首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Hemolymph circulation in mosquitoes is primarily controlled by the contractile action of a dorsal vessel that runs underneath the dorsal midline and is subdivided into a thoracic aorta and an abdominal heart. Wave-like peristaltic contractions of the heart alternate in propelling hemolymph in anterograde and retrograde directions, where it empties into the hemocoel at the terminal ends of the insect. During our analyses of hemolymph propulsion in Anopheles gambiae, we observed periodic ventral abdominal contractions and hypothesized that they promote extracardiac hemolymph circulation in the abdominal hemocoel.

Methodology/Principal Findings

We devised methods to simultaneously analyze both heart and abdominal contractions, as well as to measure hemolymph flow in the abdominal hemocoel. Qualitative and quantitative analyses revealed that ventral abdominal contractions occur as series of bursts that propagate in the retrograde direction. Periods of ventral abdominal contraction begin only during periods of anterograde heart contraction and end immediately following a heartbeat directional reversal, suggesting that ventral abdominal contractions function to propel extracardiac hemolymph in the retrograde direction. To test this functional role, fluorescent microspheres were intrathoracically injected and their trajectory tracked throughout the hemocoel. Quantitative measurements of microsphere movement in extracardiac regions of the abdominal cavity showed that during periods of abdominal contractions hemolymph flows in dorsal and retrograde directions at a higher velocity and with greater acceleration than during periods of abdominal rest. Histochemical staining of the abdominal musculature then revealed that ventral abdominal contractions result from the contraction of intrasegmental lateral muscle fibers, intersegmental ventral muscle bands, and the ventral transverse muscles that form the ventral diaphragm.

Conclusions/Significance

These data show that abdominal contractions potentiate extracardiac retrograde hemolymph propulsion in the abdominal hemocoel during periods of anterograde heart flow.  相似文献   

2.
卢筝 《昆虫学报》1989,32(2):170-175
本文对小地老虎Agrotis ypsilon 成虫循环系统的形态作了初步研究,表明背血管由6个心室的心脏和倒V形的胸部大血管及头部分支的大血管组成.中胸辅搏动器很发达,与大血管的腔直接相连,具有一个小盾片腔前半部的肌肉搏动膜.后胸辅搏动器很小,与背血管无直接通道,具有一个没有肌肉的搏动膜.腹膈显著,具有翼肌.还描述了心脏和辅搏动器的搏动情形.  相似文献   

3.
Anatomy of dorsal mesothoracic structures, such as muscles, sensory organs, and innervation, was studied in the silkworm, Bombyx mori L. (Lepidoptera : Bombycidae), and compared with the adult wing motor system. Musculature and nerve innervation were investigated by dissection and electron micrograph; and central projection of sensory fibers and morphology of somata and dendrites of motor neurons by cobalt back-filling, followed by silver intensification. There are 23 muscle bundles (DLM) and 2 stretch receptors (SR). The DLMs, SRs, and epidermis are innervated by a branch of the dorsal nerve trunk emerging from the mesothoracic ganglion (MSG). The branch bifurcates into a dorsal sensory branch of about 300 sensory fibers and a dorsal motor branch of 14 fibers. The sensory fibers project mainly to a longitudinal portion near the mid line in the ventral neuropil of MSG and the metathoracic ganglion. Several fibers extend into the prothoracic ganglion (PG) and a few into the subesophageal and 1st abdominal ganglia. At least 13 (probably 14) motor neurons send axons to DLMs: 9 (probably 10) in PG, and 4 in MSG. Their dendrites are located mostly on the dorsoipsilateral side of the neuropil, but several branches cross the mid line and give rise to many fine branches on the contralateral side. Comparison between the larval (present study) and adult motor system shows a significant similarity in the musculature, peripheral nerve pattern, and motor neurons with some peculiarities.  相似文献   

