首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Questions: We asked several linked questions about phenology and precipitation relationships at local, landscape, and regional spatial scales within individual seasons, between seasons, and between year temporal scales. (1) How do winter and summer phenological patterns vary in response to total seasonal rainfall? (2) How are phenological rates affected by the previous season rainfall? (3) How does phenological variability differ at landscape and regional spatial scales and at season and inter‐annual temporal scales? Location: Southern Arizona, USA. Methods: We compared satellite‐derived phenological variation between 38 distinct 625‐km2 landscapes distributed in the northern Sonoran Desert region from 2000 to 2007. Regression analyses were used to identify relationships between landscape phenology dynamics in response to precipitation variability across multiple spatial and temporal scales. Results: While both summer and winter seasons show increases of peak greenness and peak growth with more precipitation, the timing of peak growth was advanced with more precipitation in winter, while the timing of peak greenness was advanced with more precipitation in summer. Surprisingly, summer maximum growth was negatively affected by winter precipitation. The spatial variations between summer and winter phenology were similar in magnitude and response. Larger‐scale spatial and temporal variation showed strong differences in precipitation patterns; however the magnitudes of phenological spatial variability in these two seasons were similar. Conclusions: Vegetation patterns were clearly coupled to precipitation variability, with distinct responses at alternative spatial and temporal scales. Disaggregating vegetation into phenological variation, spanning value, timing, and integrated components revealed substantial complexity in precipitation‐phenological relationships.  相似文献   

2.
Agricultural systems are being challenged to decrease water use and increase production while climate becomes more variable and the world's population grows. Low water use efficiency is traditionally characterized by high water use relative to low grain production and usually occurs under dry conditions. However, when a cropping system fails to take advantage of available water during wet conditions, this is also an inefficiency and is often detrimental to the environment. Here, we provide a systems‐level definition of water use efficiency (sWUE) that addresses both production and environmental quality goals through incorporating all major system water losses (evapotranspiration, drainage, and runoff). We extensively calibrated and tested the Agricultural Production Systems sIMulator (APSIM) using 6 years of continuous crop and soil measurements in corn‐ and soybean‐based cropping systems in central Iowa, USA. We then used the model to determine water use, loss, and grain production in each system and calculated sWUE in years that experienced drought, flood, or historically average precipitation. Systems water use efficiency was found to be greatest during years with average precipitation. Simulation analysis using 28 years of historical precipitation data, plus the same dataset with ± 15% variation in daily precipitation, showed that in this region, 430 mm of seasonal (planting to harvesting) rainfall resulted in the optimum sWUE for corn, and 317 mm for soybean. Above these precipitation levels, the corn and soybean yields did not increase further, but the water loss from the system via runoff and drainage increased substantially, leading to a high likelihood of soil, nutrient, and pesticide movement from the field to waterways. As the Midwestern United States is predicted to experience more frequent drought and flood, inefficiency of cropping systems water use will also increase. This work provides a framework to concurrently evaluate production and environmental performance of cropping systems.  相似文献   

3.
Previous studies have used tree-ring chronologies from several species to develop reconstructions of precipitation, temperature, streamflow and glacier mass balance for sites in Banff National Park, Alberta. This study examines the variability in a >300-year summer streamflow reconstruction for the Bow River at Banff in conjunction with changes in the major contributors to streamflow (glacier melt, winter and summer pecipitation). Reconstructed winter mass balance for Peyto Glacier is used as a surrogate for winter precipitation and April–August precipitation is reconstructed for Banff. Streamflow variability correlates most highly with winter precipitation and periods of high flow follow above average snowfall in the previous winter (high winter balance) and in some cases also with above normal summer precipitation. A clear response to changes in summer mass balance at Peyto Glacier (i.e. summer glacier melting) cannot be identified in this summer discharge record. Problems developing physically realistic flow reconstructions for snowmelt dominated rivers from summer sensitive tree-ring chronologies are also discussed.  相似文献   

