by land use patterns in coastal watersheds. Hence, the objective of this work was to conduct a watershed analysis in two adjacent river basins with different land use characteristics to determine their influence on estuarine ecosystem response in the Guadalupe Estuary, Texas, U.S.A. All data sources for this study were available electronically on the Internet; the data were mined, managed, analyzed and transformed to simulate the estuarine ecosystem response to watershed-derived nutrient loads. Between 1992 and 2001, developed land use/land cover increased the most while forest cover decreased the most in both basins. Two hydrologic units nearest the coast were responsible for the greatest change in land cover. Nutrient concentrations and loads were significantly higher in the San Antonio River Basin than in the Guadalupe River Basin. Both river basins exhibited the highest flows ever recorded in 1992, however the magnitude of difference in loads between the two coastal hydrologic units for a wet and dry year was much greater in the Guadalupe River Basin (GRB) than in the San Antonio River Basin (SARB); this difference supports the concept that the GRB is a nonpoint source dominated system and SARB is a point source dominated system. There was a strong correlation between developed land use and nutrient concentrations in river water; the GRB had less developed land use and lower nutrient concentrations while the SARB had more developed land use and higher nutrient concentrations. Estuarine ecosystem response differed in the timing, duration and magnitude of DIN, phytoplankton and zooplankton when nitrogen loads from the Lower Guadalupe River were used as opposed to the Lower San Antonio. The two basins studied differ in their fundamental characteristics, i.e. precipitation, flow, human population density, etc., resulting in different drivers of nitrogen loading, point sources in the San Antonio River Basin and nonpoint sources in the Guadalupe River Basin, therefore, differing estuarine ecosystem responses.  相似文献   

6.
Since 1970 global agricultural production has more than doubled; contributing ~1/4 of total anthropogenic greenhouse gas (GHG) burden in 2010. Food production must increase to feed our growing demands, but to address climate change, GHG emissions must decrease. Using an identity approach, we estimate and analyse past trends in GHG emission intensities from global agricultural production and land‐use change and project potential future emissions. The novel Kaya–Porter identity framework deconstructs the entity of emissions from a mix of multiple sources of GHGs into attributable elements allowing not only a combined analysis of the total level of all emissions jointly with emissions per unit area and emissions per unit product. It also allows us to examine how a change in emissions from a given source contributes to the change in total emissions over time. We show that agricultural production and GHGs have been steadily decoupled over recent decades. Emissions peaked in 1991 at ~12 Pg CO2‐eq. yr?1 and have not exceeded this since. Since 1970 GHG emissions per unit product have declined by 39% and 44% for crop‐ and livestock‐production, respectively. Except for the energy‐use component of farming, emissions from all sources have increased less than agricultural production. Our projected business‐as‐usual range suggests that emissions may be further decoupled by 20–55% giving absolute agricultural emissions of 8.2–14.5 Pg CO2‐eq. yr?1 by 2050, significantly lower than many previous estimates that do not allow for decoupling. Beyond this, several additional costcompetitive mitigation measures could reduce emissions further. However, agricultural GHG emissions can only be reduced to a certain level and a simultaneous focus on other parts of the food‐system is necessary to increase food security whilst reducing emissions. The identity approach presented here could be used as a methodological framework for more holistic food systems analysis.  相似文献   

7.
The Red River, draining a 169,000 km2 watershed, is the second largest river in Viet Nam and constitutes the main source of water for a large percentage of the population of North Viet Nam. Here we present the results of an investigation into the spatial distribution and temporal dynamics of particulate and dissolved organic carbon (POC and DOC, respectively) in the Red River Basin. POC concentrations ranged from 0.24 to 5.80 mg C L?1 and DOC concentrations ranged from 0.26 to 5.39 mg C L?1. The application of the Seneque/Riverstrahler model to monthly POC and DOC measurements showed that, in general, the model simulations of the temporal variations and spatial distribution of organic carbon (OC) concentration followed the observed trends. They also show the impact of high population densities (up to 994 inhab km?2 in the delta area) on OC inputs in surface runoff from the different land use classes and from urban point sources. A budget of the main fluxes of OC in the whole river network, including diffuse inputs from soil leaching and runoff and point sources from urban centers, as well as algal net primary production and heterotrophic respiration was established using the model results. It shows the predominantly heterotrophic character of the river system and provides an estimate of CO2 emissions from the river of 330 Gg C year?1. This value is in reasonable agreement with the few available direct measurements of CO2 fluxes in the downstream part of the river network.  相似文献   

