首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The phytochemical investigation on Tanacetum sinaicum (Fresen.) Delile ex Bremer & Humphries led to the isolation of eight flavonoid aglycones (apigenin 1, acacetin 2, luteolin 3, chrysoeriol 4, cirsilineol 5, jaceidin 6, chrysosplenetin 7 and vitexicarpin; casticin 8), four flavonoid glycosides (apigenin 7-O-β-glucopyranoside 9, apigenin 7-O-β-glucuronide 10, luteolin 7-O-β-glucopyranoside 11 and luteolin 7-O-β-glucuronide 12) and three phenolics (4-hydroxy-3-methoxy benzoic acid 13, 3,4-dimethoxy benzoic acid 14 and 4-hydroxy acetophenone 15). Their structures were determined by chemical and spectroscopic analysis. Among them, compounds 1–3, 9, 11, 13 and 14 were reported for the first time from T. sinaicum. The chemotaxonomic significance of the isolated flavonoids was also summarized.  相似文献   

2.
The major flavonoids in Riccia crystallina are naringenin and its 7-O-glucoside, apigenin 7-O-glucoside and apigenin 7-O-glucuronide and derivatives. Ricciocarpus natans is a rich source of luteolin 7,3′-di-O-glucuronide and also contains the 7-O-glucuronides of apigenin and luteolin and the 3′-O-glucuronide of luteolin. A parallel between the production of biosynthetically simple flavonoids and reduced morphology is evident among these liverworts.  相似文献   

3.
The flavonoids of 2 samples of Conocephalum conicum gametophyte tissue have been studied, one from U.S.A. and the other from Germany. Common to both samples were vicenin-2, lucenin-2, the 7-O-glucuronides of apigenin, chrysoeriol and luteolin and the previously unknown 7-O-glucuronide 4′-O-rhamnosides of apigenin, chrysoeriol and luteolin. Additionally the German sample contained the 7,4′-di-O-glucuronides of apigenin and luteolin and a new compound, apigenin 7-O-diglucuronide 4′-O-glucuronide. The North American sample contained, additionally, luteolin 7,3′-di-O-glucuronide, luteolin 7-O-glucuronide 3′,4′-di-O-rhamnoside (a new triglycoside) and 2 further derivatives of luteolin 7-O-glucuronide. Evidence is presented for the existence of geographic faces of C. conicum and for the qualitative invariability of the flavonoid patterns with changing season or environment.  相似文献   

4.
A new flavanone glycoside, naringenin-7-O-β-d-glucuronopyranoside, and a new flavonol glycoside, 6-hydroxykaempferol-7-O-β-d-glucuronopyranoside were isolated together with 12 known compounds, 5 flavone glycoside; hispidulin-7-O-β-d-glucuronopyranoside, apigenin-7-O-β-d-methylglucuronopyranoside, hispidulin-7-O-β-d-methylglucuronopyranoside, hispidulin-7-O-β-d-glucopyranoside, apigenin-7-O-β-d-glucopyranoside, a flavonol; kaempferol, two flavone; apigenin, and luteolin, a flavanone glycoside; eriodictyol-7-O-β-d-glucuronopyranoside, and three phenol glycoside; arbutin, salidroside, and 3,5-dihydroxyphenethyl alcohol-3-O-β-d-glucopyranoside from Centaurea urvillei subsp. urvillei. The structure elucidation of the new compounds was achieved by a combination of one- (1H and 13C) and two-dimensional NMR techniques (G-COSY, G-HMQC, and G-HMBC) and LC-ESI-MS. The isolated compounds were tested for their antiproteasomal activity. The results indicated that kaempferol, a well known and widely distributed flavonoid in the plant kingdom, was the most active antiproteasomal agent, followed by apigenin, eriodictyol-7-O-β-d-glucuronopyranoside, 3,5-dihydroxyphenethyl alcohol-3-O-β-d-glucopyranoside, and salidroside, respectively.  相似文献   

5.
Two flavones, luteolin 7-O-β-glucuronide and diosmetin 7-O-β-glucuronide, were isolated and identified from Chrysanthemum morifolium L. v. Ramat leaves. Identification techniques included HPLC DAD, MS, 1H and 13C NMR spectroscopy. At concentrations of 0.2 and 2.0 mM, luteolin 7-O-β-glucuronide significantly reduced the frond number and chlorophyll content of Lemna gibba plants, but did not significantly affect dry weight. At a concentration of 0.2 mM diosmetin 7-O-β-glucuronide had no significant effect on frond number, dry weight or chlorophyll concentration of L. gibba. These results indicate that an ortho-3′,4′-dihydroxy arrangement of the B-flavonoid ring in the luteolin compound is probably responsible for allelopathic activity.  相似文献   