4.
Aim Rainfall reliability has been neglected as a determinant of plant trait convergence and divergence in mediterranean‐climate ecosystems. This paper reports on patterns of rainfall reliability — quantified as interannual variation in monthly and seasonal rainfall, and as the frequency of individual events in terms of their size, duration and intensity — for four fire‐prone mediterranean‐climate ecosystems. Location The four mediterranean‐climate regions of the world with fire‐prone ecosystems, namely SW Cape (South Africa), SW Australia, California and the Mediterranean Basin (Andalusia, Spain). Methods Using long‐term monthly rainfall data from stations dispersed across the four regions, we computed monthly means and interannual variation for each month of the year — the latter quantified as the coefficient of variation (CV) — and divided these into winter and summer seasons. We also computed the mean number of rainfall events, the mean frequency in various categories of event duration (days), the amount of rainfall per event (mm) and the rainfall intensity per event (mm/day) per year for winter and summer seasons for a subset of the rainfall stations. Results The fraction of rain falling in summer was lowest in California (5%) and similarly low (c. 25%) in the other three regions. The hierarchy of values of coefficient of variation (CV) of monthly rainfall during the winter period was as follows: California > Andalusia >> SW Cape > SW Australia; results for summer were: California > > Andalusia >> SW Australia ~ SW Cape. SW Australian sites experienced the greatest frequency of short, small and low‐intensity rainfall events in both seasons; patterns in the SW Cape were intermediate between Australia and the two northern hemisphere sites which both received fewer, larger and more intense events. Overall, the two southern hemisphere regions (SW Australia and the SW Cape) had significantly more reliable regimes than the two northern hemisphere ones (Mediterranean Basin and California). Main conclusions These differences in rainfall reliability regimes may provide a novel perspective on the distribution of certain plant life‐history traits in mediterranean‐climate ecosystems. Less reliable regimes would select for germination and seedling survival traits that enable persistence of genets in the face of uncertain moisture conditions during the winter and spring establishment phase. Study systems that accommodate for phylogenetic constraints, namely invasive species derived from mediterranean‐climate ecosystems, as well as shared lineages, provide good opportunities to develop and test hypotheses on the implication of different rainfall reliability regimes. One of the novel implications of this study is that the distinctive trait of assemblages in the southern hemisphere regions may be a consequence not so much of their shared nutrient‐poor soils as of their similarly reliable rainfall regimes.  相似文献   

5.
The Forsmark Biotest Basin is a shallow coastal ecosystem that receives brackish cooling-water discharge from a nuclear power plant. The effects of the discharge on epilithic algal communities were investigated by analysing samples taken every third week throughout one year at 11 sites differentially affected by temperature and/or flow rate enhancement. Community variation was summarized in a canonical correspondence analysis (CCA) of species abundances as a function of site and date. The temperature increase favoured blue-green algae at the expense of red and brown algae. Blue-green algae were however abundant in summer in stagnant water, whether heated or not, and some red and brown algae became abundant in winter in heated sites with flowing water. Green algae and diatoms increased in biomass in the heated sites, but not in relative cover-abundance. The absence of ice and snow cover at sites with heated and/or flowing water caused autumn species to persist into winter, because of the higher light intensity (compared with natural conditions) and the absence of the mechanical abrasion by ice. The thermal discharge lowered species diversity (Shannon-Weaver index) both in summer and winter at sites with flowing water, but not at sites with quiescent or stagnant water. CCA showed alternate periods of stability and rapid change within the seasonal cycle. Individual species were placed according to their optimum; red and brown algae in winter/spring, green algae in spring/summer, blue-green algae in summer, and diatoms at various times. Exceptions to this pattern were species endo- or epiphytic on species of a different group. Analysis of the effects of temperature, flow rate and ice cover on the seasonal pattern of particular species showed that different species respond in individualistic ways to different combinations of these environmental variables.  相似文献   

