首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.

Background and Aims

Cyanolichens are usually stated to be bipartite (mycobiont plus cyanobacterial photobiont). Analyses revealed green algal carbohydrates in supposedly cyanobacterial lichens (in the genera Pseudocyphellaria, Sticta and Peltigera). Investigations were carried out to determine if both cyanobacteria and green algae were present in these lichens and, if so, what were their roles.

Methods

The types of photobiont present were determined by light and fluorescence microscopy. Small carbohydrates were analysed to detect the presence of green algal metabolites. Thalli were treated with selected strengths of Zn2+ solutions that stop cyanobacterial but not green algal photosynthesis. CO2 exchange was measured before and after treatment to determine the contribution of each photobiont to total thallus photosynthesis. Heterocyst frequencies were determined to clarify whether the cyanobacteria were modified for increased nitrogen fixation (high heterocyst frequencies) or were normal, vegetative cells.

Key Results

Several cyanobacterial lichens had green algae present in the photosynthetic layer of the thallus. The presence of the green algal transfer carbohydrate (ribitol) and the incomplete inhibition of thallus photosynthesis upon treatment with Zn2+ solutions showed that both photobionts contributed to the photosynthesis of the lichen thallus. Low heterocyst frequencies showed that, despite the presence of adjacent green algae, the cyanobacteria were not altered to increase nitrogen fixation.

Conclusions

These cyanobacterial lichens are a tripartite lichen symbiont combination in which the mycobiont has two primarily photosynthetic photobionts, ‘co-primary photobionts’, a cyanobacterium (dominant) and a green alga. This demonstrates high flexibility in photobiont choice by the mycobiont in the Peltigerales. Overall thallus appearance does not change whether one or two photobionts are present in the cyanobacterial thallus. This suggests that, if there is a photobiont effect on thallus structure, it is not specific to one or the other photobiont.  相似文献   

2.
The composition of lichen ecosystems except mycobiont and photobiont has not been evaluated intensively. In addition, recent studies to identify algal genotypes have raised questions about the specific relationship between mycobiont and photobiont. In the current study, we analyzed algal and fungal community structures in lichen species from King George Island, Antarctica, by pyrosequencing of eukaryotic large subunit (LSU) and algal internal transcribed spacer (ITS) domains of the nuclear rRNA gene. The sequencing results of LSU and ITS regions indicated that each lichen thallus contained diverse algal species. The major algal operational taxonomic unit (OTU) defined at a 99% similarity cutoff of LSU sequences accounted for 78.7–100% of the total algal community in each sample. In several cases, the major OTUs defined by LSU sequences were represented by two closely related OTUs defined by 98% sequence similarity of ITS domain. The results of LSU sequences indicated that lichen‐associated fungi belonged to the Arthoniomycetes, Eurotiomycetes, Lecanoromycetes, Leotiomycetes, and Sordariomycetes of the Ascomycota, and Tremellomycetes and Cystobasidiomycetes of the Basidiomycota. The composition of major photobiont species and lichen‐associated fungal community were mostly related to the mycobiont species. The contribution of growth forms or substrates on composition of photobiont and lichen‐associated fungi was not evident.  相似文献   

3.
Domestication of algae by lichen‐forming fungi describes the symbiotic relationship between the photosynthetic (green alga or cyanobacterium; photobiont) and fungal (mycobiont) partnership in lichen associations ( Goward 1992 ). The algal domestication implies that the mycobiont cultivates the alga as a monoculture within its thallus, analogous to a farmer cultivating a food crop. However, the initial photobiont ‘selection’ by the mycobiont may be predetermined by the habitat rather than by the farmer. When the mycobiont selects a photobiont from the available photobionts within a habitat, the mycobiont may influence photobiont growth and reproduction ( Ahmadjian & Jacobs 1981 ) only after the interaction has been initiated. The theory of ecological guilds ( Rikkinen et al. 2002 ) proposes that habitat limits the variety of photobionts available to the fungal partner. While some studies provide evidence to support the theory of ecological guilds in cyanobacterial lichens ( Rikkinen et al. 2002 ), other studies propose models to explain variation in symbiont combinations in green algal lichens ( Ohmura et al. 2006 ; Piercey‐Normore 2006 ; Yahr et al. 2006 ) hypothesizing the existence of such guilds. In this issue of Molecular Ecology, Peksa & ?kaloud (2011) test the theory of ecological guilds and suggest a relationship between algal habitat requirements and lichen adaptation in green algal lichens of the genus Lepraria. The environmental parameters examined in this study, exposure to rainfall, altitude and substratum type, are integral to lichen biology. Lichens have a poikilohydric nature, relying on the availability of atmospheric moisture for metabolic processes. Having no known active mechanism to preserve metabolic thallus moisture in times of drought, one would expect a strong influence of the environment on symbiont adaptation to specific habitats. Adaptation to changes in substrata and its properties would be expected with the intimate contact between crustose lichens in the genus Lepraria. Altitude has been suggested to influence species distributions in a wide range of taxonomic groups. This is one of the first studies to illustrate an ecological guild, mainly for exposure to rainfall (ombrophiles and ombrophobes), with green algal lichens.  相似文献   

