首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We found previously that expression of multidrug resistance-associated protein (MRP) 3 is induced in a mutant rat strain (Eisai hyperbilirubinemic rats) whose canalicular multispecific organic anion transporter (cMOAT/MRP2) function is hereditarily defective and in normal Sprague-Dawley (SD) rats after ligation of the common bile duct. In the present study, the inducible nature of MRP3 was examined, using Northern and Western blot analyses, in comparison with that of other secondary active [Na(+)-taurocholic acid cotransporting polypeptide (Ntcp), organic anion transporting polypeptide 1 (oatp1), and organic cation transporter (OCT1)] and primary active [P-glycoprotein (P-gp), cMOAT/MRP2, and MRP6] transporters. alpha-Naphthylisothiocyanate treatment and common bile duct ligation induced expression of P-gp and MRP3, whereas expression of Ntcp, oatp1, and OCT1 was reduced by the same treatment. Although expression of MRP3 was also induced by administration of phenobarbital, that of cMOAT/MRP2, MRP1, and MRP6 was not affected by any of these treatments. Moreover, the mRNA level of MRP3, but not that of P-gp, was increased in SD rats after administration of bilirubin and in Gunn rats whose hepatic bilirubin concentration is elevated because of a defect in the expression of UDP-glucuronosyl transferase. However, the MRP3 protein level was not affected by bilirubin administration. Although the increased MRP3 mRNA level was associated with the increased concentration of bilirubin and/or its glucuronides in mutant rats and in SD rats that had undergone common bile duct ligation or alpha-naphthylisothiocyanate treatment, we must assume that factor(s) other than these physiological substances are also involved in the increased protein level of MRP3.  相似文献   

2.
The regulation of angiotensinogen gene expression in response to adrenalectomy and dexamethasone treatment was examined in multiple rat tissues. Angiotensinogen mRNA as quantitated by slot blot hybridization utilizing an angiotensinogen cRNA probe was most abundant in the liver with levels in the brain, kidney, and adrenal of 50, 25, and 10%, respectively. No angiotensinogen mRNA was detected in testes or heart. Although no change in the quantity of angiotensinogen mRNA was found following adrenalectomy and maintenance on 0.9% saline, dexamethasone treatment of both normal and adrenalectomized rats resulted in a time-dependent and tissue-specific accumulation of angiotensinogen mRNA. In normal animals, the hepatic response to treatment was a 4.5-fold increase in angiotensinogen mRNA by 8 h which remained 2.4-fold above basal levels by 24 h. Angiotensinogen mRNA levels in the brains of normal rats treated with dexamethasone increased only 60% by 6 h and returned to basal levels by 24 h. In contrast to the increases seen in brain and liver, angiotensinogen mRNA derived from kidney did not significantly change following dexamethasone treatment. In adrenalectomized animals, the hepatic response to dexamethasone was similar to normal animals with a 3.7-fold increase by 6 h. The accumulation in brain was greater in these animals compared to normals and increased 3-fold by 8 h. Finally, dexamethasone did not significantly increase levels in the kidney. These results clearly demonstrate glucocorticoid regulation of angiotensinogen mRNA levels in liver and brain. In contrast, the kidney, an organ known to contain glucocorticoid receptors, does not respond with increased angiotensinogen mRNA levels following glucocorticoid stimulation. These studies provide the first evidence for tissue-specific differences in the control of angiotensinogen mRNA.  相似文献   