6.
Studying germination in the native and non‐native range of a species can provide unique insights into processes of range expansion and adaptation; however, traits related to germination have rarely been compared between native and non‐native populations. In a series of common garden experiments, we explored whether differences in the seasonality of precipitation, specifically, summer drought vs summer rain, and the amount and variation of annual and seasonal precipitation affect the germination responses of populations of an annual ruderal plant, Centaurea solstitialis, from its native range and from two non‐native regions with different climates. We found that seeds from all native populations, irrespective of the precipitation seasonality of the region in which they occurred, and non‐native populations from regions with dry summers displayed similarly high germination proportions and rates. In contrast, genotypes from the non‐native region with predominantly summer rain exhibited much lower germination fractions and rates. Also, percent germination was strongly correlated with variation in precipitation in winter, the season that follows germination for C. solstitialis. Specifically, germination was lower for native and non‐native populations experiencing greater variation in winter precipitation. This correlation, however, was greatly influenced by the non‐native region with summer rain, which also exhibited the greatest variation in winter precipitation among studied regions. These results suggest that rather than general climatic patterns, the degree of risk experienced at early developmental stages could exert an important control over the germination strategy of C. solstitialis populations in both native and non‐native ranges. Also, these findings reveal a largely unique germination response in C. solstitialis genotypes growing in the non‐native region with summer rain and high variation in winter precipitation. Our work raises the possibility that rapid adaptive changes in germination strategies may contribute to the success of globally distributed invaders.  相似文献   

7.
基流是水资源重要组成部分,探究流域基流变化特征及其对降水的响应,对优化流域水资源配置具有重要意义。本研究基于赣南九曲水流域1982—2019年逐日降水、径流观测资料,运用数字滤波法、交叉小波变换及累积量斜率变化率比较法等,分析了基流变化特征,探讨了基流对降水的时滞效应,并计算了降水对基流变化的贡献率。结果表明: 研究期间,九曲水流域年基流深和年基流指数变化趋势均不显著,年均值分别为384.21 mm和0.44;春、夏季基流深大于秋、冬季,基流指数则与之相反。年降水量控制着年基流深的动态变化,春、夏季降水对基流深的作用强于秋、冬季;年及春、夏、秋、冬季基流滞后降水的时长分别为3.5~10.3、1.5~8.5、2~10、2~13和5~20.5 d,年均滞后时长依次为6.4、4.9、5.3、6.8和10.8 d。年基流深在1992年发生突变,降水对基流变化的贡献率为68.2%,其他因素对基流变化的贡献率为31.8%。本研究成果可为南方红壤区评价流域的森林水文效应、保障河流的水生态安全提供科学依据。  相似文献   

8.
我国极端降水变化趋势及其对城市排水压力的影响   总被引:1,自引:0,他引:1  
陆咏晴  严岩  丁丁  赵春黎  宋扬  赵景柱 《生态学报》2018,38(5):1661-1667
全球气候变化对水循环具有重要影响,其中极端降水的变化,对城市排水系统产生巨大冲击,造成城市内涝、交通瘫痪及生命财产损失等问题。为了揭示我国极端降水变化的趋势和区域特征,及其对城市排水系统的压力程度,使用中国气象数据中心1951—2014年全国917个站点的逐日降水量,计算得到我国极端降水及其变化趋势的空间分布特征。并以我国289个主要地级城市为研究对象,构建了气候变化情景下的城市排水压力评估方法,预测并展望了不同时段和不同代表性浓度路径(RCPs)情景下,未来城市的排水压力情况。结果表明,我国极端降水整体上正随着全球气候变化而增加,全国年最大降水量变化速度的平均值为0.06mm/a,但并不是所有区域都具有一致性,具体表现为南部极端降水增加而北部缓解的规律。我国排水压力大的城市主要分布在南部和东北地区,城市排水基础设施完善的东部和极端降水量比较小的西部地区城市排水压力比较低,华北地区极端降水的随机性大,历史上出现的最大降水显著高于该地区常见大雨,也属于内涝风险比较大的区域。随着气候变化的影响,我国未来城市排水压力整体上升,城市未来短期排水压力相对于现有水平总体上升2.9%,具体75个城市的排水压力有所增加明显。且低应对的RCP8.5情景显著高于高应对的RCP2.6情景,这说明减缓气候变化的工作对降低我国城市内涝风险有比较大的积极意义。我国城市排水压力的变化也具有区域性,华北地区极端降水呈现减少的趋势,南部地区极端降水呈现增加趋势,加重了该地区原本就很高的城市内涝风险,需要政府采取积极措施提出有针对性的方案和考虑了气候变化的前瞻性城市排水规划,以降低城市排水压力,尽量减少城市内涝造成的经济损失。  相似文献   