4.
Phyllopsora dominicanus sp. nov. (Bacidiaceae, Lecanorales,lichen-forming Ascomycota) is described and illustrated fromDominican amber. The diagnostic features of the lichen includea minute subfolious thallus of lacinulate, ascending squamules,a well-developed upper cortex, and a net-like pseudocortex onthe lower surface. The algal symbionts are unicellular greenalgae, forming a distinct layer immediately below the uppercortex. The fossil demonstrates that distinguishing featuresof Phyllopsora have remained unchanged for tens of millionsof years. The fossil also provides the first detailed viewsof mycobiont–photobiont contacts in Tertiary green algallichens. The mycobiont hyphae formed apical and intercalaryappressoria by pressing closely against the photobiont cells.This indicates that a conserved maintenance of structure isalso seen in the fine details of the fungal–algal interface. Key words: Amber, fossil, fungi, lichen, Phyllopsora, symbiosis, Tertiary Received 30 May 2007; Revised 30 November 2007 Accepted 21 December 2007  相似文献   

5.
Lichens are an association of a photoautotrophic alga/cyanobacteria (photobiont) and a heterotrophic fungus (mycobiont) constituting the lichen thallus as a complex phenotype. Many mycobionts reproduce sexually and the ascospores are dispersed without the photobiont. For successful re-lichenization the specific photobiont must be recognized, contacted, and incorporated by the mycobiont. A so-called pre-contact stage has been postulated as the initial step of a gradual recognition process. In the present study, the effect of the specific Trebouxia photobiont, an unspecific Asterochloris photobiont and the non-lichenizing green alga Myrmecia bisecta on the development of the mycobiont Fulgensia bracteata was assessed by pre-contact assays. Three hypotheses were confirmed: (i) the pre-contact stage exists, (ii) it is characterized by morphological reactions in the development of the mycobiont, and (iii) the reactions depend on the interacting alga. Control conditions revealed a mycelial growth arrest but this effect was not observed in the presence of any of the three algae. Different algae induce distinct growth patterns with respect to hyphal length, morphological characteristics, and formation of mucilage. The specific Trebouxia photobiont had a positive impact on hyphal growth, branching frequency, and mucilage formation. These effects were less explicit with the non-specific Asterochloris photobiont. Myrmecia bisecta induced uncharacteristic growth patterns with pronounced hyphal growth and high numbers of aerial hyphae but less formation of mucilage. These results indicate that symbiont recognition mechanisms are established before physical contact. Pre-contact reactions may be an evolutionary advantage that supports the persistence of the mycobiont on newly colonized sites and improves the probability of re-lichenization.  相似文献   

6.
HPLC analyses of Xanthoria elegans cultivated on different media and either aposymbiontically or with its photobiont revealed that the carbon source and the presence of the algal partner have an impact on the secondary metabolism of the mycobiont. The aposymbiotically (without photobiont) grown mycobiont contained up to 70% more of the main compounds in its thallus than in resynthesis stage. Although this is speculative, the induction of the polyketide pathway may be a feedback mechanism to the absence of the photobiont. All cultures produce a variety of substances which were not detectable in the voucher specimen. Besides physcion (the major substance), we were able to identify emodin as well as physcion-bisanthrone, teloschistin monoacetate and derivatives. A strong inducible effect on the production of physcion, physcion-bisanthrone and on their precursors and derivatives was found for mannitol. By contrast, supplementation of ribitol had negligible effects, if any, on polyketide quantities although it is the main carbon source for the mycobiont in free-living lichens with Trebouxia photobiont.  相似文献   