6.
Three new acylated anthocyanidin 3-rutinoside-5-glucosides were isolated from the violet-blue flowers of Saintpaulia ‘Thamires’ (Saintpaulia sp.) along with a known flavone glycoside. Three new acetylated anthocyanins were determined to be 3-O-[6-O-(4-O-(acetyl)-α-rhamnopyranosyl)-β-glucopyranoside]-5-O-(β-glucopyranoside)s of malvidin (pigment 1), peonidin (pigment 2), and pelargonidin (pigment 3) by chemical and spectroscopic methods. HPLC analysis revealed that malvidin 3-O-acetylrutinoside-5-O-glucoside existed as a dominant pigment in the violet-blue flowers. Moreover, the isolated flavone was identified to be apigenin 4′-O-β-glucuronopyranoside (pigment 4).On the visible absorption spectral curves of fresh violet-blue petals and in their crude extracts in pH 5.0 buffer solution, two characteristic absorption maxima at 547 and 577 nm, with a shoulder near 620 nm, were observed. In contrast, the absorption curves of malvidin 3-O-acetylrutinoside-5-O-glucoside and its deacyl anthocyanin exhibited only one maximum at 535 nm in pH 5.0 buffer solution, and its color was violet and soon fell into decay.However, by addition of apigenin 4′-O-glucuronide, the color of malvidin 3-O-acetylrutinoside-5-O-glucoside changed from violet to violet-blue, similar to that of the fresh flower in pH 5.0 buffer solution. The absorption curve of its violet-blue solution exhibited two similar absorption maxima at 547 and 577 nm, with a shoulder near 620 nm. These results suggest that intermolecular copigmentation between malvidin 3-O-acetylrutinoside-5-O-glucoside and apigenin 4′-O-glucuronide may be responsible for the violet-blue flower color of S. ‘Thamires’.  相似文献   

7.
The major flavonoid glycosides of Sphaerocarpos texanus are luteolin 7-O-glucuronide and 7,4′-di-O-glucuronide. Riella americana and R. affinis both contain apigenin, chrysoeriol and luteolin 7-O-glucuronides but R. americana additionally contains luteolin 3′-O-glucuronide. This finding supports the inclusion of Sphaerocarpaceae and Riellaceae in the order Marchantiales rather than their separation into another order.  相似文献   

8.
A new iridoid, 5β,6β-dihydroxyantirrhide (1) was isolated from the dried leaves of Pseuderanthemum carruthersii (Seem.) Guill. var. atropurpureum (Bull.) Fosb. (Acanthaceae), together with 13 known compounds, including two iridoids, linarioside and antirrhinoside; five phenylethanoids, echipuroside A, verbascoside, isoverbascoside, isomartynoside and osmanthuside B; and six flavonoids, luteolin 7-O-β-d-glucopyranoside, luteolin 7-O-rutinoside, apigenin 7-O-rutinoside, apigenin 6-C-α-l-arabinopyranosyl–8-C-β-l-arabinopyranoside, apigenin 6,8-di-C-α-l-arabinopyranoside and apigenin 6-C-β-d-xylopyranosyl–8-C-α-l-arabinopyranoside. Their chemical structures were elucidated by 1D and 2D NMR as well as HR-ESI-MS spectroscopic analysis. Some purified compounds were evaluated the acetylcholinesterase inhibition and cytotoxic activities against the HeLa cervical cancer cell line and the MCF-7 breast cancer cell line at the concentration of 100 μg/mL. Luteolin 7-O-β-d-glucopyranoside exhibited cytotoxic activities against both the HeLa cervical cancer cell line and the MCF-7 breast cancer cell line. Verbascoside and isoverbascoside showed strong cytotoxic activity against the MCF-7 breast cancer cell line. The tested compounds showed the AChE inhibitory activity fairly weak.  相似文献   