3.
We have used specific cDNAs to the rat vitamin D receptor (VDR) and to the mammalian vitamin D-dependent calcium-binding proteins (calbindin-D9k in intestine and calbindin-D28k in kidney) in order to obtain a better understanding of the regulation of the VDR gene and its relationship to calbindin gene expression. Hormonal regulation and development expression of the rat VDR gene were characterized by both Northern and slot blot analyses. Administration of 1,25-dihydroxyvitamin D3 (1,25(OH)2D3; 25 ng/day for 7 days) to vitamin D-deficient rats resulted in an increase in calbindin mRNA in intestine and kidney but no change in VDR mRNA in these tissues. Vitamin D-deficient rats responded to dexamethasone treatment (100 micrograms/100 g of body weight/day for 4 days) with a 2.5-fold increase in intestinal VDR mRNA which was accompanied by a 4-fold decrease in intestinal calbindin-D9k mRNA. Developmental studies indicated a pronounced increase in renal VDR mRNA and calbindin-D28k mRNA between birth and 1 week of age. In the intestine, an induction of VDR and calbindin-D9k gene expression was observed at a later time, during the 3rd postnatal week (the period of increased duodenal active transport of calcium). Taken collectively, our data indicate that in the adult rat, target tissue response to hormone is not modified by a corresponding alteration in new receptor synthesis. However, developmental studies indicate that the induction of 1,25(OH)2D3 receptor mRNA is correlated with the induction of calbindin gene expression. Our results also demonstrate that glucocorticoid administration can result in an alteration in intestinal calbindin and VDR gene expression.  相似文献   

4.
In a recent study we reported the presence of specific binding sites for corticotropin-releasing factor (CRF) in peripheral tissues of the rat (Endocrinology, 116, 2151, 1985). The objective of this study was to determine if CRF binding to peripheral tissues was modified following adrenalectomy and glucocorticoid replacement therapy. Adult male rats were adrenalectomized and CRF binding to liver, spleen and testicular membranes was determined at 5, 7 or 14 days following adrenalectomy. An additional group of adrenalectomized rats received subcutaneous injections of dexamethasone (75 micrograms/day) for 14 days. Adrenalectomy of rats for 14 days increased CRF binding to liver, kidney, testis, spleen and ventral prostate by approximately 65%-125% above sham-control values. CRF binding to membrane preparations obtained from the pancreas of sham-operated rats was undetectable; however, adrenalectomy produced detectable CRF binding in this tissue. Adrenalectomy produced a time-related increase in CRF binding to ventral prostate, spleen and liver tissue. Administration of dexamethasone to adrenalectomized animals prevented increased CRF binding to peripheral tissues observed following adrenalectomy alone. In vitro dexamethasone treatment of prostatic or hepatic homogenates from adrenalectomized rats resulted in a dose-related decrease in CRF binding activity. However, similar in vitro treatment of prostatic or hepatic homogenate with progesterone exhibited no significant effects on CRF binding. Our results suggest that glucocorticoids may be a regulator of peripheral CRF receptors.  相似文献   

5.
Metallothionein (MT) concentration in gills, liver, and kidney tissues of Persian sturgeon (Acipenser persicus) were determined following exposure to sublethal levels of waterborne cadmium (Cd) (50, 400, and 1,000 μg l−1) after 1, 2, 4, and 14 days. The increases of MT from background levels were 4.6-, 3-, and 2.8-fold for kidney, liver, and gills, respectively. The results showed that MT level change in the kidney is time and concentration dependent. Also, cortisol measurement revealed elevation at the day 1 of exposure and followed by MT increase in the liver. Cd concentrations in the cytosol of experimental tissues were measured, and the results indicated that Cd levels in the cytosol of liver, kidney, and gills increased 240.71-, 32.05-, and 40.16-fold, respectively, 14 days after exposure to 1,000 μg l−1 Cd. The accumulation of Cd in cytosol of tissues is in the order of liver > gills > kidney. Pearson correlation coefficients showed that the MT content in kidney is correlated with Cd concentration, the value of which is more than in liver and gills. Thus, kidney can be considered as a tissue indicator in A. persicus for waterborne Cd contamination.  相似文献   