8.
9.
During the last decades human activity has altered the natural cycle of nitrogen and phosphorus on a global scale, producing significant emissions to waters. In Europe, the amount of nutrients discharged from rivers to coastal waters as well as the effects of mitigation measures in place are known only partially, with no consistent temporal and spatial cover. In this study, we quantify the loads and concentration of nitrogen and phosphorus discharged in the European seas over the period 1985–2005, and we discuss their impact on coastal ecosystems. To support our analysis, a catchment database covering the whole of Europe was developed together with data layers of nutrients diffuse and point sources, and the statistical model green was used to estimate the annual loads of nitrogen and phosphorus discharged in all European seas. The results of this study show that during the last 20 years, Europe has discharged 4.1–4.8 Tg yr?1 of nitrogen and 0.2–0.3 Tg yr?1 of phosphorus to its coastal waters. We show that beside the North Sea and part of the Baltic Sea, annual nutrient exports have not changed significantly, in spite of the implementation of measures to reduce nutrient sources, and that the N : P ratio has increased steadily, especially in the North, Mediterranean and Atlantic seas. The response of river basins to changes in inputs was not linear, but influenced by climatic variations and nutrients previously accumulated in soils and aquifers. An analysis of the effects of European environmental policies shows that measures to reduce phosphorus were more successful that those tackling nitrogen and that policies aimed at point sources were more effective or more effectively implemented than those controlling pollution from diffuse sources. The increase of the N : P ratio could fuel eutrophication in N‐limited coastal ecosystems, reducing biodiversity and the ecosystem's resilience to future additional anthropogenic stress, such as climate change.  相似文献   

10.
Bioethanol production from sugarcane is discussed as an alternative energy source to reduce dependencies of regional economies on fossil fuels. Even though bioethanol production from sugarcane is considered to be a beneficial and cost‐effective greenhouse gas (GHG) mitigation strategy, it is still a matter of controversy due to insufficient information on the total GHG balance of this system. Aside from the necessity to account for the impact of land use change (LUC), soil N2O emissions during sugarcane production and emissions of GHG due to preharvest burning may significantly impact the GHG balance. Based on a thorough literature review, we show that direct N2O emissions from sugarcane fields due to nitrogen (N) fertilization result in an emission factor of 3.87±1.16% which is much higher than suggested by IPCC (1%). N2O emissions from N fertilization accounted for 40% of the total GHG emissions from ethanol–sugarcane production, with an additional 17% from trash burning. If LUC‐related GHG emissions are considered, the total GHG balance turns negative mainly due to vegetation carbon losses. Our study also shows that major gaps in knowledge still exist about GHG sources related to agricultural management during sugarcane production, e.g. effects of irrigation, vinasse and filter cake application. Therefore, more studies are needed to assess if bioethanol from sugarcane is a viable option to reduce energy‐related GHG emissions.  相似文献   

11.
  • 1 Benthic‐algal distributions in the upper Illinois River basin, IL, U.S.A., were examined in relation to geology, land use, water chemistry and stream habitat using (detrended) (canonical) correspondence analysis, autecological metrics and indicator‐species analysis in order to identify the major environmental gradients influencing community variation.
  • 2 Ionic composition and major nutrient [i.e. nitrogen (N) and phosphorus (P)] concentration of surface waters, salinity (Na‐Cl type), substratum type and physiognomic form of dominant species were primary factors contributing to variation in benthic‐algal assemblages of the basin. Basin geology was a significant contributing factor, but the explained variance associated with this factor was less than that related to land use.
  • 3 Proportions of algal biomass consisting of cyanophytes, filamentous chlorophytes, halophilic diatoms and diatoms which utilize nitrogen heterotrophically were greater in eutrophic river segments than in less nutrient‐enriched segments. Composition of the benthic flora indicated meso‐eutrophic or eutrophic conditions throughout the basin; there were few diatoms indicative of hypertrophic waters. Shifts in diatom‐assemblage structure in response to nutrient loading provided an incomplete representation of the community‐response curve.
  • 4 A weighted‐averages regression model based on total P and benthic‐algal abundances (all divisions included) yielded a highly significant correlation (r2 = 0.83) between species‐inferred [WA(tol)] and observed total P, with systematic bias (increased deviation of residuals) occurring only at concentrations greater than ~ 1.0 mg L?1 total P. This result indicates that total P regression and calibration models can be predictable for a river basin receiving excessive loadings of phosphorus.
  相似文献   