9.
Five C-glycosylflavone were isolated from Vaccaria hispanica (Miller) Rauschert seeds. Their NMR spectra showed separate signals because of the existence of rotational isomers, which is an unusual phenomenon. The spectroscopic data revealed that compounds 15 were identified as apigenin 6-C-[α-l-arabinopyranosyl-(1′′′→2′′)-β-d-glucopyranosyl]-7-O-β-d-glucopyranoside (1), apigenin 6-C-[α-l-arabinopyranosyl-(1′′′→2′′)-β-d-glucopyranosyl]-7-O-(6′′′′-O-dihydroferuloyl)-β-d-glucopyranoside (2), apigenin 6-C-β-d-glucopyranosyl-7-O-(6′′′-O-dihydroferuloyl)-β-d-glucopyranoside (3) and isovitexin-2′′-O-arabinoside (4) and saponarin (5), respectively. The structure of ‘vaccarin’ was revised to apigenin 6-C-[α-l-arabinopyranosyl-(1′′′→2′′)-β-d-glucopyranosyl]-7-O-β-d-glucopyranoside and consequently 1 should be named ‘vaccarin’. Among the isolated compounds, 2 and 3 are new and named vaccarin E and vaccarin F, respectively.  相似文献   

10.
The major flavonoids of Marchantia polymorpha var. polymorpha and aquatica are the 7-O-β-d-glucuronides of apigenin and luteolin, luteolin 3′-O-β-d-glucuronide, luteolin 7,3′-di-O-β-d-glucuronide, and the 7,4′-di-O-β-d-glucuronides of apigenin and luteolin. These are accompanied by minor amounts of apigenin, luteolin, luteolin 3′,4′-di-O-β-d-glucuronide and luteolin 7,3′,4′-tri-O-β-d-glucuronide. All the luteolin di- and triglucuronides except the 3′,4′-di- substituted compound are new natural products.  相似文献   

11.
《Phytochemistry》1986,25(7):1770-1771
Besides apigenin 7-O-glucoside, a new acylated flavone has been identified in Echinops echinatus as apigenin 7-O-β-D-(4″-cis-p-coumaroyl)glucoside from spectral and chemical analysis.  相似文献   

12.
The major flavonoid of Marchantia berteroana is hypolaetin 8-O-β-d-glucuronide. This is accompanied by apigenin and luteolin, isoscutellarein (8-hydroxyapigenin) 8-O-β-d-glucuronide, the 7-O-β-d-glucuronide and -galacturonide of apigenin and luteolin, luteolin 3′-O-β-d-glucuronide and -galacturonide, luteolin 7,3′-di-O-β-d-glucuronide and -galacturonide, luteolin 3′,4′-di-O-β-d-glucuronide and -galacturonide, luteolin 7,4′-di-O-β-d-glucuronide, and hypolaetin 8,4′-di-O-β-d-glucuronide. The isoscutellarein and hypolaetin glucuronides, and the galacturonide flavones are all new natural products.  相似文献   

13.
The structures of two new acylated apigenin glucosides are reported from the aerial parts of Anisomeles ovata. They were separated as their acetates and identified as apigenin 7-O-β-d-(2″,6″-di-O-p-coumaroyl)glucoside and apigenin 7-O-β-d-(4″,6′-di-O-p-coumaroyl)glucoside by 1H NMR study of the acetates and by chemical degradative methods. The allocation of the p-coumaroyl moieties is also supported by a study of the 13C NMR spectrum of the inseparable mixture of glucosides.  相似文献   

14.
S. Asen  R.M. Horowitz 《Phytochemistry》1974,13(7):1219-1223
The copigment present in the crystalline blue pigment isolated from Blue Boy cornflowers (Centaurea cyanus L.) was identified as apigenin 4′-O-β-glucoside 7-O-β-d-glucuronide. The NMR spectra of aryl glucuronides are discussed.  相似文献   

15.
Five unprecedented furan-2-carbonyl C-glycosides, scleropentasides A–E, and two phenolic diglycosides, 4-hydroxy-3-methoxybenzyl 4-O-β-d-xylopyranosyl-(1  6)-β-d-glucopyranoside and 2,6-dimethoxy-p-hydroquinone 1-O-β-d-xylopyranosyl-(1  6)-β-d-glucopyranoside, were isolated from leaves and twigs of Scleropyrum pentandrum together with potalioside B, luteolin 6-C-β-d-glucopyranoside (isoorientin), apigenin 8-C-β-d-glucopyranoside (vitexin), apigenin 6,8-di-C-β-d-glucopyranoside (vicenin-2), apigenin 6-C-α-l-arabinopyranosyl-8-C-β-d-glucopyranoside (isoschaftoside), apigenin 6-C-β-d-glucopyranosyl-8-C-β-d-xylopyranoside, adenosine and l-tryptophan. Structure elucidations of these compounds were based on analyses of chemical and spectroscopic data, including 1D and 2D NMR. In addition, the isolated compounds were evaluated for their radical scavenging activities using both DPPH and ORAC assays.  相似文献   