6.
Ornithine decarboxylase (ODC), S-adenosylmethionine decarboxylase (SAMDC), and thymidine kinase (TK) activities and polyamine concentrations on the kidneys of male castrated rats were studied following sc injection of estradiol. Estradiol caused an 11-fold increase in ODC activity 24 hours after administration. SAMDC activity doubled but TK activity decreased by two-thirds 2 days after estradiol treatment. The concentrations of polyamines, especially putrescine, showed sharp elevations 2 days following estradiol treatment, 1 day after the peak of ODC activity. The increase in ODC activity was suppressed by cycloheximide and by actinomycin D. Estradiol and diethylstilbestrol (DES), but not progesterone increased ODC activity. Estradiol suppressed ODC activities of liver, thymus, adrenal glands, testes and prostate. A specific estradiol-binding protein was demonstrated in the rat kidney. The dissociation constant (Kd) was 1.64 × 10?10 M and numbers of binding sites were 31 fmoles/mg protein. Correlation between the binding of estradiol to the cytosol protein and elevation of ODC by estradiol was observed.  相似文献   

7.
8.
The alteration of Ca2+-binding protein regucalcin mRNA expression in the kidney cortex of rats administered cisplatin and cephaloridine, which can induce kidney damage, was investigated. Cisplatin (0.25, 0.5 and 1.0 mg/100 g body weight) or cephaloridine (25, 50 and 100 mg/100 g) was intraperitoneally administered in rats, and 1, 2 and 3 days later they were sacrificed. The alteration in serum findings after the administration of cisplatin (1.0 mg/100 g) or cephaloridine (50 and 100 mg/100 g) demonstrated chemically induced kidney damage; blood urea nitrogen (BUN) concentration increased markedly and serum inorganic phosphorus or calcium concentration decreased significantly. Moreover, the administration of cisplatin (1.0 mg/100 g) or cephaloridine (100 mg/100 g) caused a remarkable increase of calcium content in the kidney cortex of rats, indicating kidney damage. The expression of regucalcin mRNA in the kidney cortex was markedly reduced by the administration of cisplatin or cephaloridine in rats, when the mRNA levels were analyzed by Northern blotting using rat liver regucalcin cDNA (0.9 kb). The mRNA decreases were seen with the used lowest dose of cisplatin or cephaloridine. The present study clearly demonstrates that the mRNA expression of Ca2+-binding protein regucalcin in the kidney cortex of rats is decreased by chemically induced kidney damage.  相似文献   

9.
10.
Regulation of MDR-1 (P-glycoprotein) by cyclooxygenase-2   总被引:39,自引:0,他引:39  
  相似文献   

11.
Molecular cloning of the murine cMOAT ATPase   总被引:1,自引:0,他引:1  
cMOAT encodes an ATPase within the family of cMOAT/MRP ATPases that functions as an ATP dependent, multispecific anion transporter within the canalicular surface of hepatocytes that has pharmacologic significance. We describe here the cloning of a murine cMOAT cDNA isolated from mouse liver. The open reading frame of this cDNA incorporates 4627 nucleotides encoding 1309 amino acids with 77.5% and 86.7% identity with the human and rat encoded amino acids, respectively. Northern blotting showed that the expression of cMOAT mRNA occurs primarily in mouse liver in the form of two variants with approximately 5.6 and 7.8 kb of sequence each. cMOAT mRNA was also detected in mouse kidney at a low level but was not detected in other mouse organs or tumors except the Hep 1-6 murine hepatoma where expression was also in the form of the same two mRNA variants.  相似文献   