12.
We compared extracellular enzyme activity (EEA) of microbial assemblages in river sediments at 447 sites along the Upper Mississippi, Missouri, and Ohio Rivers with sediment and water chemistry, atmospheric deposition of nitrogen and sulfate, and catchment land uses. The sites represented five unique river reaches—impounded and unimpounded reaches of the Upper Mississippi River, the upper and lower reaches of the Missouri River, and the entire Ohio River. Land use and river chemistry varied significantly between rivers and reaches. There was more agriculture in the two Upper Mississippi River reaches, and this was reflected in higher nutrient concentrations at sites in these reaches. EEA was highest in the two Upper Mississippi River reaches, followed by the lower Missouri River reach. EEA was generally lowest in the upper Missouri River reach. Canonical correlation analysis revealed a strong correlation between EEA and the suite of water and sediment chemistry variables, and the percent of the catchment in anthropogenically dominated land uses, including agriculture and urban development. Nutrient ratios of the waters and sediments suggested carbon (C), nitrogen (N), or phosphorus (P) limitation at a large number of sites in each reach. C-limitation was most pronounced in the unimpounded Mississippi River and lower Missouri River reaches; N-limitation was prevalent in the two Missouri River reaches; and P-limitation dominated the Ohio River. Linking microbial enzyme activities to regional-scale anthropogenic stressors in these large river ecosystems suggests that microbial enzyme regulation of carbon and nutrient dynamics may be sensitive indicators of anthropogenic nutrient and carbon loading.  相似文献   

13.
Land‐use changes are the second largest source of human‐induced greenhouse gas emission, mainly due to deforestation in the tropics and subtropics. CO2 emissions result from biomass and soil organic carbon (SOC) losses and may be offset with afforestation programs. However, the effect of land‐use changes on SOC is poorly quantified due to insufficient data quality (only SOC concentrations and no SOC stocks, shallow sampling depth) and representativeness. In a global meta‐analysis, 385 studies on land‐use change in the tropics were explored to estimate the SOC stock changes for all major land‐use change types. The highest SOC losses were caused by conversion of primary forest into cropland (?25%) and perennial crops (?30%) but forest conversion into grassland also reduced SOC stocks by 12%. Secondary forests stored less SOC than primary forests (?9%) underlining the importance of primary forests for C stores. SOC losses are partly reversible if agricultural land is afforested (+29%) or under cropland fallow (+32%) and with cropland conversion into grassland (+26%). Data on soil bulk density are critical in order to estimate SOC stock changes because (i) the bulk density changes with land‐use and needs to be accounted for when calculating SOC stocks and (ii) soil sample mass has to be corrected for bulk density changes in order to compare land‐use types on the same basis of soil mass. Without soil mass correction, land‐use change effects would have been underestimated by 28%. Land‐use change impact on SOC was not restricted to the surface soil, but relative changes were equally high in the subsoil, stressing the importance of sufficiently deep sampling.  相似文献   

14.
Nutrient export by rivers may cause coastal eutrophication. Some river basins, however, export more nutrients than others. We model the Basin-Wide Nutrient Export (BWNE) Index, defined as nutrient export by rivers as percentage of external nutrient inputs in the basins. We present results for rivers worldwide for the period 1970–2050. The results indicate that nutrient retentions differ largely among basins. They indicate that BWNE increases with nutrient inputs to the land, indicating that the percentage of, for instance, fertilizers exported to sea increases with fertilization rate. We argue that a better understanding of the BWNE Index might help to identify where measures and technologies to reduce nutrient inputs to coastal waters are most effective.  相似文献   

15.
Increase in surface water color (browning), caused by rising dissolved organic carbon (DOC) and iron concentrations, has been widely reported and studied in the last couple of decades. This phenomenon has implications to aquatic ecosystem function and biogeochemical carbon cycling. While recovery from acidification and changes in climate‐related variables, such as precipitation and length of growing season, are recognized as drivers behind browning, land‐use change has received less attention. In this study, we include all of the above factors and aim to discern their individual and combined contribution to water color variation in an unprecedentedly long (1940–2016) and highly resolved dataset (~20 times per month), from a river in southern Sweden. Water color showed high seasonal variability and a marked long‐term increase, particularly in the latter half of the dataset (~1980). Short‐term and seasonal variations were best explained by precipitation, with temperature playing a secondary role. All explanatory variables (precipitation, temperature, S deposition, and land‐use change) contributed significantly and together predicted 75% of the long‐term variation in water color. Long‐term change was best explained by a pronounced increase in Norway spruce (Picea abies Karst) volume—a measure of land‐use change and a proxy for buildup of organic soil layers—and by change in atmospheric S deposition. When modeling water color with a combination of explanatory variables, Norway spruce showed the highest contribution to explaining long‐term variability. This study highlights the importance of considering land‐use change as a factor behind browning and combining multiple factors when making predictions in water color and DOC.  相似文献   

