首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The bacterial polyester poly-β-hydroxybutyrate (PHB) was quantified and characterized on an isolate␣of the nitrogen-fixing bacteria Azotobacter chroococcum 6B on the basis of its average molecular mass, determined from the relative viscosity at different aeration rates and carbon/nitrogen ratios during culture in fermentors. A higher value for the molecular mass (1100 kDa) was obtained with the lower aeration rates investigated, which diminished, significantly at the highest aeration rate of 2.5 vvm (a 100-fold decrease). The yield of PHB relative to the amount of glucose consumed increased with the C/N ratio (a maximum of 0.16 g PHB/g glucose consumed with a carbon/nitrogen ratio of 137.7), but the molecular mass was lowered from 800 kDa to nearly 100 kDa. The maximum PHB content was 63.5% (on a cellular dry-weight basis) after 47 h in fed-batch culture with an initial C/N ratio of 68.9 and aeration at a rate of 0.5 vvm. Calorimetric measurements on the isolated PHB showed a melting point near 175 °C. Received: 25 June 1997 / Accepted: 2 July 1997  相似文献   

2.
1. The enzymes beta-ketothiolase, acetoacetyl-CoA reductase, acetoacetate-succinate CoA-transferase (;thiophorase') and d(-)-3-hydroxybutyrate dehydrogenase have been partially purified from crude extracts of glucose-grown nitrogen-fixing batch cultures of Azotobacter beijerinckii. The condensation of acetyl-CoA to acetoacetyl-CoA catalysed by beta-ketothiolase is inhibited by CoASH, and the reverse reaction is inhibited by acetoacetyl-CoA. Acetoacetyl-CoA reductase has K(m) for acetoacetyl-CoA of 1.8mum and is inhibited by acetoacetyl-CoA above 10mum. The enzyme utilizes either NADH or NADPH as electron donor. The second enzyme of poly-beta-hydroxybutyrate degradation, d(-)-3-hydroxybutyrate dehydrogenase, is NAD(+)-specific and is inhibited by NADH, pyruvate and alpha-oxoglutarate. CoA transferase is inhibited by acetoacetate, the product of hydroxybutyrate oxidation. In continuous cultures poly-beta-hydroxybutyrate biosynthesis ceased on relaxation of oxygen-limitation and the rates in situ of oxygen consumption and carbon dioxide evolution of such cultures increased without a concomitant increase in glucose uptake. 2. On the basis of these and other findings a cyclic mechanism for the biosynthesis and degradation of poly-beta-hydroxybutyrate is proposed, together with a regulatory scheme suggesting that poly-beta-hydroxybutyrate metabolism is controlled by the redox state of the cell and the availability of CoASH, pyruvate and alpha-oxoglutarate. beta-Ketothiolase plays a key role in the regulatory process. Similarities to the pathways of poly-beta-hydroxybutyrate biosynthesis and degradation in Hydrogenomonas are discussed.  相似文献   

3.
Summary Vigorously aerated batch cultures of Azotobacter vinelandii UWD formed < 1 g poly--hydroxybutyrate (PHB)/l in media containing pure sugars and 3 g PHB/l in media containing cane molasses, corn syrup or malt extract. However, > 7 g PHB/l was formed when the medium contained 5% beet molasses. Increased yields of PHB were promoted in the media containing pure or unrefined sugars by the addition of complex nitrogen sources. The greatest effect was obtained with 0.05–0.2% fish peptone (FP), proteose peptone no. 3 or yeast extract. Peptones caused a 1.6-fold increase in residual non-PHB biomass and up to a 25-fold increase in PHB content. Hence the increased PHB formation was not simply due to stimulation of culture growth. The amount of PHB per cell protein formed by UWD in media containing FP was greatest in glucose = corn syrup > malt extract > sucrose = fructose = cane molasses > maltose, as carbon sources. The addition of FP to medium containing beet molasses did not stimulate PHB yield. The peptone effect was most significant in well-aerated cultures, which were fixed nitrogen and consuming glucose at a high rate. An explanation for the peptone effect on PHB yield stimulation is proposed.  相似文献   