12.
The insulin-like growth factor-binding proteins IGFBP-1 and IGFBP-2 are low mol wt IGFBPs that are similar in structure. They are not glycosylated and have a homologous amino acid sequence, including the number and position of 18 cysteine residues and a carboxyl-terminal Arg-Gly-Asp sequence that can be recognized by cell adhesion receptors. The present study demonstrates that expression of mRNAs encoding the two BPs differs in some fetal rat tissues and in the livers of adult rats after hypophysectomy, fasting, or streptozotocin-induced diabetes. As determined by Northern blot hybridization using cDNA probes for rat IGFBP-2 or human IGFBP-1, both mRNAs are expressed at high levels in liver of 21-day gestation and 1-day-old rats and at lower levels in 21- and 65-day-old rat liver. Levels of both mRNAs are higher in liver than in other fetal rat tissues. The relative abundance of the two mRNAs in most fetal tissues is similar to that in liver, except that kidney and brain have 8-fold and more than 25-fold higher relative levels of IGFBP-2 mRNA, respectively. IGFBP-2 mRNA is about 10- to 20-fold increased after hypophysectomy or fasting, whereas IGFBP-1 mRNA is relatively unchanged. IGFBP-2 mRNA levels are decreased completely by refeeding fasted rats for 3 days, but only partially decreased by treatment of hypophysectomized rats with GH, cortisone acetate, T4, and testosterone for 4 days.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
High intracellular 1,2,-sn-diacylglycerol (DAG) usually activates protein kinase C (PKC). In choline-deficient Fischer 344 rats, we previously showed that fatty liver was associated with elevated hepatic DAG and sustained activation of PKC. Steatosis is a sequelae of many liver toxins, and we wanted to determine whether fatty liver is always associated with accumulation of DAG with activation of PKC. Obese Zucker rats had 11-fold more triacylglycerol in their livers and 2-fold more DAG in their hepatic plasma membrane than did lean control Zucker rats. However, this increased diacylglycerol was not associated with translocation or activation of PKC in hepatic plasma membrane (activity in obese rats was 897 pmol/mg protein×min−1 vs. 780 pmol/mg protein×min−1 in lean rats). No differences in PKC isoform expression were detected between obese and lean rats. In additional studies, we found that choline deficiency in the Zucker rat did not result in activation of PKC in liver, unlike our earlier observations in the choline deficient Fischer rat. This dissociation between fatty liver, DAG accumulation and PKC activation in Zucker rats supports previous reports of abnormalities in PKC signaling in this strain of rats.  相似文献   

14.
Mesenchymal stem cells (MSCs) curative effects on methotrexate (MTX)‐induced kidney and liver injuries remain elusive. Therefore, rats were divided into five groups, rats received MTX orally (14 mg/kg) as a single dose/week for 2 weeks, groups 3 and 4 were injected once with 2 × 106 cells bone marrow MSCs and adipose‐derived MSCs, respectively. The last group administered dexamethasone (DEX) (0.5 mg/kg, p.o) for 7 days. MTX caused marked increase in malondialdehyde and nitrite/nitrate concentrations. However, MTX administration decreased reduced glutathione content plus catalase activity. In addition, MTX caused a significant increment in kidney and liver biomarkers levels. Moreover, MTX showed renal tubules vacuolation and necrosis of hepatocytes, as well expression of caspase‐3 and nuclear factor kappa beta in kidney and liver tissues were observed. MSCs treatment alleviated previous side effects induced by MTX. MSCs improved nephrotoxicity and hepatotoxicity induced by MTX to a better extent as compared with DEX.  相似文献   

15.
The effects of pyridine on renal cytochrome P4502E1 (CYP2E1) expression in rat have been examined by immunoblot and Northern blot analyses. Immunoblot analyses revealed that 2E1 protein levels were elevated from 1.4- to 4.6-fold following pyridine administration in a dose- and time-dependent manner. Northern blot analyses revealed that renal 2E1 poly(A)+ RNA levels increased from 1.4- to 3.8-fold following pyridine treatment and that these increases in 2E1 mRNA paralleled the dose- and time-dependent increases in 2E1 protein content. In contrast, hepatic 2E1 poly(A)+ RNA levels failed to increase following these same dosing regimens, suggesting that metabolic alterations, such as those associated with starvation, were not etiologic factors in renal 2E1 induction. These results show that pyridine induced CYP2E1 in kidney and that elevation of renal 2E1 protein levels accompanying pyridine administration occurred at least partly as a consequence of increased 2E1 poly(A)+ RNA levels. The results of this research reveal that regulatory mechanisms governing CYP2E1 expression may differ in hepatic and renal tissues.  相似文献   