16.
Eutrophication of fresh waters results in increased CO2 uptake by primary production, but at the same time increased emissions of CH4 to the atmosphere. Given the contrasting effects of CO2 uptake and CH4 release, the net effect of eutrophication on the CO2‐equivalent balance of fresh waters is not clear. We measured carbon fluxes (CO2 and CH4 diffusion, CH4 ebullition) and CH4 oxidation in 20 freshwater mesocosms with 10 different nutrient concentrations (total phosphorus range: mesotrophic 39 µg/L until hypereutrophic 939 µg/L) and planktivorous fish in half of them. We found that the CO2‐equivalent balance had a U‐shaped relationship with productivity, up to a threshold in hypereutrophic systems. CO2‐equivalent sinks were confined to a narrow range of net ecosystem production (NEP) between 5 and 19 mmol O2 m?3 day?1. Our findings indicate that eutrophication can shift fresh waters from sources to sinks of CO2‐equivalents due to enhanced CO2 uptake, but continued eutrophication enhances CH4 emission and transforms freshwater ecosystems to net sources of CO2‐equivalents to the atmosphere. Nutrient enrichment but also planktivorous fish presence increased productivity, thereby regulating the resulting CO2‐equivalent balance. Increasing planktivorous fish abundance, often concomitant with eutrophication, will consequently likely affect the CO2‐equivalent balance of fresh waters.  相似文献   

17.
Agricultural drainage of organic soils has resulted in vast soil subsidence and contributed to increased atmospheric carbon dioxide (CO2) concentrations. The Sacramento‐San Joaquin Delta in California was drained over a century ago for agriculture and human settlement and has since experienced subsidence rates that are among the highest in the world. It is recognized that drained agriculture in the Delta is unsustainable in the long‐term, and to help reverse subsidence and capture carbon (C) there is an interest in restoring drained agricultural land‐use types to flooded conditions. However, flooding may increase methane (CH4) emissions. We conducted a full year of simultaneous eddy covariance measurements at two conventional drained agricultural peatlands (a pasture and a corn field) and three flooded land‐use types (a rice paddy and two restored wetlands) to assess the impact of drained to flooded land‐use change on CO2 and CH4 fluxes in the Delta. We found that the drained sites were net C and greenhouse gas (GHG) sources, releasing up to 341 g C m?2 yr?1 as CO2 and 11.4 g C m?2 yr?1 as CH4. Conversely, the restored wetlands were net sinks of atmospheric CO2, sequestering up to 397 g C m?2 yr?1. However, they were large sources of CH4, with emissions ranging from 39 to 53 g C m?2 yr?1. In terms of the full GHG budget, the restored wetlands could be either GHG sources or sinks. Although the rice paddy was a small atmospheric CO2 sink, when considering harvest and CH4 emissions, it acted as both a C and GHG source. Annual photosynthesis was similar between sites, but flooding at the restored sites inhibited ecosystem respiration, making them net CO2 sinks. This study suggests that converting drained agricultural peat soils to flooded land‐use types can help reduce or reverse soil subsidence and reduce GHG emissions.  相似文献   