9.
The study explored the combined effects of density, physical habitat and different discharge levels on the growth of juvenile Atlantic salmon Salmo salar in artificial streams, by manipulating flow during both summer and winter conditions. Growth was high during all four summer trials and increased linearly with discharge and mean velocity. Differences in fish densities (fish m?3) due to differences in stream volume explained a similar proportion of the variation in mean growth among discharge treatments. Within streams, the fish aggregated in areas of larger sediment size, where shelters were probably abundant, while growth decreased with increasing densities. Fish appeared to favour the availability of shelter over maximization of growth. Mean growth was negative during all winter trials and did not vary among discharge treatments. These results suggest that increased fish densities are a major cause of reduced summer growth at low discharge, and that habitat‐mediated density differences explain the majority of the growth variation across habitat conditions both during summer and winter.  相似文献   

10.
河北省典型区主要作物有效降雨量和需水量特征   总被引:11,自引:0,他引:11  
对作物全生育期内有效降雨量及需水规律的研究是进行合理灌溉及水资源优化配置的重要依据。以河北省鸡泽县为典型区域,利用FAO推荐的Penman-Monteith公式和分段单值平均作物系数法对冬小麦、夏玉米和棉花的有效降雨量及需水规律进行计算,并通过M-K检验法分析近60 a来鸡泽县有效降雨量及作物需水量序列的趋势变化及突变现象。结果表明:近60 a鸡泽县冬小麦在生育中期需水量最大,为210.2 mm,有效降雨量均集中在生育中期,缺水量以13.2 mm/10 a的速率呈显著性减少趋势;夏玉米在初始生长期需水量最大,为157.7 mm,有效降雨量集中在生育中期,缺水量以7.0 mm/10 a的速率呈不显著减少趋势;棉花在快速发育期需水量最大,为227.9 mm,有效降雨量集中在生育中期,缺水量以22.3 mm/10 a的速率呈显著性减少趋势。在一定程度上对河北省对农田灌溉用水效率和效益以及保障农作物科学高效生产具有重要的指导意义。  相似文献   

11.
Winter cold limits temperate plant performance, as does summer water stress in drought‐prone ecosystems. The relative impact of seasonal extremes on plant performance has received considerable attention for individual systems. An integrated study compiling the existing literature was needed to identify overall trends. First, we conducted a meta‐analysis of the impacts of summer and winter on ecophysiology for three woody plant functional types (winter deciduous angiosperms, evergreen angiosperms and conifers), including data for 210 records from 75 studies of ecosystems with and without summer drought across the temperate zone. Second, we tested predictions by conducting a case study in a drought‐prone Mediterranean ecosystem subject to winter freezing. As indicators of physiological response of leaves and xylem to seasonal stress, we focused on stomatal conductance (gs), percent loss of stem xylem hydraulic conductivity (PLC) and photochemical efficiency of photosystem II (Fv/Fm). Our meta‐analysis showed that in ecosystems without summer drought, gs was higher during summer than winter. By contrast, in drought‐prone ecosystems many species maintained open stomata during winter, with potential strong consequences for plant carbon gain over the year. Further, PLC tended to increase and Fv/Fm to decrease from summer to winter for most functional types and ecosystems due to low temperatures. Overall, deciduous angiosperms were most sensitive to climatic stress. Leaf gas exchange and stem xylem hydraulics showed a coordinated seasonal response at ecosystems without summer drought. In our Mediterranean site subjected to winter freezing the species showed similar responses to those typically found for ecosystems without summer drought. We conclude that winter stress is most extreme for systems without summer drought and systems with summer drought and winter freezing, and less extreme for drought‐prone systems without freezing. In all cases the evergreen species show less pronounced seasonal responses in both leaves and stems than deciduous species.  相似文献   