4.
Ruan YJ  Zhu L  Xu XY 《Bioresource technology》2011,102(16):7599-7602
The bio-flocs technology (BFT) was applied in the sequencing batch reactor (SBR) to treat aquaculture wastewater for flocs poly-β-hydroxybutyrate (PHB) accumulation with alternant anaerobic and aerobic conditions. The statistical modeling approach was used to evaluate system performance and to optimize the flocs PHB yield at batch mode. The results show that all variables have significant impact on the response objective, as well as the interactions of the C/N ratio with the flocs biomass concentration (VSS) and anaerobic time, respectively. By process optimization, approximately 150-200 PHB/VSS (mg·g) of flocs PHB yield was achieved in the range of 4-7 g/l of flocs biomass concentration, 15-18 of the C/N ratio and 50-85 min of anaerobic time in the BFT systems. The results demonstrated that a suitable flocs PHB yield can be obtained via optimizing the ex-situ operating strategy, which have potential prebiotic value and practical implication for the sustainable aquaculture.  相似文献   

5.
Azotobacter beijerinckii was grown in ammonia-free glucose-mineral salts media in batch culture and in chemostat cultures limited by the supply of glucose, oxygen or molecular nitrogen. In batch culture poly-beta-hydroxybutyrate was formed towards the end of exponential growth and accumulated to about 74% of the cell dry weight. In chemostat cultures little poly-beta-hydroxybutyrate accumulated in organisms that were nitrogen-limited, but when oxygen limited a much increased yield of cells per mol of glucose was observed, and the organisms contained up to 50% of their dry weight of poly-beta-hydroxybutyrate. In carbon-limited cultures (D, the dilution rate,=0.035-0.240h(-1)), the growth yield ranged from 13.1 to 19.8g/mol of glucose and the poly-beta-hydroxybutyrate content did not exceed 3.0% of the dry weight. In oxygen-limited cultures (D=0.049-0.252h(-1)) the growth yield ranged from 48.4 to 70.1g/mol of glucose and the poly-beta-hydroxybutyrate content was between 19.6 and 44.6% of dry weight. In nitrogen-limited cultures (D=0.053-0.255h(-1)) the growth yield ranged from 7.45 to 19.9g/mol of glucose and the poly-beta-hydroxybutyrate content was less than 1.5% of dry weight. The sudden imposition of oxygen limitation on a nitrogen-limited chemostat culture produced a rapid increase in poly-beta-hydroxybutyrate content and cell yield. Determinations on chemostat cultures revealed that during oxygen-limited steady states (D=0.1h(-1)) the oxygen uptake decreased to 100mul h(-1) per mg dry wt. compared with 675 for a glucose-limited culture (D=0.1h(-1)). Nitrogen-limited cultures had CO(2) production values in situ ranging from 660 to 1055mul h(-1) per mg dry wt. at growth rates of 0.053-0.234h(-1) and carbon-limited cultures exhibited a variation of CO(2) production between 185 and 1328mul h(-1) per mg dry wt. at growth rates between 0.035 and 0.240h(-1). These findings are discussed in relation to poly-beta-hydroxybutyrate formation, growth efficiency and growth yield during growth on glucose. We suggest that poly-beta-hydroxybutyrate is produced in response to oxygen limitation and represents not only a store of carbon and energy but also an electron sink into which excess of reducing power can be channelled.  相似文献   