4.
5.
Farley RD 《Tissue & cell》1990,22(4):547-569
Injections of dye, latex and India ink were used to reveal the path of hemolymph circulation through the scorpion booklungs. Fine, branched arteries carry blood directly to muscle and other organs. The blood returns through venous channels to the ventral mesosoma where it passes laterally through the booklungs and into the pneumocardial veins just beneath the pleural cuticle. Blood flows dorsally through these veins to the pericardial sinus and heart. The scorpion has four pairs of booklungs located in the anterior segments of the ventral mesosoma. Each booklung has a spiracle which opens into an atrium enclosed by cuticular membrane. Air passes from the atrium into the booklung lamellae. Agitation of the animal or application of CO(2) causes retraction of the anterior and posterior atrial membrane. This expands the atrial chamber and allows gas exchange in the booklung lamellae. The posterior atrial membrane has a specialized region which forms a springy valve. This normally closes the spiracle unless pulled open by contraction of the attached poststigmaticus muscle. The pectens and receptors within the atrium may mediate the responses to CO(2). Slender hypocardial ligaments containing muscle fibers extend from the heart (dorsal mesosoma) to the booklungs in the ventral mesosoma. Heart movements thus cause dorso-ventral movement of the booklungs. The significance of these movements is as yet unclear. They may increase ventilation, help force blood to the heart and/or agitate the blood and booklung lamellae and thereby aid gas exchange. Passage of blood through the booklungs is regulated by dorsal and ventral muscles attached to the atrium at the lateral edge of the booklung. Contraction of the ventral atrial muscle closes the excurrent channel for passage of blood from the booklung into the pneumocardial vein. Electrical stimulation of the segmentai nerves from the subesophageal and first three abdominal ganglia causes spiracle opening and contraction of muscles attached to the atrial membrane. A previous study showed that these same segmental nerves also modulate heart activity. They thus provide a major pathway for regulation of the respiratory and circulatory systems.  相似文献   

6.
The effects of homeotic mutations on transdetermination in eye-antenna imaginal discs of Drosophila melanogaster were studied. After 12 days of culture in vivo, antenna discs transformed to ventral mesothorax by AntpNs or AntpZ, transdetermined to notum and wing structures four to five times more frequently than the corresponding wild-type antenna discs. Likewise, eye discs transformed to dorsal mesothorax by eyopt transdetermined to leg structures, also extremely frequently (90%). It seems that, during culture, homeotic antenna as well as homeotic eye discs tend to complete the structural inventory of the mesothoracic segment. Transdetermination in the homeotic disc parts is interpreted as a regeneration process which reestablishes an entire segment, i.e., the ventral mesothoracic portion (leg) in the antenna disc regenerates dorsal mesothoracic parts, and the dorsal mesothoracic portion in the eye disc (wing) regenerates ventral mesothoracic parts, respectively. This implies that antenna and leg discs (ventral qualities) as well as eye and wing discs (dorsal qualities) are serially homologous. The transdetermination frequency of the untransformed eye disc to notum and wing structures is enhanced by Antp to the same extent as is the transdetermination frequency of the antenna disc. The first allotypic wing disc structure formed by the eye disc is notum, followed by structures of the anterior wing compartment and finally by posterior wing structures. No evidence for such a sequence was found in the transdetermination pattern of the antenna disc.  相似文献   