12.
Esler  Karen J.  Rundel  Philip W. 《Plant Ecology》1999,142(1-2):97-104
A comparative study of community structure and seasonal growth dynamics in the arid winter rainfall regions of the Succulent Karoo in South Africa and the Mojave Desert of the United States suggests that remarkably divergent patterns of resource use and resultant growth form diversity exist in regions with outwardly similar climatic regimes. An understanding of these divergent patterns in the two winter rainfall deserts allows predictions to be made on vegetation response to global change. Above-ground plant growth in the Succulent Karoo begins with the first significant rains in late summer and continues through winter because moderate minimum temperatures allow continued growth. These communities have low structural diversity above-ground, but also below-ground, where root systems commonly do not exceed 20 cm in depth. These shallow root systems harvest water from upper soil horizons soon after rain falls, and growth declines as rainfall decreases in late spring. In contrast, low temperatures during winter inhibit growth in the Mojave Desert until early spring at a time when a mean 74% of the hydrologic year precipitation (July-June) has already occurred. Thus species in this structurally diverse system rely on deeper stores of water for growth in spring and early summer. A global change scenario of a 2 to 4°C increase in mean annual temperature and increased summer rainfall in the Mojave desert would be expected to produce similar conditions in the Mojave Desert to those that exist in the Succulent Karoo today. Assuming no genetic constraints on phenotypic plasticity, this would suggest increased species diversity and a decline in structural diversity in the Mojave Desert over evolutionary time. Increased summer rainfall in the Succulent Karoo would be expected to lead to invasions of grasses and thus increased competitive pressure reducing community diversity.  相似文献   

13.
1. The larger lakes of the English Lake District have been the subject of intensive scientific study for more than 60 years. Year‐to‐year variations in the weather have recently been shown to have a major effect on their physical characteristics. The area is mild but very wet and the dynamics of the lakes are strongly influenced by the movement of weather systems across the Atlantic. 2. Here, we combine the results of long‐term measurements and the projections from a Regional Climate Model (RCM) to assess the potential impact of climate change on the surface temperature and residence times of the lakes. 3. The RCM outputs used were produced by the U.K. Hadley Centre and are based on the IPCC ‘A2’ scenario for the emission of greenhouse gases. These suggest that winters in the area will be very much milder and wetter by the 2050s and that there will be a pronounced reduction in the summer rainfall. 4. An analysis of the meteorological data acquired between 1940 and 2000 shows that there have been progressive increases in the winter air temperature and in the rainfall which are correlated with the long‐term change in the North Atlantic Oscillation. The trends reported during the summer were less pronounced and were correlated with the increased frequency of anticyclonic days and a decrease in the frequency of westerly days in the British Isles. 5. A simple model of the year‐to‐year variations in surface temperatures showed that the highest winter temperatures were recorded in the deeper lakes and the highest summer temperatures in the lakes with the shallowest thermoclines. When this model was used to predict the surface temperatures of the lakes in the 2050s, the greatest winter increase (+1.08 °C) was observed in the shallowest lake and the greatest summer increase (+2.18 °C) in the lake with the shallowest thermocline. 6. The model used to estimate the seasonal variation in the residence time of the lakes showed that the most pronounced variations were recorded in lakes with a short residence time. Average winter residence times ranged from a minimum of 10 days to a maximum of 436 days and average summer values from a minimum of 23 days to a maximum of 215 days. When this model was used to predict the residence time of the lakes in the 2050s, the greatest winter decrease (−20%) was observed in the smallest lake and the greatest summer increase (+92%) in the lake with the shortest residence time. 7. The results are discussed in relation to trends reported elsewhere in Europe and the impact of changes in the atmospheric circulation on the dynamics of the lakes. The most serious limnological effects were those projected for the summer and included a general increase in the stability of the lakes and a decrease in the flushing rate of the lakes with short residence times.  相似文献   