7.
Brown algae show a significant diversity in thallus forms, giving a great number of model systems for the study of many important morphogenetic mechanisms. Thallus growth in brown algae is diffuse, intercalary or apical. The latter takes place by means of one or more apical cells. Among the brown algal groups, Sphacelariales, Dictyotales and Fucales give the best examples of apical growth, and have been repeatedly used for the study of the morphogenetic role of apical cells. In Sphacelariales the apical cells appear strongly polarized, the polarity expressed also on the organization of the microtubule cytoskeleton. These cells show a type of growth that can be compared with tip growth of root hairs, moss protonemata, pollen tubes and fungal hyphae, and is called ‘tip-like growth’. The thallus of Dictyotales grows by the activity of one or more apical cells showing variable degree of polarity. These cells do not exhibit any type of apical growth. In Fucales the vegetative thallus develops by means of an active apical meristem, which includes a large apical cell. This cell does not show polar organization or apical growth. However, in germinating zygotes of Fucales a polar axis is established and during the first stages of development they show a typical tip growth. In the present paper, the available information on the structure and division pattern of apical cells is presented. Their morphogenetic role is discussed, in relation to polarity, cytoskeleton organization, and apical dominance.  相似文献   

8.
The charcoalified fragment of the dorsiventrally organized, internally stratified presumed green algal lichen Chlorolichenomycites salopensis from the Lower Devonian Lochkovian strata in the Welsh Borderland carries bacterial colonies on the upper surface, i.e. the cortex, and actinobacterial filaments in the medulla underneath the photobiont layer. Moreover relatively thin hyphae of presumed endolichenic fungi were found. As in extant lichens, which are best regarded as consortia with an unknown number of participants, this internally stratified, fossil thallus fragment of a presumed green algal lichen harbours a diverse microbial community.  相似文献   

9.
Lichens are symbioses of two organisms, a fungal mycobiont and a photoautotrophic photobiont. In nature, many lichens tolerate extreme environmental conditions and thus became valuable models in astrobiological research to fathom biological resistance towards non-terrestrial conditions; including space exposure, hypervelocity impact simulations as well as space and Martian parameter simulations. All studies demonstrated the high resistance towards non-terrestrial abiotic factors of selected extremotolerant lichens. Besides other adaptations, this study focuses on the morphological and anatomical traits by comparing five lichen species—Circinaria gyrosa, Rhizocarpon geographicum, Xanthoria elegans, Buellia frigida, Pleopsidium chlorophanum—used in present-day astrobiological research. Detailed investigation of thallus organization by microscopy methods allows to study the effect of morphology on lichen resistance and forms a basis for interpreting data of recent and future experiments. All investigated lichens reveal a common heteromerous thallus structure but diverging sets of morphological-anatomical traits, as intra-/extra-thalline mucilage matrices, cortices, algal arrangements, and hyphal strands. In B. frigida, R. geographicum, and X. elegans the combination of pigmented cortex, algal arrangement, and mucilage seems to enhance resistance, while subcortex and algal clustering seem to be crucial in C. gyrosa, as well as pigmented cortices and basal thallus protrusions in P. chlorophanum. Thus, generalizations on morphologically conferred resistance have to be avoided. Such differences might reflect the diverging evolutionary histories and are advantageous by adapting lichens to prevalent abiotic stressors. The peculiar lichen morphology demonstrates its remarkable stake in resisting extreme terrestrial conditions and may explain the high resistance of lichens found in astrobiological research.  相似文献   

10.
11.
Symbioses such as lichens are potentially threatened by drastic environmental changes. We used the lichen Peltigera aphthosa—a symbiosis between a fungus (mycobiont), a green alga (Coccomyxa sp.), and N2‐fixing cyanobacteria (Nostoc sp.)—as a model organism to assess the effects of environmental perturbations in nitrogen (N) or phosphorus (P). Growth, carbon (C) and N stable isotopes, CNP concentrations, and specific markers were analyzed in whole thalli and the partners after 4 months of daily nutrient additions in the field. Thallus N was 40% higher in N‐fertilized thalli, amino acid concentrations were twice as high, while fungal chitin but not ergosterol was lower. Nitrogen also resulted in a thicker algal layer and density, and a higher δ13C abundance in all three partners. Photosynthesis was not affected by either N or P. Thallus growth increased with light dose independent of fertilization regime. We conclude that faster algal growth compared to fungal lead to increased competition for light and CO2 among the Coccomyxa cells, and for C between alga and fungus, resulting in neither photosynthesis nor thallus growth responded to N fertilization. This suggests that the symbiotic lifestyle of lichens may prevent them from utilizing nutrient abundance to increase C assimilation and growth.  相似文献   