7.
The accessory pulsatile organs for hemolymph circulation in the wings of 7 Mecoptera species were investigated by means of serial semi-thin sections, SEM and TEM. The wing-hearts are located in the dorsal meso- and metathorax, and have no connection to the aorta. Each wing-heart consists of a small hemolymph chamber formed above by the convex scutellum, and below by a horizontal muscular diaphragm. The chamber is connected to the posterior wing veins by a cuticular tube on each side of the body. The diaphragm (10–15 μm thick) is convex in cross-section and consists of transversely extended muscle fibers. Their ultrastructure reveals typical characters of myocardial and other visceral muscle fibers. The diaphragm muscle is innervated by a pair of thin nerves originating from the thoracic ganglion of each corresponding segment. The diaphragm is held in a convex position by numerous elastic strands (2 μm in diameter), which extend through the wing-heart lumen between the scutellum and the diaphragm. The diastolic phase of the wing-heart is caused by contraction of the diaphragm muscle fibers. Thus, the diaphragm flattens and hemolymph is drawn from the posterior wing veins. The systolic phase is caused by the elasticity of the suspending strands after relaxation of the muscle fibers. The elastic strands pull the diaphragm back into convex position and hemolymph is expelled out of the scutellum lumen into the thorax cavity through a valvular opening on the anterior side. The hemolymph flow from the posterior wing base to the scutellum lumen, was visualized by staining the hemolymph. In Panorpa communis the volume of the wing-heart lumen measures 1.6 × 10−2 mm3 in the mesothorax, and 1.2 × 10−2 mm3 in the metathorax. Each heartbeat transports a maximum of 65% of these volumes. The pumping frequency was 78 ± 20 beats per min, registered with a non-invasive photo-optical method in restrained animals. Corresponding pulsating movements occur as a passive phenomenon of wing-heart activity in a distinct area of the wing base. Only minor differences were found in the construction of wing-hearts among the investigated species, except for Boreus hyemalis, which lacks these accessory circulatory organs. The functional morphology of the wing-hearts in Mecoptera is compared with that of other Holometabola and aspects of the evolution of these organs are discussed.  相似文献   

8.
【目的】揭示绿盲蝽Apolygus lucorum腹神经节的组成结构。【方法】采用免疫组织化学染色方法,利用突触蛋白抗体对绿盲蝽成虫的腹神经节进行免疫标记,激光共聚焦扫描显微镜扫描照相获得原始数据,用图像分析软件进行标记,构建三维结构模型。【结果】绿盲蝽成虫腹神经节位于腹神经索的末端,与其前方的后胸神经节和中胸神经节紧密融合,形成后部神经节。与脑和胸神经节类似,腹神经节由周围的细胞体和内部的神经髓构成。腹神经节的神经纤维束主要包括位于腹侧的两条纵向神经连索和向两侧发出的9束神经纤维。9束神经纤维连接着9个神经原节,即富含突触联系的神经髓。这些神经原节紧密融合,无明显的边界,最后两节形成膨大的末端腹神经节。两侧的神经原节由横向的神经连锁连接起来。腹神经节外周的细胞体数量较多,排列紧密,大小一致,仅在前端背侧中间和后端腹侧中间位置分别有2个和5个体积较大的细胞体。【结论】本研究结果明确了绿盲蝽腹神经节的结构,为进一步研究昆虫的行为调控及神经系统发育和演化奠定一定的形态学基础。  相似文献   

9.
The central projections of trichoid hairs and of some scolopidial organs of the mesothoracic leg of the locust Schistocerca gregaria were studied by using nickel chloride backfilling and single cell recording. Trichoid hair sensilla on different parts of the legs project somatotopically in the ventral part of the ipsilateral neuropile of the mesothoracic ganglion. Generally, distally located receptors have their terminal arborizations in ventro-lateral areas of the neuropile, and proximally located receptors in ventro-medial areas. The axons of the subgenual organ and tarsal chordotonal organs project into the intermediate neuropile.  相似文献   

10.
In vivo regional diaphragm function in dogs   总被引:4,自引:0,他引:4  
A biplane videofluorographic system was used to track the position of metallic markers affixed to the abdominal surface of the left hemidiaphragm in supine anesthetized dogs. Regional shortening was determined from intermarker distances of rows of markers placed along muscle bundles in the ventral, middle, and dorsal regions of the costal diaphragm and of one row on the crural diaphragm. Considerable variability of regional shortening was seen in a given row, which was reproducible on repeat study in individual dogs but which differed between mechanical ventilation and spontaneous breathing. There were no consistent patterns among dogs. Regional shortening obtained from the change in length of rows extending from chest wall to central tendon showed no consistent differences among dogs during spontaneous breathing. At equal tidal volumes, all regions (except the ventral costal diaphragm) shortened more during spontaneous breathing than during mechanical ventilation.  相似文献   