14.
Burrow architecture enhances important animal functions such as food storage, predator avoidance, and thermoregulation. Occupants may be able to maximize fitness by remodeling burrows in response to seasonal changes in climate and predation risk. My objective was to examine how banner‐tailed kangaroo rats (Dipodomys spectabilis) modify the number of burrow entrances in response to seasonal conditions. For 3 yr, I monitored fluctuations in number of burrow entrances in kangaroo rat mounds. Individual kangaroo rats continually remodeled mounds in response to seasonal conditions. Compared to summer, mounds in winter had approximately 50% fewer entrances and plugged entrances were common. Monthly differences in number of entrances were closely linked with seasonal changes in soil temperature and precipitation. Number of entrances decreased as soil temperature and precipitation declined. Changes in burrow entrances likely reflect seasonal differences in the relative importance of burrow functions. Fewer burrow entrances during winter would create a warmer microclimate by reducing convective heat loss in mounds, resulting in thermoregulatory savings for occupants. During the summer, thermoregulatory costs of kangaroo rats are low, but risk of seed cache spoilage and predation from snakes increases. Adding burrow entrances after large summer rainfall events would increase the evaporation rate within mounds, reducing spoilage of seed caches. More burrow entrances would also reduce predation risk in the summer by providing additional escape routes.  相似文献   

15.
Based on observational data and Asian monsoon intensity datasets from China, the relationships between the East Asian winter monsoon index and winter temperature, the East Asian summer monsoon index and Meiyu precipitation over the middle and lower reaches of the Yangtze River, were analyzed. We found that the monsoon signals were reflected in the temperature and Meiyu precipitation variations. Thus, we used the reconstructed Meiyu precipitation and winter temperature series for the past 300 years and detected the summer/winter monsoon intensity signals using multi-taper spectral estimation method and wavelet analysis. The main periodicities of Meiyu precipitation and winter temperature, such as interannual cycle with 2–7-year, interdecadal-centennial cycles with 30–40-year and 50–100-year, were found. The good relationships between the East Asian summer and winter monsoons suggested that they were in phase at 31-year cycle, while out of phase at 100-year cycle, but with 20-year phase difference. In addition, the winter monsoon intensity may be regulated by the North Atlantic Oscillation, the Arctic Oscillation and the Atlantic Multidecadal Oscillation, and the summer monsoon is closely related to the signal intensities of the Pacific Decadal Oscillation.  相似文献   

16.
On the subtropical and tropical wintering grounds of migratory birds, variation in moisture levels and habitat can influence the availability of food resources and subsequently impact overwintering birds. Using stable carbon isotopes in blood samples as a measure of moisture, we assessed the interactive effects of rainfall, vegetation, and moisture on the demographics and condition of Prairie Warblers (Setophaga discolor) wintering in The Bahamas. Carbon isotopes in Prairie Warbler blood were more depleted in taller, wetter habitats; we additionally detected novel temporal effects of rainfall on isotope values. During a winter with more rainfall, most birds maintained mass and pectoral muscle regardless of the habitat type occupied. In a winter with less rainfall, birds lost mass and pectoral muscle, and this effect was more pronounced in birds with enriched isotope values and birds that occupied drier, shorter habitat. Prairie Warblers exhibited strong patterns of sexual habitat segregation with males disproportionately observed in areas with taller vegetation and females in shorter vegetation. During the drier winter, older males had better maintenance of pectoral muscle compared to females and younger individuals. Also in the drier winter, daily rainfall patterns explained more of the variation in body condition compared to the date of capture; pectoral muscle was best explained by recent precipitation (during the previous 30 days), while size‐corrected mass was more a function of longer‐term (90‐day) rainfall and habitat moisture. Our findings along with other studies suggest that Prairie Warblers and other migratory birds are sensitive to interactions between annual variation in winter rainfall, within‐season daily rainfall patterns, and habitat quality. Increasing drought and habitat loss in the Caribbean may be having a negative impact on wintering bird populations. To best conserve Nearctic–Neotropical migratory passerines in the region, we recommend prioritizing the protection of the least drought‐prone wintering areas.  相似文献   