16.
6-Prenylapigenin (1) and 8-prenylapegenin (2) were semi-synthesized from apigenin by nuclear prenylation. Morusin (3) was isolated from the root bark of Morus alba L. The microbial transformation studies of these three bioactive prenylated apigenin derivatives were performed using eighteen cell cultures in order to select microorganisms capable of transforming them. It was identified that Mucor hiemalis (KCTC 26779) showed the ability to metabolize the parent compounds (1–3) into three new (46) and one known (7) glucosylated derivatives with high efficiency. Their structures were established as 6-prenylapigenin 7-O-β-d-glucopyranoside (4), 8-prenylapigenin 7-O-β-d-glucopyranoside (5), morusin 5-O-β-d-glucopyranoside (6), and morusin 4′-O-β-d-glucopyranoside (7) by the spectroscopic methods.  相似文献   

17.
Glycosylation is one of the key modification steps for plants to produce a broad spectrum of flavonoids with various structures and colors. A survey of flavonoids in the blue flowers of Veronica persica Poiret (Lamiales, Scrophulariaceae), which is native of Eurasia and now widespread worldwide, led to the identification of highly glycosylated flavonoids, namely delphinidin 3-O-(2-O-(6-O-p-coumaroyl-glucosyl)-6-O-p-coumaroyl-glucoside)-5-O-glucoside (1) and apigenin 7-O-(2-O-glucuronosyl)-glucuronide (2), as two of its main flavonoids. Interestingly, the latter flavone glucuronide (2) caused a bathochromic shift on the anthocyanin (1) toward a blue hue in a dose-dependent manner, showing an intermolecular co-pigment effect. In order to understand the molecular basis for the biosynthesis of this glucuronide, we isolated a cDNA encoding a UDP-dependent glycosyltransferase (UGT88D8), based on the structural similarity to flavonoid 7-O-glucuronosyltransferases (F7GAT) from Lamiales plants. Enzyme assays showed that the recombinant UGT88D8 protein catalyzes the 7-O-glucuronosylation of apigenin and its related flavonoids with preference to UDP-glucuronic acid as a sugar donor. Furthermore, we identified and functionally characterized a cDNA encoding another UGT, UGT94F1, as the anthocyanin 3-O-glucoside-2″-O-glucosyltransferase (A3Glc2″GlcT), according to the structural similarity to sugar-sugar glycosyltransferases classified to the cluster IV of flavonoid UGTs. Preferential expression of UGT88D8 and UGT94F1 genes in the petals supports the idea that these UGTs play an important role in the biosynthesis of key flavonoids responsible for the development of the blue color of V. persica flowers.  相似文献   

18.
From ligulate flowers of Matricaria chamomilla was isolated a mixture of apigenin 7-O-β-glucoside diacetates, which was shown to be based on (2″, 3″)- and (3″, 4″)-diacetates.  相似文献   

19.
Seven flavonoids such as luteolin (1), luteolin 7-O-β-glucopyranoside (2), luteolin 3'-O-β-glucopyranoside (3), chryseriol (4), apigenin (5), apigenin 7-O-β-glucopyranoside (6) and astragalin (7) and one coumarin, scopoletin (8) were isolated from the aerial parts of Impatiens hypophylla Makino var. hypophylla (Family: Balsaminaceae). Structures of these compounds were elucidated on the basis of spectroscopic methods. All these compounds were isolated for the first time from I. hypophylla var. hypophylla.  相似文献   

20.
Clerodendrum infortunatum L. (syn.: Clerodendrum viscosum Vent.), a member of the Lamiaceae, yielded one undescribed jasmonic acid derivative, ten acteosides, and two flavonoids. The jasmonic acid derivative was identified as 6'-O-caffeoyl-12-glucopyranosyloxyjasmonic acid. The acteosides were identified as isoacteoside, acteoside, 2''-O-acetyl-martyonside, 3''-O-acetyl-martyonside, martynoside, brachynoside, leucosceptoside A, jionoside C, jionoside D, incanoside C. The flavonoids were identified as apigenin 7-O-glucuronide and acacetin 7-O-glucuronide. The structures of the isolated components have been identified by UHPLC-HRMS, 1D and 2D NMR spectroscopic analyses, spectrometric techniques, and in comparison with published NMR data. The absolute sugar configuration was determined by GLC-MS/MS analysis of the octylated derivative of the sugar moiety after hydrolysis. Among the known compounds, ten are reported for the first time from this species, while the acteoside leucosceptoside A and the two flavonoids have been isolated for the first time from the genus Clerodendrum. The chemophenetic significance of the compounds obtained from C. infortunatum is summarized in comparison to those found in other Clerodendrum species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号