12.
Successful re-lichenization between the two bionts of the lichen symbiosis, the fungal mycobiont and its specific photobiont, is a process that is not well understood yet. To assess potential signalling between the two bionts during initial pre-contact, exudates of the Trebouxia photobionts of Fulgensia bracteata, Fulgensia fulgens, and Xanthoria elegans, of the Asterochloris photobiont of Lecidea lurida, and of the non-lichenizing green alga Myrmecia bisecta were investigated. The compounds identified in these exudates were tested with respect to their influence on germination and early development of the Fulgensia bracteata mycobiont. Additionally, carbohydrates (glucose, sucrose, ribitol) were tested to appraise their effect on the mycobiont growth patterns. Three hypotheses were confirmed: (i) photobionts exude various substances, (ii) the photobiont exudation pattern varies with the identity of the photobiont, and (iii) a pre-contact influence induces changes in the early development of the mycobiont of F. bracteata. This study gives comparative insight to exudates of lichen photobionts. In vitro photobionts differentially release compounds belonging to several substance classes which include indole-3-carbaldehyde, two cyclic dipeptides, and rhamnose. Two compounds had inhibitory effects on germination and germ-tube growth of the mycobiont and one other enhanced spore germination. Additionally, ribitol was found to elicit a strong effect on the mycobiont’s growth. In general, photobiont-exudation, its effect on the mycobiont, and the response to ribitol suggest that complex pre-contact signalling has a crucial role in lichen biont recognition.  相似文献   

13.
? Responses to simulated nitrogen (N) deposition with or without added phosphorus (P) were investigated for three contrasting lichen species - the N-sensitive Alectoria sarmentosa, the more N-tolerant Platismatia glauca and the N(2) -fixing Lobaria pulmonaria- in a field experiment. ? To examine whether nutrient limitation differed between the photobiont and the mycobiont within the lichen, the biomass responses of the respective bionts were estimated. ? The lichenized algal cells were generally N-limited, because N-stimulated algal growth in all three species. The mycobiont was P-limited in one species (A. sarmentosa), but the growth response of the mycobionts was complex, as fungal growth is also dependent on a reliable carbon export from the photobiont, which may have been the reason for the decrease of the mycobiont with N addition in P. glauca. ? Our findings showed that P availability was an important factor when studying effects of N deposition, as P supply can both mitigate and intensify the negative effects of N on epiphytic lichens.  相似文献   

14.
Nitrate uptake and nitrogen inclusion into amino acids were studied in the intact thallus and isolated bionts of the lichen Parmelia sulcata with the aid of mass spectroscopic tracing of heavy isotope 15N. The isolated photobiont, the green algae Trebouxia sp. did not take up nitrate, whereas the mycobiont and intact thalli were enriched in 15N when incubated with Na15NO3. Pulse feeding experiments with intact thalli followed by separation of photobiont showed that the labelled nitrate was originally assimilated by the mycobiont and only after that was detected in the photobiont. The isolated mycobiont after pulse labeling excreted labeled compounds into the incubation medium. Amino acids were detected in the exudate. The quantities of two amino acids considerably exceeded those of the others. One was identified as alanine, the other could not yet be identified with certainty. Both of these high-quantity compounds were also much more enriched in 15N than the others. These two compounds are proposed to be the transport forms of nitrogen within the Parmelia sulcata thallus.  相似文献   

15.
Field emission scanning electron microscopy was used to characterize mycobiont wall surfaces inUmbilicaria hyperboreafrom Greenland. To determine the precise intrathalline distribution of phenolics, comparisons were made of hyphal surface features and dimensions before and after acetone extraction. Stratification was evident within the medulla, as extracellular phenolics were observed only on hyphae near or within the algal zone. The outside diameter of hyphae in this region was thus significantly greater than in the remainder of the medulla. Surface deposits were also examined in 1350-year-old subfossil thalli and hyphal diameters were compared statistically to those in extant thalli. The mean hyphal diameter in the upper medulla was not significantly less in subfossil specimens than in recent thalli, suggesting that phenolic cover was maintained in spite of glaciation. However, after ice burial phenolic masses tended to be flatter than in recent specimens and finely tuberculate. The appearance of mycobiont hyphae in the cortex of subfossil thalli seemed to be the same as in extant thalli, except that there tended to be more compressible, smaller and less conglutinated filaments near the algal layer.  相似文献   