6.
Poly-β-hydroxybutyrate (PHB) is an amphiphilic lipid that has been found to be a ubiquitous component of the cellular membranes of bacteria, plants and animals. The distribution of PHB in human plasma was investigated using chemical and immunological methods. PHB concentrations proved highly variable; in a random group of 24 blood donors, total plasma PHB ranged from 0.60 to 18.2 mg/l, with a mean of 3.5 mg/l. In plasma separated by density gradient ultracentrifugation, lipoproteins carried 20–30% of total plasma PHB; 6–14% in the very low density lipoproteins (VLDL), 8–16% in the low density lipoproteins (LDL), and < 3% in the high density lipoproteins (HDL). The majority of plasma PHB (70–80%) was found in protein fractions of density > 1.22 g/ml. Western blot analysis of the high density fractions with anti-PHB F(ab')2 identified albumin as the major PHB-binding protein. The affinity of albumin for PHB was confirmed by in vitro studies which demonstrated transfer of 14C-PHB from chloroform into aqueous solutions of human and bovine serum albumins. PHB was less tightly bound to LDL than to other plasma components; the polymer could be isolated from LDL by extraction with chloroform, or by digestion with alkaline hypochlorite, but it could not similarly be recovered from VLDL or albumin. PHB in the LDL correlated positively with total plasma cholesterol and LDL cholesterol, and negatively with HDL cholesterol. The wide concentration range of PHB in plasma, its presence in VLDL and LDL and absence in HDL, coupled with its physical properties, suggest it may have important physiological effects.  相似文献   

7.
Summary Azotobacter vinelandii strain UWD formed >2 mg/ml poly--hydroxybutyrate (pHB) during exponential growth in media containing ammonium acetate and 1% w/v glucose, fructose, sucrose, or maltose, and >1.5 mg/ml with 1% w/v sodium gluconate or glycerol. After acetate exhaustion, pHB formation accompanied carbohydrate utilization and pHB rapidly accounted for 53%–70% of the cell mass. Strain UWD also formed >2 mg/ml pHB when it was grown with 2% w/v corn syrup, cane molasses, beet molasses, or malt extract. Beet molasses had a growth stimulatory effect which promoted higher yields of pHB/ml and a high ratio of pHB/protein. Malt extract also promoted higher yields of pHB/ml. In this case, pHB formation was no longer subject to acetate repression and the cells contained a higher ratio of pHB/protein. This study shows that unrefined carbon sources support pHB formation in strain UWD and that the yields of pHB were comparable to or better than those obtained with refined carbon sources.  相似文献   

8.
Influences of the control of glucose and oxygen concentrations on cell growth and poly--hydroxybutyrate (PHB) accumulation in Alcaligenes eutrophus were studied. Glucose affects both biosynthesis and glycolysis directly and the other pathways indirectly. PHB accumulation could also be stimulated under oxygen limitation conditions, but the final PHB content within the cells was less than in the case of nitrogen limitation. When the culture was shifted from the PHB accumulation state to balanced growth conditions, PHB degradation occurred in the cells. The cell growth was inhibited by high PHB content within the cells.  相似文献   

9.
Azotobacter beijerinckii possesses the enzymes of both the Entner-Doudoroff and the oxidative pentose phosphate cycle pathways of glucose catabolism and both pathways are subject to feedback inhibition by products of glucose oxidation. The allosteric glucose 6-phosphate dehydrogenase utilizes both NADP(+) and NAD(+) as electron acceptors and is inhibited by ATP, ADP, NADH and NADPH. 6-Phosphogluconate dehydrogenase (NADP-specific) is unaffected by adenosine nucleotides but is strongly inhibited by NADH and NADPH. The formation of pyruvate and glyceraldehyde 3-phosphate from 6-phosphogluconate by the action of the Entner-Doudoroff enzymes is inhibited by ATP, citrate, isocitrate and cis-aconitate. Glyceraldehyde 3-phosphate dehydrogenase is unaffected by adenosine and nicotinamide nucleotides but the enzyme is non-specific with respect to NADP and NAD. Citrate synthase is strongly inhibited by NADH and the inhibition is reversed by the addition of AMP. Isocitrate dehydrogenase, a highly active NADP-specific enzyme, is inhibited by NADPH, NADH, ATP and by high concentrations of NADP(+). These findings are discussed in relation to the massive synthesis of poly-beta-hydroxybutyrate that occurs under certain nutritional conditions. We propose that synthesis of this reserve material, to the extent of 70% of the dry weight of the organism, serves as an electron and carbon ;sink' when conditions prevail that would otherwise inhibit nitrogen fixation and growth.  相似文献   