11.
The circulatory organs in the legs of 32 heteropteran and 2 homopteran species were investigated by means of semithin serial sections. In all species, the leg hemocoel is divided by a thin diaphragm into 2 counter-rotating blood sinuses. This diaphragm twists about an angle of 90° immediately distal to the femoral-tibial joint, thereby forming a kind of chamber that is equipped with a valve flap. Apart from the investigated representatives of the Gerromorpha, a muscle is associated with this chamber. Rhythmic contractions of this muscle compress one sinus, thereby forcing hemolymph from the leg into the thorax. Simultaneously, the other sinus widens and hemolymph is sucked from the thorax into the leg. The “leg heart” muscle generally originates from the anteriodorsal wall of the tibia. Its point of insertion varies between different species. In most of the investigated Hemiptera, this muscle inserts at the tendon of the pretarsal flexor muscle. In others, both attachments are located at the tibial cuticle. This peculiarity and other anatomical facts indicate that in the evolution of these organs in the Hemiptera, one portion of the pretarsal flexor muscle has been recruited for the formation of the leg heart.  相似文献   

12.
This paper describes the aggregation in vitro of cells dissociated from imaginal discs and demonstrates the sorting out of undifferentiated cells from different imaginal discs and from differently determined regions of the same imaginal disc, as well as the abilities of such cells to undergo pattern reconstruction when injected into larvae. Dissociated cells begin to aggregate by 1.5 hr of rotation. By 5 hr of rotation, large aggregates of loosely associated cells appear. By 18 hr the aggregates have condensed and taken on a characteristic epithelial structure. To study sorting out in undifferentiated cells, we combined a histochemical stain for acid phosphatase with the use of the acid phosphatase null mutant acphn-11. We performed cell mixing experiments with 0-2 (prospective notum) and 2-8 (prospective wing) fragments, with the A and P (prospective anterior and posterior) fragments of the dorsal mesothoracic disc and with mixtures of cells from ventral prothoracic and dorsal mesothoracic discs. We found that prospective anterior and posterior dorsal mesothoracic cells do not sort out, but that prospective notum and wing and leg and wing cells do. The results from differentiated implants are consistent with those from undifferentiated mixes.  相似文献   

13.
Ejaz A  Lange AB 《Peptides》2008,29(2):214-225
The dorsal vessel of the Vietnamese stick insect, Baculum extradentatum, consists of a tubular heart and an aorta that extends anteriorly into the head. Alary muscles, associated with the heart, are anchored to the body wall with attachments to the dorsal diaphragm. Alary muscle contraction draws haemolymph into the heart through incurrent ostia. Excurrent ostia lie on the dorsal vessel in the last thoracic and in each of the first two abdominal segments. Muscle fibers are associated with these excurrent ostia. Crustacean cardioactive peptide (CCAP)- and proctolin-like immunoreactivity is present in axons of the segmental nerves that project to the dorsal vessel, and in processes extending over the heart and alary muscles. Proctolin-like immunoreactive processes are also localized to the valves of the incurrent ostia and to the excurrent ostia. Neither the link nerve neurons, nor the lateral cardiac neurons, stain positively for these peptides. Physiological assays reveal dose-dependent increases in heart beat frequency in response to CCAP and proctolin. Isolating the dorsal vessel from the ventral nerve cord led to a change in the pattern of heart contractions, from a tonic, stable heart beat, to one which was phasic. The tonic nature was restored by the application of CCAP.  相似文献   