16.
17.
Population genetics of the tree‐colonizing lichen Lobaria pulmonaria were studied in the largest primeval beech forest of Europe, covering 10 000 ha. During an intensive survey of the area, we collected 1522 thallus fragments originating from 483 trees, which were genotyped with eight mycobiont‐ and 14 photobiont‐specific microsatellite markers. The mycobiont and photobiont of L. pulmonaria were found to consist of two distinct gene pools, which are co‐existing within small areas of 3–180 ha in a homogeneous beech forest. The small‐scale distribution pattern of the symbiotic gene pools show habitat partitioning of lineages associated with either floodplains or mountain forests. Using approximate Bayesian computation (ABC), we dated the divergence of the two fungal gene pools of L. pulmonaria as the Early Pleistocene. Both fungal gene pools survived the Pleistocene glacial cycles in the Carpathians, although possibly in climatically different refugia. Fungal diversification prior to these cycles and the selection of photobionts with different altitudinal distributions explain the current sympatric, but ecologically differentiated habitat partitioning of L. pulmonaria. In addition, the habitat preferences of the mycobiont are determined by other factors and are rather independent of those of the photobiont at the landscape level. The distinct gene pools should be considered evolutionarily significant units and deserve specific conservation priorities in the future, for example gene pool A, which is a Pliocene relict.  相似文献   

18.
Nitrogen (N) availability and light exposure were manipulated under field conditions to study responses to altered resource supply in the green algal lichen Platismatia glauca. The lichen was fertilized with different concentrations and frequencies of ammonium, nitrate or glutamine under different light regimes for 2-3 months. Responses were followed from the intact thallus to the cellular level. Despite significant differences in overall light exposure, light conditions were not significantly different among treatments when the lichens were wet and active. Ammonium was the preferred N source, followed by glutamine and then nitrate. Thallus N concentration as well as the chlorophyll a (Chl a) concentration increased 3-4-fold at the highest ammonium concentration, while the mycobiont ergosterol concentration remained unaltered. Growth was significantly enhanced by the enhanced N supply, with the increase in dry weight varying from 3 to 30%. Variation in Chl a concentration explained 31% of this variation, suggesting a causal link to the increased growth rate. Platismatia glauca responded to increased N availability by increasing its growth rate and carbon assimilation capacity through increased investments in the photobiont cells. This suggests a tight regulation of resource investments and metabolic pathways between the symbionts of this lichen.  相似文献   

19.
Microbial symbionts are instrumental to the ecological and long‐term evolutionary success of their hosts, and the central role of symbiotic interactions is increasingly recognized across the vast majority of life. Lichens provide an iconic group for investigating patterns in species interactions; however, relationships among lichen symbionts are often masked by uncertain species boundaries or an inability to reliably identify symbionts. The species‐rich lichen‐forming fungal family Parmeliaceae provides a diverse group for assessing patterns of interactions of algal symbionts, and our study addresses patterns of lichen symbiont interactions at the largest geographic and taxonomic scales attempted to date. We analysed a total of 2356 algal internal transcribed spacer (ITS) region sequences collected from lichens representing ten mycobiont genera in Parmeliaceae, two genera in Lecanoraceae and 26 cultured Trebouxia strains. Algal ITS sequences were grouped into operational taxonomic units (OTUs); we attempted to validate the evolutionary independence of a subset of the inferred OTUs using chloroplast and mitochondrial loci. We explored the patterns of symbiont interactions in these lichens based on ecogeographic distributions and mycobiont taxonomy. We found high levels of undescribed diversity in Trebouxia, broad distributions across distinct ecoregions for many photobiont OTUs and varying levels of mycobiont selectivity and specificity towards the photobiont. Based on these results, we conclude that fungal specificity and selectivity for algal partners play a major role in determining lichen partnerships, potentially superseding ecology, at least at the ecogeographic scale investigated here. To facilitate effective communication and consistency across future studies, we propose a provisional naming system for Trebouxia photobionts and provide representative sequences for each OTU circumscribed in this study.  相似文献   

20.
The development of many complex stratified lichen thalli is made through stages of complex phenotypic interactions between a filamentous fungus (the mycobiont), and a trebouxioid alga (the photobiont). Typically, the second stage of this symbiotic development is marked by the envelopment of the photobiont by the mycobiont through increased lateral hyphal branching and the formation of appressoria. Previously, the mycobiont’s envelopment of photobiont cells was considered thigmotropic (a growth response due to shape) as a mycobiont can envelop algal sized objects in its environment. However, after growing the mycobiontCladonia grayi with various phototrophs and glass beads, we conclude that the mycobiont does not show this characteristic second stage morphological response when grown in non-compatible pairings. Instead,C. grayi displays a distinctive morphological growth response only in compatible symbiotic pairings, such as with its natural photobiontAsterochlor’is sp.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号