10.
Azotobacter vinelandii ArrF is an iron-responsive small RNA that is under negative control of Ferric uptake regulator protein. A. vinelandiiarrF mutant that had a deletion of the entire arrF gene was known to overproduce poly-β-hydroxybutyrate (PHB). Proteins differentially expressed in the mutant were identified by gel-based proteomics and confirmed by real-time RT-PCR. 6-Phosphogluconolactonase and E1 component of pyruvate dehydrogenase complex, which leads to the production of NADPH and acetyl-CoA, were upregulated, while proteins in the tricarboxylic acid cycle that consumes acetyl-CoA were downregulated. Heat-shock proteins such as HSP20 and GroEL were highly overexpressed in the mutant. Antioxidant proteins such as Fe-containing superoxide dismutase (FeSOD), a putative oxidoreductase, alkyl hydroperoxide reductase, flavorprotein WrbA, and cysteine synthase were also overexpressed in the ∆arrF mutant, indicating that the PHB accumulation is stressful to the cells. Upregulated in the ∆arrF mutant were acetyl-CoA carboxylase, flagellin, and adenylate kinase, though the reasons for their overexpression are unclear. Among genes upregulated in the mutant, sodB coding for FeSOD and phbF encoding PHB synthesis regulator PhbF were negatively regulated by small RNA ArrF probably in an antisense mechanism. The deletion of arrF gene, therefore, would increase PhbF and FeSOD levels, which favors PHB synthesis in the mutant. On the other hand, glutamate synthetase, elongation factor-Tu, iron ABC transporter, and major outer membrane porin OprF were downregulated in the ∆arrF mutant. Based on the results, it is concluded that multiple factors including the direct effect of small RNA ArrF might be responsible for the PHB overproduction in the mutant.  相似文献   

11.
Accumulation of poly--hydroxybutyrate (PHB) was studied in Alcaligenes eutrophus strain N9A. Under nitrogen limitation and heterotrophic conditions, the cells accumulated PHB at a rate of 50 fg cell-1 h-1. Volume increased from 1.208 to 3.808 m3 and buoyant density from 1.110 to 1.145 pg m-3 with an increase in PHB from 0 up to 1.699 pg cell-1. Volume was found to change linearly with PHB content. The changes were due to increases in cell width and not in cell length. PHB explained 93% of the changes in cellular volume. The relationship between density and PHB was hyperbolic. PHB explained 96% of the changes in density. When a mutant strain unable to accumulate PHB was analyzed together with the wild type, the PHB-less mutant and the wild type showed densities of 1.100 pg m-3 and 1.120 pg m-3, respectively, in gradients of 65% Percoll. In sucrose gradients, nevertheless, the results were reversed. This discrepancy was explained by the high osmolarity of sucrose which gives artificial results. Thus, we conclude that Percoll is a more suitable medium than sucrose to measure the density of live bacterial cells.Abbreviation PHB poly--hydroxybutyrate  相似文献   