18.
We assess the role of changing natural (volcanic, aerosol, insolation) and anthropogenic (CO2 emissions, land cover) forcings on the global climate system over the last 150 years using an earth system model of intermediate complexity, CLIMBER‐2. We apply several datasets of historical land‐use reconstructions: the cropland dataset by Ramankutty & Foley (1999) (R&F), the HYDE land cover dataset of Klein Goldewijk (2001) , and the land‐use emissions data from Houghton & Hackler (2002) . Comparison between the simulated and observed temporal evolution of atmospheric CO2 and δ13CO2 are used to evaluate these datasets. To check model uncertainty, CLIMBER‐2 was coupled to the more complex Lund–Potsdam–Jena (LPJ) dynamic global vegetation model. In simulation with R&F dataset, biogeophysical mechanisms due to land cover changes tend to decrease global air temperature by 0.26°C, while biogeochemical mechanisms act to warm the climate by 0.18°C. The net effect on climate is negligible on a global scale, but pronounced over the land in the temperate and high northern latitudes where a cooling due to an increase in land surface albedo offsets the warming due to land‐use CO2 emissions. Land cover changes led to estimated increases in atmospheric CO2 of between 22 and 43 ppmv. Over the entire period 1800–2000, simulated δ13CO2 with HYDE compares most favourably with ice core during 1850–1950 and Cape Grim data, indicating preference of earlier land clearance in HYDE over R&F. In relative terms, land cover forcing corresponds to 25–49% of the observed growth in atmospheric CO2. This contribution declined from 36–60% during 1850–1960 to 4–35% during 1960–2000. CLIMBER‐2‐LPJ simulates the land cover contribution to atmospheric CO2 growth to decrease from 68% during 1900–1960 to 12% in the 1980s. Overall, our simulations show a decline in the relative role of land cover changes for atmospheric CO2 increase during the last 150 years.  相似文献   

19.
Estuaries are connected to both land and ocean so their physical, chemical, and biological dynamics are influenced by climate patterns over watersheds and ocean basins. We explored climate‐driven oceanic variability as a source of estuarine variability by comparing monthly time series of temperature and chlorophyll‐a inside San Francisco Bay with those in adjacent shelf waters of the California Current System (CCS) that are strongly responsive to wind‐driven upwelling. Monthly temperature fluctuations inside and outside the Bay were synchronous, but their correlations weakened with distance from the ocean. These results illustrate how variability of coastal water temperature (and associated properties such as nitrate and oxygen) propagates into estuaries through fast water exchanges that dissipate along the estuary. Unexpectedly, there was no correlation between monthly chlorophyll‐a variability inside and outside the Bay. However, at the annual scale Bay chlorophyll‐a was significantly correlated with the Spring Transition Index (STI) that sets biological production supporting fish recruitment in the CCS. Wind forcing of the CCS shifted in the late 1990s when the STI advanced 40 days. This shift was followed, with lags of 1–3 years, by 3‐ to 19‐fold increased abundances of five ocean‐produced demersal fish and crustaceans and 2.5‐fold increase of summer chlorophyll‐a in the Bay. These changes reflect a slow biological process of estuary–ocean connectivity operating through the immigration of fish and crustaceans that prey on bivalves, reduce their grazing pressure, and allow phytoplankton biomass to build. We identified clear signals of climate‐mediated oceanic variability in this estuary and discovered that the response patterns vary with the process of connectivity and the timescale of ocean variability. This result has important implications for managing nutrient inputs to estuaries connected to upwelling systems, and for assessing their responses to changing patterns of upwelling timing and intensity as the planet continues to warm.  相似文献   

20.
The trophic status of the eastern Gulf of Finland, where the largest Baltic metropolis St. Petersburg sits at the mouth of the largest Baltic river Neva, is elevated but existing recommendations on water protection measures are controversial. In this study, the effects of nutrient load reductions on this ecosystem were estimated with the aid of a three-dimensional coupled hydrodynamic-biogeochemical model. As a reference, the contemporary seasonal dynamics were simulated with nutrient inputs corresponding to the recent estimates of point and riverine sources. In order to eliminate the effects of natural inter-annual variations, the computations were run under recurrent annual forcing for 3 years, until quasi steady-state seasonal dynamics were reached. Reasonable comparability of simulated concentrations and biogeochemical fluxes to available field estimates provides credibility to scenario simulations. These simulations show that substantial reductions of nutrient point sources in St. Petersburg would affect only the Neva Bay as the immediate receptor of treated sewage waters, where primary production could decrease by up to 20%. Eutrophication in the other parts of the Neva Estuary and in the entire eastern Gulf of Finland would change insignificantly owing to increased nutrient import from the offshore waters. Therefore, more significant changes can occur only via a reduction in nutrient pools in the open Gulf of Finland and the Baltic Proper, which would require a longer time. Guest editors: J. H. Andersen & D. J. Conley Eutrophication in Coastal Ecosystems: Selected papers from the Second International Symposium on Research and Management of Eutrophication in Coastal Ecosystems, 20–23 June 2006, Nyborg, Denmark  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号