17.
《植物生态学报》2017,41(9):972
Aims Biological soil crust (hereafter crust) affects normalized difference vegetation index (NDVI) values in arid desert ecosystems. This study aimed to demonstrate the feasibility of combining crust NDVI values with meteorological data to distinguish the crust successional stage at the regional scale. Meanwhile, the characteristics of crust NDVI could provide the basis for the error analysis of NDVI-based surface ecological parameters estimation in desert ecosystems. We also suggested the optimum periods for crust observation based on the multi-temporal remote sensing images.Methods NDVI values of five types of dominant crusts, three typical sand-fixing shrubs and bare sand were collected by spectrometer in the field. Crusts and shrubs were randomly selected in revegetated areas established in 1956, 1964, and 1973 at Shapotou, which is on the southeastern edge of the Tengger Desert. We used the space-for-time method to study the characteristics of crust NDVI values and their responses to precipitation and temperature during the succession process of artificial sand-fixing vegetation. Additionally, we evaluated the contribution of crust NDVI values to the whole ecosystem NDVI values by comparing the NDVI values of crusts, shrubs and bare sand.Important findings 1) With succession process of the artificial sand-fixing vegetation, the crust NDVI values significantly increased. Among different crust types, we found the following order of NDVI values: Didymodon vinealis crust > Bryum argenteum crust > mixed crust > lichen crust > algae crust. 2) Crust NDVI values were significantly affected by precipitation, temperature and their interaction, and the influences showed significant seasonal differences. Furthermore, we found significantly linear correlations between crust NDVI value and precipitation, and between crust NDVI value and the shallow soil moisture content covered by crust. A significantly negative linear correlation between daily mean temperature and crust NDVI value, and a significantly exponential correlation between the surface temperature of crust and its NDVI value. With the succession process of artificial sand-fixing vegetation, the response of crust NDVI value to precipitation and temperature became more sensitive. In addition, the response of crust NDVI value to temperature was more sensitive in spring than in summer, while that to precipitation was less sensitive in spring than in summer. 3) Moss crust NDVI value was significantly higher than that of shrubs and bare sand after the rainfall event in spring, while shrubs NDVI value was significantly higher than that of crust after the rainfall event in summer. Considering the coverage weights of different ground features in sand-fixing areas, crust NDVI values contributed 90.01% and 82.53% in spring and summer, respectively, to the regional NDVI values, which were higher than those of shrubs (9.99% and 17.47% in spring and in summer, respectively). Additionally, with the succession process of artificial sand-fixing vegetation, crust NDVI values contributed more, while shrubs contributed less to regional NDVI values.  相似文献   