12.
A mixed fermentation strategy based on exponentially fed-batch cultures (EFBC) and nutrient pulses with sucrose and yeast extract was developed to achieve a high concentration of PHB by Azotobacter vinelandii OPNA, which carries a mutation on the regulatory systems PTSNtr and RsmA-RsmZ/Y, that negatively regulate the synthesis of PHB. Culture of the OPNA strain in shake flaks containing PY-sucrose medium significantly improved growth and PHB production with respect to the results obtained from the cultures with the parental strain (OP). When the OPNA strain was cultured in a batch fermentation keeping constant the DOT at 4%, the maximal growth rate (0.16 h−1) and PHB yield (0.30 gPHB gSuc−1) were reached. Later, in EFBC, the OPNA strain increased three fold the biomass and 2.2 fold the PHB concentration in relation to the values obtained from the batch cultures. Finally, using a strategy of exponential feeding coupled with nutrient pulses (with sucrose and yeast extract) the production of PHB increased 7-fold to reach a maximal PHB concentration of 27.3 ± 3.2 g L−1 at 60 h of fermentation. Overall, the use of the mutant of A. vinelandii OPNA, impaired in the PHB regulatory systems, in combination with a mixed fermentation strategy could be a feasible strategy to optimize the PHB production at industrial level.  相似文献   

13.
Summary When grown with glucose, S. discophorus synthesized large amounts of poly--hydroxybutyrate which accumulated intracellularly as sudanophilic granules. The rate of endogenous oxygen consumption by such cells was markedly increased by Mn++ and even more by Mg++. It has been shown that these inorganic ions stimulate the oxidation of the intracellular poly--hydroxybutyrate.Dedicated by the senior author to Prof. C. B. van Niel on the occasion of his 70th birthday with gratitude for many unforgettable years of association, instruction and stimulation.  相似文献   

14.
The aim of this work was the study of poly-β-hydroxybutyrate (PHB) formation and degradation in a sequencing batch biofilm reactor (SBBR). The SBBR was operated in cycles comprising three individual phases: mixed fill, aeration and draw. A synthetic substrate solution with acetate and ammonium was used.PHB was formed during the aeration phase immediately after acetate depletion, and was subsequently consumed for biomass growth, owing to the high oxygen concentration in the reactor. It was observed a combination of suspended and biofilm growth in the SBBR with predominance of the fixed form of biomass (506 Cmmol and 2102 Cmmol, respectively). Maximum PHB fraction of suspended biomass (0.13 Cmol/Cmol) was considerably higher than that of biofilm (0.01 Cmol/Cmol). This may possibly be explained by a combination of two factors: lower mass transfer limitation of acetate and higher fraction of heterotrophs in suspended biomass compared to the ones of biofilm.  相似文献   

15.
Beet molasses successfully replaced glucose as sole carbon source to produce poly--hydroxybutyrate by a recombinant Escherichia coli strain (HMS174/pTZ18u-PHB). The fermentation with molasses was cheaper than with glucose. The final dry cell weight, PHB content and PHB productivity were 39.5 g/L, 80% (w/w) and 1 g/Lh, respectively, in a 5 L stirred tank fermenter after 31.5 h fed-batch fermentation with constant pH and dissolved O2 content. © Rapid Science Ltd. 1998  相似文献   

16.
A bacterium, Azotobacter chroococcum 4A1M, isolated from a soil sample, produced an alginate-decomposing enzyme in the culture broth. The enzyme was purified to an electrophoretically homogeneous state. The purified enzyme showed maximum activity at pH 6.0 and 60°C;it was stable up to 60°C at pH 6.0 and activated by Ca2+ and inhibited strongly by Hg2+. The molecular mass of the enzyme was estimated to be 23 kDa by sodium dodecyl sulfate/polyacrylamide gel electrophoresis and 24 kDa by gel filtration. Therefore, the enzyme was considered to be monomeric. The NH2-terminal amino acid sequence was determined to be H2N-Ala-Ser-Ile-Ala-Ile-Thr-Asn-Pro-Gly-Phe. The enzyme reacted only on the polymannuronate block of alginic acid, and two main reaction products were obtained when short-chain polymannuronate was used as a substrate. The degrees of polymerization of the two products were three and two respectively.  相似文献   