14.
When insects turn from walking straight, their legs have to follow different motor patterns. In order to examine such pattern change precisely, we stimulated single antenna of an insect, thereby initiating its turning behavior, tethered over a lightly oiled glass plate. The resulting behavior included asymmetrical movements of prothoracic and mesothoracic legs. The mesothoracic leg on the inside of the turn (in the apparent direction of turning) extended the coxa-trochanter and femur-tibia joints during swing rather than during stance as in walking, while the outside mesothoracic leg kept a slow walking pattern. Electromyograms in mesothoracic legs revealed consistent changes in the motor neuron activity controlling extension of the coxa-trochanter and femur-tibia joints. In tethered walking, depressor trochanter activity consistently preceded slow extensor tibia activity. This pattern was reversed in the inside mesothoracic leg during turning. Also for turning, extensor and depressor motor neurons of the inside legs were activated in swing phase instead of stance. Turning was also examined in free ranging animals. Although more variable, some trials resembled the pattern generated by tethered animals. The distinct inter-joint and inter-leg coordination between tethered turning and walking, therefore, provides a good model to further study the neural control of changing locomotion patterns.  相似文献   

15.
记述采自中国陕甘南部的钩瓣叶蜂属2新种,杨氏钩瓣叶蜂Macrophya yangi Wei et Zhu,sp.nov.和晕翅钩瓣叶蜂Macrophya infuscipennis Wei et Li,sp.nov.。新种模式标本保存于中南林业科技大学昆虫模式标本室。  相似文献   

16.
Females of the ants belonging to the queenless genus Diacamma have a pair of unique tiny thoracic appendages, called "gemmae," located on the mesothoracic segment. They are covered with sensory hairs, filled with exocrine glands and are involved in the behavioral regulation of reproduction. We report here a morphological, developmental, and genetic study of the development of the gemmae. Both male and female larvae have dorsal mesothoracic discs, although differing in shape and fate. In Diacamma ceylonense, we show that, contrary to butterflies, these discs specify parts of the adult thorax in addition to wing tissues, as in Drosophila. We have cloned and studied the expression of wingless (wg) and scalloped (sd), two genes known to play a critical role in wing morphogenesis in Drosophila. In the fly's mesothoracic dorsal disc, sd is specifically expressed in the wing pouch. In Diacamma, we show that sd is also expressed in male dorsal thoracic discs, whereas its expression was undetectable in females. From this result and observations of shape and growth of cultured isolated discs, we suggest that gemmae originate from a more ventral part of the dorsal disc than the wing pouch and discuss the pro and cons of gemma/wing homology.  相似文献   

17.
Insects can be grouped into mainly two categories, holometabolous and hemimetabolous, according to the extent of their morphological change during metamorphosis. The three thoracic legs, for example, are known to develop through two overtly different pathways: holometabolous insects make legs through their imaginal discs, while hemimetabolous legs develop from their leg buds. Thus, how the molecular mechanisms of leg development differ from each other is an intriguing question. In the holometabolous long-germ insect, these mechanisms have been extensively studied using Drosophila melanogaster. However, little is known about the mechanism in the hemimetabolous insect. Thus, we studied leg development of the hemimetabolous short-germ insect, Gryllus bimaculatus (cricket), focusing on expression patterns of the three key signaling molecules, hedgehog (hh), wingless (wg) and decapentaplegic (dpp), which are essential during leg development in Drosophila. In Gryllus embryos, expression of hh is restricted in the posterior half of each leg bud, while dpp and wg are expressed in the dorsal and ventral sides of its anteroposterior (A/P) boundary, respectively. Their expression patterns are essentially comparable with those of the three genes in Drosophila leg imaginal discs, suggesting the existence of the common mechanism for leg pattern formation. However, we found that expression pattern of dpp was significantly divergent among Gryllus, Schistocerca (grasshopper) and Drosophila embryos, while expression patterns of hh and wg are conserved. Furthermore, the divergence was found between the pro/mesothoracic and metathoracic Gryllus leg buds. These observations imply that the divergence in the dpp expression pattern may correlate with diversity of leg morphology.  相似文献   