16.
Dey A  Yadav S  Dhawan A  Seth PK  Parmar D 《Life sciences》2006,79(18):1729-1735
Freshly isolated peripheral blood lymphocytes from control rats were found to catalyze the N-demethylation of erythromycin, known to be mediated by cytochrome P450 3A (CYP3A) isoenzymes in rat liver. Pretreatment of rats with dexamethasone (100 mg/kgx3 days, i.p.), a CYP3A inducer, resulted in 3-4-fold increase in the activity of erythromycin demethylase (EMD) in freshly isolated peripheral blood lymphocytes. This increase in the enzyme activity was found to be associated with an increase in the rate of the reaction and affinity of the substrate towards the enzyme. Significant inhibition of the EMD activity on in vitro addition of ketoconazole, a specific CYP3A inhibitor in liver and polyclonal antibody raised against rat liver CYP3A have suggested that EMD activity in blood lymphocytes is catalyzed primarily by CYP3A isoenzymes. Further, immunoblot analysis with polyclonal antibody raised against rat liver CYP3A revealed significant immunoreactivity, co-migrating with the liver isoenzyme, indicating constitutive expression of CYP3A in blood lymphocytes. Pretreatment with dexamethasone was found to significantly increase the expression of CYP3A protein in freshly isolated rat blood lymphocytes, as observed with liver. Likewise, significant CYP3A mRNA detected in control rat blood lymphocytes has further demonstrated constitutive expression of CYP3A isoenzymes in blood lymphocytes. Furthermore, several fold increase in CYP3A mRNA expression following pretreatment with dexamethasone showed similarities in the regulation of CYP3A isoenzymes in rat blood lymphocytes with the liver enzyme. The data suggest that the blood lymphocytes can be used to monitor tissue expression of CYP3A isoenzymes and validate the suitability of lymphocytes as surrogates of CYP status in less accessible target tissues.  相似文献   

17.
AimsP-glycoprotein (P-gp), one of the important drug-efflux pumps, is known to be affected by pathological conditions such as inflammation or infection. Recently, it is reported that high glucose or hyperglycemia can alternate P-gp expression levels at the blood-brain barrier or in the kidney, although the details are still unknown. Here, we analyzed the alteration of intestinal P-gp expression and function in the development of diabetes and elucidated the mechanisms.Main methodsType 1 diabetes was induced in male ddY mice by an i.p. injection of streptozotocin (STZ) (230 mg/kg). We analyzed ileal P-gp expression and function using Western blot analysis and an in situ closed loop method, respectively.Key findingsA significant reduction of P-gp expression level in ileum was found 9 days after STZ administration. In contrast, a remarkable decrease in P-gp function was observed on the 3rd and 9th days. Interestingly, nitric oxide synthase (NOS) activity in ilea was significantly increased on the 9th day. The decrease of P-gp expression levels observed on the 9th day was completely suppressed by L-NG-nitroarginine methyl ester (L-NAME), a broad range NOS inhibitor, or aminoguanidine, a specific inducible NOS (iNOS) inhibitor.SignificanceThese results indicate the possibility that nitric oxide (NO), produced by iNOS in the ileum, is involved in the reduction of ileal P-gp expression under STZ-induced diabetic conditions.  相似文献   

18.
19.
Argininosuccinate synthetase and argininosuccinate lyase catalyze the synthesis of arginine from citrulline in kidney and also serve as components of the urea cycle in liver of ureotelic animals. Dietary and hormonal regulation of mRNAs encoding these enzymes have been well studied in liver but not in kidney. Messenger RNAs for these enzymes are localized within the renal cortex. Starvation and extreme variations in dietary protein content (0% vs 60% casein) produced 2.6- to 3.5-fold increases in mRNA abundance for these two enzymes in rat kidney. Argininosuccinate lyase mRNA was not induced by dibutyryl cAMP, dexamethasone, or a combination of the two agents. In contrast, argininosuccinate synthetase mRNA was induced 2-fold by dibutyryl cAMP but was unresponsive to dexamethasone. Thus, diet and hormones regulate levels of these mRNAs in rat kidney, but the responses are both qualitatively and quantitatively distinct from the responses previously reported for rat liver.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号