17.
The lipids poly-beta-hydroxybutyrate (PHB) and alkylresorcinols are the major metabolic products of Azotobacter vinelandii cysts. Cysts are formed in less than 0.01% of late stationary phase cells grown on sucrose. Culturing vegetative cells in n-butanol or beta-hydroxybutyrate induces encystment. After induction of encystment, PHB rapidly accumulates in large granules. Then, the cells begin the synthesis of alkylresorcinols that replace the phospholipids in the membranes and are components of the exine, the outer layer of the cyst envelope. Vegetative cells do not synthesize alkylresorcinols. We report here the effect of mutations in the phbBAC operon, coding for the enzymes of the PHB biosynthetic pathway, on the synthesis of alkylresorcinols and cyst formation. The phb mutations did not impair the capacity to form mature cysts. However, the cysts formed by these strains posses a thicker exine layer and a higher content of alkylresorcinols than the cysts formed by the wild-type strain. A blockage of PHB synthesis caused by phb mutations resulted in the synthesis of alkylresorcinols and encystment even under non-inducing conditions. We propose that, as a consequence of the blockage in the PHB biosynthetic pathway, the acetyl-CoA and reducing power pools are increased causing the shift to lipid metabolism required for the synthesis of alkylresorcinols and cyst formation.  相似文献   

18.
The enzyme activity synthesizing poly--hydroxybutyrate (PHB) was mainly localized in the PHB-containing particulate fraction ofZoogloea ramigera I-16-M, when it grew flocculatedly in a medium supplemented with glucose. On the other hand, the enzyme activity remained in the soluble fraction, when the bacterium grew dispersedly in a glucose-starved medium.The soluble PHB synthase activity became associated with the particulate fraction as PHB synthesis was initiated on the addition of glucose to the dispersed culture. Conversely, the enzyme activity was released from the PHB-containing granules to the soluble fraction when the flocculated culture was kept incubated without supplementing the medium with glucose.PHB synthase was also incorporated into the newly formed PHB fraction when partially purified soluble PHB synthase was incubated withd(-)--hydroxybutyryl CoA in vitro.Although attempts to solubilize the particulate enzyme were unsuccessful, and the soluble enzyme became extremely unstable in advanced stages of purification, both PHB synthases had the same strict substrate specificity ford(-)--hydroxybutyryl CoA, and showed the same pH optimum at 7.0.Non-Standard Abbreviations PHB poly--hydroxybutyrate  相似文献   

19.
Summary Following growth of Alcaligenes sp. SH-69 on glucose as a sole carbon source for the production of poly--hydroxyalkanoates (PHAs), relatively low levels of levulinic acid (LA) were detected. Experiments were carried out in batch and continuous culture, and the effects of LA addition on growth and PHA synthesis were determined. Significant stimulatory effects were observed, greater than those for propionic acid addition. In N-limited two stage continuous culture, a maximal PHA content of 38.3 % (w/w) was achieved with a polyhydroxyvalerate (PHV) content of 23.5 % (molar basis) at D=0.078 l/h. This resulted from the controlled addition of LA at 0.5 g/L/h in the presence of excess glucose.  相似文献   

20.
Considering the industrial interest of Poly-β-hydroxybutyrate (PHB), bacteria isolated from the various marine arenas were screened for their ability to accumulate PHB and were compared with Wausteria eutropha (MTCC-1285). Among the 42 isolates, four strains showed the accumulation of PHB. The maximum PHB producer Vibrio sp. (MK4) was further studied in detail. To increase the productivity, steps were taken to evaluate the effect of carbon sources, nitrogen sources, pH and sodium chloride concentration on PHB productivity by MK4. The optimized conditions were further used for the batch fermentation over a period of 72 h. Significantly higher maximum biomass of 9.1 g/L with a PHB content of 4.223 g/L was obtained in a laboratory-scale bioreactor at 64 h, thus giving a productivity of 0.065 g/L/h. The extracted polymer was compared with the authentic PHB and was confirmed to be PHB using FTIR analysis and 1H NMR analysis. Thus, the study highlights the potential of the use of Vibrio sp (MK4) in the commercial production of PHB.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号