18.
Separation of the imaginal and larval developmental pathways in Drosophila occurs early in embryogenesis, resulting in the formation of imaginal discs and abdominal histoblast nests along the larval body wall. The dorsal and ventral histoblast nests within the first abdominal (A1) segment are shown not to be segmentally homologous with the metathoracic (T3) haltere and leg discs, respectively, since they occur at distinct dorso-ventral locations during normal development and can be found together within the same segment in mutants of the Bithorax complex (BX-C) where T3 is transformed towards A2-A4 or A1 towards T3. Several patterning abnormalities are also observed in BX-C mutants. A ventral shift in the A1 ventral nest occurs in partially transformed larvae harboring weak bithoraxoid (bxd) mutations; in more fully transformed larvae (Ubx1/Df) both the anterior dorsal and ventral nests are lost and instead a dorsal and ventral disc bud are formed. Dorso-ventral inversions in the pattern of the ventral nest occur in a random fashion throughout A1-A7 in response to an increase or decrease in the gene dosage of the BX-C. In gain-of-function mutants anterior dorsal histoblast cells form in the homologous anterior as well as the nonhomologous posterior portion of T3. Based on these and other findings it appears that the Ultrabithorax (Ubx) locus (and possibly abdominal-A and Abdominal-B) is required to steer ectodermal cells toward an imaginal histoblast rather than a larval cell fate at specific regions within the first abdominal segment.  相似文献   

19.
The circulatory systems of Campodea augens and Catajapyx aquilonaris (Hexapoda: Diplura) have been examined by means of light and electron microscopy. Hemolymph flow has also been investigated in vivo. Both species share features that deviate conspicuously from the common textbook design of the insect circulatory system: (i) antennal vessels connected to the anterior end of the dorsal vessel; (ii) presence of a circumoesophageal vessel ring in the head; (iii) a bidirectional flow within the dorsal vessel, made possible by intracardiac valves; (iv) posterior end of the dorsal vessel tube opens into a caudal chamber connected to cercal vessels (in Campodea) or to cercal channels (in Catajapyx); (v) dorsal diaphragm barely realized, ventral diaphragm absent altogether, and (vi) legs without specific organs serving hemolymph circulation. Comparative analysis has revealed that these characters in Diplura represent the most plesiomorphic condition in the circulatory organs of all extant Hexapoda. In the basic evolutionary lineages of insects, some organ components have been lost and the peripheral vessels decoupled from the dorsal vessel; as a result, autonomous accessory pulsatile organs have evolved to supply hemolymph to long body appendages and a unidirectional hemolymph flow mode prevailed within the dorsal vessel.  相似文献   

20.
Using a monoclonal antibody and image-processing procedures, the patterns of expression of the Ultrabithorax (Ubx) gene product have been characterized in Drosophila larvae. As reported previously, the metathoracic imaginal discs stain most intensely with anti-Ubx, with some mesothoracic and no prothoracic expression detectable. In the metathoracic discs, the greatest modulation in anti-Ubx staining is along the proximodistal axis. Ubx is generally expressed at higher levels in the posterior regions of metathoracic discs, although relatively high anterior expression is found in some areas. Expression in the mature wing disc is confined to the squamous peripodial membrane cells; in younger wings, Ubx expression fills the posterior half of the peripodial side of the disc. The mesothoracic leg stains with a pattern that is qualitatively similar (but not identical) to that of the metathoracic leg; Ubx is expressed in some anterior regions of the mesothoracic leg, in parasegment 4. Double staining with anti-Ubx and anti-engrailed reveals that discontinuities in Ubx expression that have been suggested to correspond to compartment borders do not coincide with the compartment boundaries in some cases. In the larval ventral ganglion, Ubx expression is greatest in parasegments 5 and 6, as in the embryonic nervous system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号