18.
森林降水酸度及电导率的时空变化   总被引:4,自引:0,他引:4       下载免费PDF全文
在离大气污染源距离不同的两片杉木(Cunninghamia lanceolata)人工林中建立监测场,对降水化学进行了为期3年(1994~1996)的定位监测。降水通过林冠截留后,其酸度和电导率均明显增加,尤以树干径流为显著。在 FFC监测场,降雨、穿透雨和树干径流雨量加权平均pH值分别为6.13、6.06和4.18,在XQF监测场,其相应的数值分别为5.86、5.67和3.37;降雨和穿透雨的酸度表现出一定的季节变化动态,其最低月均pH值出现在夏委,最高值在冬季。在FFC监测场,降雨、穿透雨和树干径流雨量加权平均EC值分别为28.51μs·cm-1、63.71μs·cm-1、240.85μs·cm-1,在XQF监测场,其相应的数值分别为36.99μs·cm-1、66.41μs·cm-1、501.85μs·cm-1:降水电导率表现出显著一致的季节变化格局,其月均值均以夏季最低,冬季最高,春秋季居中,这种格局强烈受降雨量的影响。离污染源较近的XQF监测场,降水酸度和电导率明显高于相对未受污染的FFC监测场。  相似文献   

19.
Influence of precipitation seasonality on piñon pine cellulose δD values   总被引:1,自引:0,他引:1  
The influence of seasonal to interannual climate variations on cellulose hydrogen isotopic composition (δD) was assessed by analysing tree rings and needles of piñon pine (Pinus edulis and P. monophylla). Sites spanned a gradient of decreasing summer precipitation, from New Mexico to Arizona to Nevada. Tree rings were divided into earlywood, latewood and whole‐year increments, and annual cohorts of needles were collected. The study period (1989–96) included two La Niña events (1989, 1996) and a prolonged El Niño event (1991–95). Winter and spring moisture conditions were strongly related to October–March Southern Oscillation Index (SOI) in New Mexico and Arizona, with above‐average precipitation occurring in El Niño years. Wood δD values at these sites were correlated with winter and spring moisture conditions. Needle δD values were correlated with summer moisture conditions in New Mexico and with winter moisture and SOI in Arizona. Low cellulose δD values observed from 1991 to 1993 in both wood and needles occurred during wet El Niño years, whereas high δD values in needles were present during the dry, La Niña years of 1989 and 1996. North‐eastern Nevada does not receive precipitation anomalies related to ENSO, and thus cellulose δD values did not reflect the ENSO pattern observed at the other sites. Cellulose δD values were strongly, inversely correlated with relative humidity variations at all sites, as predicted by a mechanistic model. Contrary to predictions from the same model and observations from more mesic areas, time series of cellulose δD values were not directly correlated with interannual or seasonal variations in precipitation δD values or temperature at any of the sites. On a regional basis, however, mean δD values in needles and wood were correlated with mean annual temperature and δD values of precipitation. This suggests that temporal averaging may bias relationships between biological systems and climate.  相似文献   

20.
Climate change is expected to impact the amount and distribution of precipitation in the arid southwestern United States. In addition, nitrogen (N) deposition is increasing in these regions due to increased urbanization. Responses of belowground plant activity to increases in soil water content and N have shown inconsistent patterns between biomes. In arid lands, plant productivity is limited by water and N availability so it is expected that changes in these factors will affect fine root dynamics. The objectives of this study were to quantify the effects of increased summer precipitation and N deposition on fine root dynamics in a Mojave Desert ecosystem during a 2‐year field experiment using minirhizotron measurements. Root length density, production, and mortality were measured in field plots in the Mojave Desert receiving three 25 mm summer rain events and/or 40 kg N ha?1 yr?1. Increased summer precipitation and N additions did not have an overall significant effect on any of the measured root parameters. However, differences in winter precipitation resulting from interannual variability in rainfall appeared to affect root parameters with root production and turnover increasing following a wet winter most likely due to stimulation of annual grasses. In addition, roots were distributed more deeply in the soil following the wet winter. Root length density was initially higher under canopies compared to canopy interspaces, but converged toward the end of the study. In addition, roots tended to be distributed more deeply into the soil in canopy interspace areas. Results from this study indicated that increased summer precipitation and N deposition in response to climate change and urbanization are not likely to affect fine root dynamics in these Mojave Desert ecosystems, despite studies showing aboveground plant physiological responses to these environmental perturbations. However, changes in the amount and possibly distribution of winter precipitation may affect fine root dynamics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号